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A methodology for optimal ground-based sensor network design for an evapotranspiration (ET)
estimation method which uses solar radiation as the only parameter is developed and evaluated in
this study. The methodology employs geospatial analyses and a geostatistical approach, and data
from ground-based sensors and satellite-based estimates of solar insolation (i.e. total amount of
solar radiation energy received on a given surface area during a given time) considering the
spatial variability of the data. The applicability of the methodology is demonstrated by using
Geostationary Operational Environmental Satellite (GOES)-estimated and 29 ground sensor-
based observed solar insolation data in the South Florida region of the USA. Results indicate that
the optimal design of network depends on the spatial variability of insolation, analysis block size
defined based on region-specific radiation characteristics, and the standard error used as a metric

of network estimation accuracy.
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1. Introduction

Evapotranspiration (ET) is one of the major
components of the hydrological cycle. Esti-
mation of this hydro-meteorological parameter
is critical for hydrological modelling and
management of surface and groundwater
resources. The most common meteorological
parameters that are essential for ET estimation
are air temperature, humidity, solar radiation,
barometric pressure and wind speed. Potential
ET (PET) and reference ET (RET) are the two
ET-related parameters that are needed to
estimate ET, which is the rate that water loss

to the atmosphere occurs from well-watered
soil and plant surfaces. Methods available for
ET estimation are generally classified as: (1)
temperature-based methods (Blaney—Criddle
method; Doorenbos & Pruitt 1977; Abtew &
Melesse 2013; Hargreaves—Samani method,
1985); (2) radiation-based methods (Abtew
method, 1996); (3) the mass transfer method
(Abtew & Melesse 2013); (4) energy balance
methods and their variants (such as Penman
1948, corrected Penman, and Penman—Mon-
teith; Monteith 1973). ET is a multi-dimen-
sional process occurring in space and time and
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solar radiation (insolation) flux is the largest
determinant of temporal variation in ET flux.
An important parameter for estimation of ET
(PET and RET) is net radiation (R,). One
component of R, is incoming (downwelling)
solar radiation, which can be estimated as solar
insolation from a geostationary satellite data or
ground-based sensors referred to as pyran-
ometers. Figure 1 illustrates solar insolation in
the context of a simple energy balance model.

The main focus of this study is the
development of a methodology for design of an
optimal solar radiation sensor network that can
help estimation of ET in South Florida, USA,
using a conceptually simple solar radiation-based
ET estimation method (Abtew 1996). This
method uses solar radiation as the only input
variable and can be used for estimation of daily
wetland evapotranspiration or shallow open
water evaporation or potential evapotranspira-
tion. Abtew and Melesse (2013) point out that in
many regions of the world where solar radiation
explains most of the variation in evaporation and
evapotranspiration, a simple method such as the
one suggested by Abtew (1996) is adequate for
estimation of ET. Several studies conducted all
over the world (Abtew & Melesse 2013; Abtew,
Irizarry-Ortiz, Lyon, & Obeysekera, 2002; Enku

‘.l
<
2y

LWup

Turbulent
Exchange SWup

m Albedo 5Wdn

A
=S
4

et al. 2011; Zhai et al. 2009; Delclaux &
Coudrain 2005; Oudin et al. 2005; Shoemaker &
Sumner 2006; Xu & Singh 2000; Jacobs et al.
2002) have confirmed the application and
benefits of this method over other methods.
Even though ET is influenced by several
meteorological parameters, the availability of a
conceptually simple method (Abtew 1996) to
accurately estimate the same using solar radiation
as the sole parameter in the study region forms
the motivation for development of an optimal
solar radiation sensor-based monitoring network.

The most desirable ET datasets for the
purposes of distributed hydrological modelling
and water budget and resource analysis are
spatially continuous gridded data, rather than
point values derived from the traditional field
weather station networks. Estimation of ET
using satellite-based solar radiation with the help
of methods (e.g. Abtew 1996) that primarily use
this parameter can provide such datasets.
A number of methods currently exist in the
literature for estimating solar insolation using
geostationary operational environmental satel-
lite (GOES) visible channel observations. The
methods ranged from statistical-empirical
relationships (Tarpley 1979) to physical models
of varying complexity (Gautier et al. 1984;
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Figure 1. Schematic of simplified energy balance model. Here, ‘up’ and ‘dn’ relate to the upward and
downward components, respectively. ‘SW’ is shortwave radiation, and ‘LW’ is longwave radiation.
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Moser & Raschke 1984; Pinker & Ewing 1985;
Dedieu et al. 1987; Darnell et al. 1988; Frouin &
Chertock 1992; Pinker & Laszlo 1992; Wey-
mouth & LeMarshall 1999; Paech er al. 2009).
Schmetz (1989) and Pinker et al. (1995) confirm
the utility of satellite-estimated solar insolation
methods in producing accurate estimates of
insolation for different sky conditions.
Development of a methodology to design an
optimal solar radiation sensor-based monitoring
network requires assessment of the available
ground sensor- and/or satellite-based solar
radiation data. In the first phase of this study
spatial variability solar insolation based on
GOES-estimated datasets at a specific spatial
resolution using geospatial analysis is evaluated.
This task is expected to help in development of
spatial evapotranspiration estimates in the next
phase. The initial phase will also help understand
the variability in land-surface features and land-
use across the region of interest that contribute to
regional variations in solar insolation due to the
heterogeneity in heating (from both sensible and
latent contributions) that in turn cause (a) meso-
scale circulations and (b) local enhancements in
convective cloud formation and maintenance.
It is expected that some sub-regions may
experience spatially uniform insolation due to
prevalence of land-surface features such as large
lakes and non-varying types of land-use and
ecosystem-related vegetation. The results from
the initial phase of spatial analysis are used in a
geostatistical framework to determine an optimal
sensor network to measure and characterise the
variable solar radiation across the region.
A properly sized and optimised network can
result in significantly increased efficiency in
measurement of spatially varying solar insolation.

2. Monitoring network design

Design of optimal monitoring networks requires
an evaluation of heterogeneity of the solar
insolation based on observations at sampling
locations in a region. Fortin and Dale (2005)
indicate that any optimal spatial sampling
scheme requires a careful balance between

sampling locations that are too close to one
another, thus not providing enough new
information (data highly auto-correlated), and
sampling locations that are too sparse, so that
processes at other spatial scales introduce too
much variability (Haining 1990). Similarities
exist between the designs of solar radiation
sensor and rain gauge networks as they measure
a spatially varying meteorological parameter.
Existing or variants of approaches available for
rain gauge network design can be adopted for
solar radiation network design. Several
approaches exist in the context of rain gauge
monitoring network design, and they rely on
conceptually simple methods based on variance
of rainfall in space. The variance of rainfall is
calculated based on the existing number of rain
gauges in the region. Rakhecha and Singh
(2009) provide a review of several methods of
rain gauge network design, by Rycroft (1949),
Ganguli et al. (1951) and Ahuja (1960). Rycroft
(1949) used variance in space and allowable
variance in estimate of mean rainfall to
determine the optimum number of rain gauges,
while Ganguli et al. (1951) used the mean
monthly coefficient of variation and a pre-
defined tolerance value and the existing gauges
to obtain the optimum number of rain gauges.
A review of recent literature related to optimal
design of monitoring networks points to several
different currently available methods for a
variety of applications and they include an
information-theoretic approach for transpor-
tation applications (Xing et al 2013) and
wireless sensor networks (Larish & Riley 2011),
an entropy and multi-objective-based approach
(Mogheir et al. 2013) and fuzzy theory and
multiple criteria analysis (Chang & Lin 2014)
for water quality monitoring. In the current
study a geostatistical approach is used for the
design of a solar radiation monitoring network.

Methodology

The methodology adopted in the current study is
shown as a series of tasks to be executed in two
parallel tracks, as shown in Figure 2.



Downloaded by [Ramesh S.V. Teegavarapu] at 11:23 05 July 2015

4 R.S.V. Teegavarapu et al.

As indicated in Figure 2, initially the solar
insolation data from the GOES satellite are
validated using pyranometer data (i.e. ground-
based sensors). Stratification of the region into
an array of analysis blocks of specific spatial
resolution is essential to determine an optimal
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the size of the block is determined using the
range parameter of an empirical semivariogram
fitted to the solar radiation data in the current
study. Once the spatial partitioning task is
completed, GOES insolation data are analysed
for spatial variability in the region and
geostatistical analysis using ordinary kriging
is completed to determine the appropriate size
of the analysis block. In a series of parallel
tasks, point variance is estimated from the
ground sensor data measurements and an
interpolated surface of this variance is created
covering the entire region using any spatial
interpolation method. Point variance is calcu-
lated using temporal observations of insolation
from a single point thereby assessing the
seasonal variation. Multiple spatial interp-
olation methods are then evaluated using
different performance measures before the
best method is selected for creation of an
authentic surface of point variance of insola-
tion. For a selected analysis block size, the
optimal number of sensors needed is deter-
mined with the help of any unconstrained
nonlinear optimisation method using infor-
mation about point variance for that particular
block and a pre-specified standard error. In each
analysis block, after accounting for already
existing sensors, the number of additional
sensors is determined. A few steps shown in
Figure 2 are executed in an iterative way until
an implementable network design is achieved
considering sensor placement and monetary
constraints. Even though the methodology
developed in this study is mainly aimed at
enhancing the existing monitoring network, it
can be applied to regions with no existing
network of sensors.

3. Geospatial analysis

This section briefly describes geospatial data
processing tasks carried out in this study using
several tools available under ArcGIS including
the geostatistical toolbox. Initially detrending of
insolation data sets was performed for purposes
of identification of spatial correlations through a

(semi) variogram analysis approach. Detrending
specifically will remove the means of the data,
and any trend in insolation not yet addressed in
the calibration work of Paech et al. (2009) to
better isolate the true variability within the data.
A ‘parametric’ form of detrending in each
analysis block is used to remove trends, which is
later explained in Section 9.

4. Geostatistical analysis

The degree of spatial dependence is generally
expressed as a semivariogram in geostatistical
analysis (O’Sullivan & Unwin 2010; Teega-
varapu 2007). A general expression
(O’Sullivan & Unwin 2010) used to estimate
the semivariogram is given by Equation 1

1
d)=——>"(6: — 6)? 1
Y(d) nd) dij:d( ;) (1

where y(d) is the semivariance which is defined
over observations 6; and 6;, which are lagged
successively by distance d, and n(d) is the
number of pairs of points at separation distance
d. Depending on the shape of the semivario-
gram cloud several mathematical models are
possible, including linear, spherical, circular,
exponential and Gaussian. Three semivario-
gram models, namely spherical, exponential
and Gaussian, defined by Equations, 2, 3 and 4
are evaluated in this study.

1.5k n\?

3h
y(h), = C, + C, [1 - CXP<_;>] (3)

Y, = Co + Cy

3h?

Y(h); = C, + Cy |:1 - exp<— F)] 4
The parameters C,, h and R are referred to as
the nugget (or nugget effect), distance and range
parameters of a semivariogram respectively.
The value at zero separation distance is referred
to as the nugget. The summation of C, and C; is
referred to as the sill and the semivariance at



Downloaded by [Ramesh S.V. Teegavarapu] at 11:23 05 July 2015

6 R.S.V. Teegavarapu et al.

range R is equal to the sill value. The range
parameter (R) defines the distance at which no
spatial correlation exists or semivariance is
constant. This parameter can be used to define
the analysis block size as recommended by
Pathak and Vieux (2007). A nonlinear least
squares fitting method available through the
‘nls’ function in the proprietary statistical
package S-plus (S-Plus 2007) is used to obtain
the values of C, and C; (SFWMD 2008).
Preliminary analyses (SFWMD 2008) of
insolation data indicated that the exponential
semivariogram model is the best among the
three models evaluated to characterise the solar
insolation in the current study region.

5. Analysis of point variance solar insolation
from ground sensors

Spatial interpolation using point variance
values based on observations at ground-based
sensor locations is adopted to spatially
characterise the solar insolation over a region.
A surface (continuous field) from the point
variances of solar insolation values is gener-
ated. Two different interpolation methods (one
deterministic and another stochastic) are
investigated: (1) the inverse distance weight-
ing method (IDWM) and (2) ordinary kriging
(O’Sullivan & Unwin 2010; Teegavarapu
2007). The IDWM (Teegavarapu & Chandra-
mouli 2005) for spatial interpolation uses
distance as weight for a weighted estimate at a
point in space. The estimate of an observation,
0,,, at a point in space, using the observed
values at other sensors, is given by Equation 5:

"L 0d K
Gm — Zl—l mi (5)

K
Z?=] dmi

where again 6,,, is the estimate of the observation
at a point in space m; n is the number of sensors;
0; is the observation at sensor i, d,, is the
distance from the location of sensor i to the
observation point m; and k is referred to as
friction distance that ranges from 1 to 6. A value
of 2 is chosen in this study for the friction

distance (i.e. k), which is the most commonly
adopted value (O’Sullivan & Unwin 2010). The
number of nearest neighbours used for interp-
olation is another parameter that is critical for
the success of the method. The number of
neighbours is selected by a trial and error process
and the number that results in the lowest root
mean squared error (RMSE) based on observed
and estimated values of variance is selected.

Ordinary kriging (Isaaks & Srivastava
1989; Webster & Oliver 2001; Teegavarapu
2007) is a stochastic interpolation method
based on scalar measurements at different
points in space. Surface interpolation using
kriging depends on the selected semivariogram
model and the same fitted with a mathematical
function or model. Depending on the shape of
the empirical semivariogram, kriging weights
(Webster & Oliver 2001) are derived and the
estimate at any point in space is obtained by
the weighted sum of observations at all other
locations. The estimation of a value 6, at a
location is given by Equation 6.

i=1

The variable 6; is the value of observation at
location 7 and J; is a weight associated with the
observation.

6. Sensor network design

The design of the sensor network is aimed at
capturing and characterising the spatial varia-
bility of the solar radiation across the region.
The design of the network depends on several
factors, including (1) placement of sensors to
maximise the information obtained from the
sensors, (2) the existing network of sensors and
(3) the monetary cost involved in the purchase
and placement of the sensors. The standard
error (SE) of the mean is used as a metric of
accuracy of the monitoring network, to
identify the optimal number of ground sensors
in this study. Multiple studies (e.g. Olea 1984;
Spruill & Candela 1990; Bhat et al. 2015) in
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the past have used the SE as an accuracy metric
for monitoring network design. Olea (1984)
indicated that the average standard error and
the maximum standard error of estimation over
the sampling domain can be used as global
indices of sampling efficiency. The required
number of sensors in a specific analysis block
can be obtained by improving the accuracy of
the mean solar insolation measurement.
An exponential semivariogram model is
found to be appropriate based on preliminary
analysis of insolation data conducted
(SFWMD 2008) using three different semivar-
iogram models discussed in the Section 4. The
semivariogram model expressed in terms of
the range, R, distance parameter, A, and point
variance, o%, is given by Equation 7.

wm=ﬁ<rw%ﬂ %)

The variable R is the range in the same units as
the distance, h. A relationship is derived
between correlation represented by the semi-
variogram and the same correlation represented
by the correlogram. The correlation coefficient,
pn, between observations at two insolation
measurement locations at a separation distance,
h, is defined as (Equations 8—11),

m=% @®)
Yo =0, = 0 ©)
Y = o5(1 = py) (10)
o = e (1)

An exponential semivariogram, used to
model the covariance structure of the solar
insolation from satellite data, provides the
range parameter that indicates the distance at
which no spatial correlation exists. The

effective number (or minimum number) of
sensors is obtained from the correlation
distance from satellite data and point
variance information from ground-based
sensor data for each analysis block. Haan
(2002) and Matalas and Langbein (1962)
indicate that information contained in data
from n monitoring stations in a region having
an average inter-station correlation of p, (i.e.
correlation coefficient among n stations) is
equivalent to the information contained in n’
uncorrelated stations (sensors) in the region.
The relationship between n’ and n can be
established and is given by Equation 12
(Haan 2002).

W=—"__ (12)
1+ pp(n—1)

Equation 12 suggests that as n increases, n’

approaches 1/p,. Hence, the effective num-

ber of sensors n’ can be related to separation

distance A. The SE of the mean is calculated

for all the analysis blocks using Equation 13.

2
SE =1/ (13)
n

A scaled or normalised SE referred to as SE’
is obtained by Equation 14. The SE is
calculated based on effective number of
sensors (n').

(14)

7. Optimal network design

The optimal network design is based on the SE
and the number of sensors in each analysis
block. The network size is optimal when an
optimisation formulation is solved using
constraints related to block size and cost
associated with installation and removal of
Sensors.
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Variable density analysis block approach

In the variable density analysis block
approach, the point variance (o) for each
block is used to identify the number of sensors
(n) that have a correlation coefficient (p) to
achieve a desired constant level of accuracy
defined by the magnitude of SE. The
relationship linking o, n, p and SE is given
by Equation 15.

m(SEY = (1+ pulmy — 1)o7 Yk (15)

The variable k identifies each analysis block.
Equation 15 is solved for n; for different values
of SE for each analysis block by using a
nonlinear root-finding method (Brent 1973).
The value obtained for n is rounded off to the
nearest integer to obtain the number of sensors.
The approach provides the number of sensors
needed within each block. Further study using
land-cover data and other information would
be needed to assess exact placements of
sensors within a given block.

8. Case study area description and data

The region of interest in South Florida for the
current study is shown in Figure 3[!—insert—];
its boundary is defined and managed by a state
agency, the South Florida Water Management
District (SFWMD). The state water agency
SFWMD is referred to as ‘District’ and is
responsible for the collection, validation and
archiving of the hydrological and meteorolo-
gical data (such as barometric pressure, solar
radiation, air temperature, relative humidity
and wind speed) at stations that form the
District’s meteorological monitoring network.
The District’s broad objective is to optimise
the regional hydro-meteorological monitoring
network to cater to the needs of different water
resources and environmental management
projects in the region. Locations of existing
solar radiation ground-based sensors in the
SFWMD region are shown in Figure 3 and the
details of these sensors are provided in Table 1.

The solar insolation data used in this study
are derived from NOAA (National Oceano-
graphic and Atmospheric Administration)
GOES observations that cover the state of
Florida, as described by Paech et al. (2009).
GOES data are obtained from the GOES data
archive at the Space Science and Engineering
Center at the University of Wisconsin-
Madison. For the Paech et al. (2009) study,
which produced an extended GOES insolation
data record from 1995-2004, over 102,000
individual GOES images were processed using
the model of Gautier et al. (1980) to produce
half-hourly and daily-integrated solar insola-
tion throughout the state of Florida at a 2km
spatial resolution. In 2005 and 2006, the
University of Alabama in Huntsville (UAH),
the University of New Hampshire (UNH), all
water management districts (WMDs) in the
state of Florida, and the United States
Geological Survey (USGS) took part in the
creation of a decade-long (1995-2004) state-
wide daily ET datasets at 2 X 2 km resolution
(SFWMD 2008). Key inputs into this ET
estimation methodology included GOES sat-
ellite estimated incoming solar insolation
(Gautier et al. 1980; Diak et al. 1996; Otkin
et al. 2005), as well as ancillary weather (e.g.
wind, temperature, humidity) and land-surface
information. This ongoing project provides a
critical database for estimation of ET statewide
and this effort will continue towards the
creation of a multi-decadal dataset. Work also
included calibrating the GOES solar insolation
data (Paech et al. 2008) with ground sensors.
The efforts of Paech et al. (2008) found that
calibration of the GOES insolation reduced
errors to 1.7MJ m ™ day ' (10 percent), and
also removed temporal-, seasonal- and satellite
sensor-related biases. Also, coefficient of
determination (R?) values based on satellite
and ground (pyranometer)-based values
reached values closer to 0.90 following further
calibration activities to remove month-to-
month and cloudiness-related error biases.

Solar radiation amounts vary geographi-
cally within central and South Florida.
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Figure 3. Location of 29 solar radiation sensor stations in the SFWMD region with overlay of 20 X 20 km

grid. Each 20 X 20 km region represents an analysis ‘block’ as described in the text.
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Radiation characteristics and patterns on land
surrounding Lake Okeechobee and ocean are
different from those of central overland mass.
In addition, spatial variation in radiation
amounts for shorter durations, such as one
day, is significantly greater than for monthly,
seasonal and annual radiation. Therefore, in
this study the spatially varying sensor density
is considered based on varying solar radiation
conditions during dry and wet periods.
In addition, solar radiation estimates of local
patterns are used for determining optimum
sensor placement as opposed to laying out the
sensor in an evenly spaced grid. The GOES
satellite-based daily solar radiation data from
1995 to 2004 available from University of
Alabama in Huntsville (UAH) are used in this
study. Daily solar radiation data from 29
ground-based LI-COR model LI-200S pyran-
ometers (LI-COR 2015; Pathak 2008) installed
in the SFWMD region are used for the study.
Each of these sensors is calibrated against an
Eppley precision pyranometer under daylight
conditions (Abtew & Melesse 2013; LI-COR
2015). The typical error noted in measure-
ments under these conditions is =5 percent
(Kinsman, Kite, & Mtundu, 1994; Pathak
2008; Abtew & Melesse 2013). A sensitivity of
0.2 kilowatts per meters squared per millivolt
(kW m >mV ") is noted for these sensors
(Pathak 2008).

9. Results and analysis

Solar insolation data are processed from the
2 X 2km resolution data grids and overlaid
onto 20 X 20 km analysis blocks covering the
region defined as District (refer to Figure 3).
A total of 119 non-intersecting blocks cover
the District region. Each 20 X 20 km analysis
block contains approximately 100 insolation
pixels at 2-km resolution (Figure 3). The
insolation data are divided by seasons across
South Florida. The climatology of South
Florida demands that the data set be sub-
divided into cool, warm and transitional
seasons. After initial analysis (SFWMD

2008), the datasets are split into the following
time periods: (a) dry season: November—
March, (b) wet season: April—October, (c) a
set of completely (100 percent cloud cover)
cloudy days, and (d) a set of completely clear
days. Transitional time periods are not
considered to add significance to these
analyses. For sets (c) and (d), considerable
effort is needed to identify days with these
characteristics, given the relative rarity of clear
and cloudy days across the entire District,
especially during the wet season. Using
2 X 2km gridded insolation data, surfaces of
mean, standard deviation, and coefficients of
variation are developed. To characterise the
covariance structure of insolation across the
region, definition of analysis blocks large
enough to encompass the range of existing
spatial correlation but sufficiently small to
capture climatological gradients near coastal
areas and inland water features such as Lake
Okeechobee is essential. Characterisation of
these gradients is very important given the
driving forces for cumulus cloud convection
across South Florida. In particular, time-
dependent changes in cumulus clouds due to
land, lake and sea breeze circulations are
considered. Variations of mean and standard
deviation of insolation for the wet season are
shown in Figure 4 and Figure 5 respectively.
These values are derived from measures of
temporal variability at each 2km grid, based
on daily values. Figures 4 and 5 also shows
layers of 119 non-intersecting 20 X 20km
analysis blocks over the SFWMD region.

It can be seen from Figure 4 that the mean
values of insolation decrease slightly from
north to south, reaching maximum values in
the east (and over approximately Lake
Okeechobee). Values are mainly range from
18.6 to 19.6MJ m™? day ' (one MIJ, or
megajoule, is 10° joules). in the north and
west, yet locally decrease to near 18 MJ m™ 2
day ™' in the far southeast. These values are
close to 8MJ m ™ day ' and are below the
maximum values that would be expected under
clear-sky conditions, yet this is not unexpected
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Figure 4. Mean solar insolation map based on 2-km grids with an overlay of 20-km analysis blocks for the

wet season (April—October) based on data from years 1995-2004 in MJ m ™2 day .
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given the high frequency of occurrence of
convective and other clouds across this portion
of Florida during the wet season. Values over
the ocean and Lake Okeechobee are much
higher than or equal to 20MJ m ™~ ? day '. The
standard deviation map of insolation (Figure 5)
shows several features: First, values are lowest
over land, ~5.2-5.8MJ m 2 dayfl. Second,
higher values up to near 6MJ m ™~ > day ' are
found near the coasts, which could be caused
by a high variability in convective clouds
(varying largely from day to day, specifically
either mostly clear or mostly cloudy), and is
especially exemplified near lakes and the
ocean. Third, the analysis of coefficient of
variance (as shown in Figure 6) indicated
gradients in insolation along the east coast,
with values exceeding 0.3 in these areas
(SFWMD 2008). Lastly, the variability in the
entire wet season of the daily solar insolation
dataset and the histogram for all 10,186 days
(April—October, 1995-2004) are determined.
Here, the data are binned about the mean
(19.13MJ m~ % day ™~ "). The highest frequency
of days with a given value occur at ~1.0MJ
m~* day” ' above and below 19.13MJ m™?
day ™', which suggests a delineation between
cloudier and clearer days, and land and water
regions, across the region. From a meso-scale
weather perspective, this would denote days
with either a low or high coverage of
convective storms, which is not atypical of
tropical (or subtropical) weather regimes
(Byers & Rodebush 1948; Riehl 1954;
Heymsfield et al. 1996).

Range parameter assessment: relationships
to land-surface features

The covariance structure of the solar insolation
data evaluated indicates that there is no
uniform analysis block size that is identifiable
for the region under consideration. Therefore,
two analysis size blocks, 40 X 40km and
20 X 20km, are identified for developing
the optimum design of sensor network.
A ‘parametric’ form of detrending (Lloyd

2007) in each analysis block is intended to
remove non-stationarity. This type of detrend-
ing by use of regression models is rec-
ommended in several reference texts (e.g.
Llyod 2007; Haan 2002; Isaaks & Srivastava
1989; Webster & Oliver 2001). Non-stationar-
ity of mean insolation, referred to here as a
trend, can affect the successful identification
of the covariance structure. Without detrend-
ing, correlation lengths of the insolation
magnitudes can become spuriously large
(Wilks 2006; Gringarten & Deutsch 2001).
Prior to detrending, days (a) in which large
tropical storms and hurricanes affect the state
of Florida, (b) of consistent cloudiness given
the known deficiencies in the GOES insolation
data in these cases, and (c) with missing GOES
data and low data quality indices (Paech et al.
2009) are omitted from analysis. Through least
squares, detrending is accomplished within
each analysis block by fitting a linear
regression equation to the insolation data in
each time period. The detrended data are then
used to compute empirical semivariograms
using the °‘Geostatistical wizard” within
ArcGIS, as well as for the covariance analysis.

The semivariogram analysis is carried out
for each analysis block using the daily
insolation data, over subsets of the 10-year
long data set (e.g. wet and dry seasons, cloudy
days). The empirical semivariograms are fitted
with data from the wet season in each year and
in each analysis block; the wet season
possesses the largest fraction of incoming
insolation that can be highly variable due to
small-scale convective cloudiness (of the order
of 1-4km). As there is a relatively weak
correlation in space for insolation, especially
when small-scale (2-25km) convective
clouds dominate the cloud climatology (and
hence the insolation variability), the mean
empirical semivariogram ordinates are
selected. Subsequently, an exponential semi-
variogram model is fitted to empirical
semivariograms of mean detrended pixel
values in each block. The ‘upper quartile’
pixel values are used, but did not provide
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Figure 5. Map of standard deviation of solar insolation map based on 2-km grids with an overlay of 20—k1}1

analysis blocks for the wet season (April—October) based on data from years 1995—2004 in MJ m~ > day .
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Figure 6. Coefficient of variation of solar insolation based on 2-km grids with overlay of 20-km analysis
blocks for the wet season (April—October) based on data from years 1995-2004.

useful results because they changed the data’s
distribution away from ‘normal’. A robust
nonlinear estimator is used to obtain the
optimal range and sill parameters of the two-

parameter model. The nugget variance of
insolation is found to be close to zero in almost
all blocks. This is because the sub-grid
variability (within the 2 X 2km data resol-
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ution) is not considered in this analysis. The
range values are found to be directionally
independent (i.e. no dependence on direction
within a block is presumed or made) and hence
isotropic kriging is considered. Analysis of
solar radiation data also confirmed the
hypothesis that variations in land-surface
features and land-use across the SFWMD
region contribute to regional variations in solar
insolation due to the heterogeneity in heating.
Due to this the range parameter increases in
regions with more spatially uniform insolation.
The existence of wet lands, large lakes and
continuous fields of sugarcane in the region
contribute to some of the variations in
observed insolation.

Figures 4—6 clearly show low insolation
variability over the Lake Okeechobee.
In contrast, locations where differential sur-
face heating is dominated by small-scale (20 to
~100 km) surface characteristics, solar
insolation would be more variable from day
to day, and even from hour to hour (Campbell
& Norman 1998, Chapter 10). An example of
this would be shorelines where sea breeze
circulations cause convective clouds to form
(Atkinson 1981), and in areas containing a
large lake such as Lake Okeechobee in the
study region. A tendency for smaller ranges
along the eastern and southeastern coastal
boundary, from the Atlantic coast to approxi-
mately 40—-50km inland, is noted. Similar
patterns are seen for regions on the southwest
Gulf of Mexico coast. Over the far north, range
values are highly variable, differing by nearly
15km. This high block-to-block variability
may be caused by the small lakes mixed with
natural vegetation in this portion of the
SFWMD region. The Lake Okeechobee area
is mostly dominated by range parameters of
approximately 19 km.

In summary, from the analysis of upper
quartile and mean detrended GOES insolation
data for the wet season, it can be concluded
that: (1) wet season insolation had lower range
values than those from the dry season;
therefore, wet season insolation data are used

for the network design analysis; this is due to
the higher frequency of occurrence of small
cumulus clouds; (2) mean detrended data
provide reasonable and more stable (i.e.
consistent across years) range values, and these
are used in the following analysis; (3) range
values are highly variable in time; therefore,
annual mean insolation data for the wet season,
and for each year, are used for the following
analysis; and (4) range values are highly variable
in space for 20-km, 40-km, 60-km and 80-km
block sizes. Therefore, based on these results, a
combination of 20- and 40-km blocks across the
District are chosen for the detailed semivario-
gram analysis. These analysis blocks are shown
in Figure 7. A sensitivity analysis between the
block size and correlation lengths is performed.
The computed correlation lengths (i.e. range
parameter values from semivariograms) defined
the optimal distances between the ground
sensors for the network design, which are
determined as a function of location across the
District. The range parameter values for 40-km
and 20-km analysis blocks are provided in
Tables 2a—2c and Tables 3a and 3b, respect-
ively.

Ground-based sensor data analysis

Solar insolation data collected from 29 ground
sensors in the SFWMD region shown in
Figure 3 are used for the analysis. Details of
these sensors, data collection methods and
frequency of measurements are provided by
Pathak (2008). An initial assessment of
available solar insolation data from the
SFWMD revealed several limitations of
ground sensor data due to observational and
systematic errors. The suspicious data flagged
by the SFWMD are removed prior to the
subsequent outlier identification analyses. The
sensor-based data are screened for outliers
using a Z-score method (Shiffler 1988).
Observations having a Z-score equal to or
greater than 3 are identified as outliers and are
removed. Anomalous observations are also
identified and eliminated. The satellite-sensor
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Figure 7. Analysis blocks of different sizes (40 km and 20 km) used for this study in the SFWMD region.

observation pairs are eliminated if the sensori
or satellite-based data on any given day are
identified as an outlier or an anomaly. Several
outliers identified were already flagged as
suspicious observed sensor data by the
SFWMD. Summary statistics of processed
insolation data for each of these sensors is

provided in Table 1. The correlation
coefficient values provided in Table 1 indicate
a good agreement between satellite- and
sensor-based radiation datasets. In order to
spatially characterise the solar insolation data,
the analysis of variance of the point measure-
ments is needed. The point variance values are
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Table 2a. Range parameter (in km) values for different 40-km analysis blocks based on 10-year solar
insolation data. See Figure 7 for locations of blocks listed.

40 X 40 km analysis block

A5 C3 C8 E4 E9

Year B7 E8 C4 Cs

1995 3736 2525 3727  33.95
1996 3736 1894 3727 3836
1997 3736 3843 1719 36.61
1998 3260 1075 19.62  38.36
1999 33.09  28.18 1555  10.44
2000 27.81 3234 3727 1044
2001 2965 1411 2673 3758
2002 2915 2607 3727 2627
2003 31.64 3843 3727 2339
2004 3736 1592 1495  11.37

Average 33.34 24.84 28.04 26.68

29.39 10.29 38.35 37.35 17.83
31.72 39.46 16.83 37.35 18.91
16.62 25.24 17.83 37.35 21.79
39.66 11.49 35.52 26.20 26.54
33.06 23.06 38.35 12.53 30.19
29.67 19.67 29.37 37.35 19.13
26.48 39.46 12.06 37.35 21.54
24.21 12.45 20.69 34.42 18.47
16.87 14.97 13.88 35.07 38.09
26.54 23.52 19.66 26.08 30.74
27.42 21.96 24.26 32.11 24.33

obtained from 29 ground sensors for the wet
periods in each of the years from 1995 to 2004.
Two different interpolation methods, (1) the
inverse distance weighting method (IDWM)
and (2) ordinary kriging, are used to obtain an
interpolated surface from the point variances
of solar insolation. Twenty-five ground sensors
are used for developing the surface, and four
sensors (viz., sensor numbers 12, 18, 20, 26)
are used for validation purposes. Ordinary
kriging requires that the observations follow a
Gaussian distribution. The normality of the
point variance data from the ground sensors is

evaluated using a normal probability plot
(Mage 1982) and the Kolmogorov and
Smirnov  (KS) test (Sheskin 2003).
An exponential semi-variogram model is
selected in the case of kriging after several
variogram models are evaluated. The IDWM is
implemented using four nearest neighbours
(i.e. sensor sites). The two interpolation
methods are evaluated using two error
measures (viz., mean absolute error and root
mean squared error) based on observed and
estimated values of solar radiation at vali-
dation sensor locations. The IDWM method

Table 2b. Range parameter (in km) values for different 40-km analysis blocks based on 10-year solar

insolation data.

40 X 40 km analysis block

Year B5 B6 Cl C2 Co6 C7 D4

1995 28.89 13.27 7.51 37.27 13.90 21.61 23.04
1996 12.26 30.05 16.30 26.53 15.05 12.00 25.24
1998 23.54 9.58 24.18 12.97 13.93 14.35 23.75
1999 13.20 7.87 12.05 16.12 39.45 24.48 25.47
2000 38.47 29.16 8.55 31.85 10.43 11.69 24.33
2001 11.05 10.49 9.34 12.33 14.56 9.69 27.16
2002 19.93 15.63 14.33 13.87 10.12 21.19 14.96
2003 38.47 39.56 10.48 10.31 32.75 16.09 20.00
2004 10.51 10.17 11.91 37.27 20.40 24.86 13.70
Average 21.81 18.42 12.74 22.06 18.95 17.33 21.96
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Table 2c.
insolation data.

Range parameter (in km) values for different 40-km analysis blocks based on 10-year solar

40 X 40 km analysis blocks

Year D5 D6 D7 D8 E5 E6 E7

1995 36.35 14.88 18.69 19.34 27.59 9.07 13.19
1996 28.97 23.32 10.64 22.26 12.07 21.83 12.04
1998 29.25 29.69 11.24 15.78 15.93 39.54 27.19
1999 32.15 10.28 15.22 32.05 22.80 18.87 19.48
2000 38.34 7.75 13.90 38.34 25.09 19.40 11.21
2001 22.19 11.22 37.25 16.28 13.64 24.78 37.34
2002 29.36 9.07 18.99 19.36 11.59 15.88 12.24
2003 20.47 12.56 9.73 17.85 13.36 22.21 20.54
2004 24.69 9.62 37.25 26.28 25.44 23.76 22.46
Average 29.09 14.27 19.21 23.06 18.61 21.7 19.52

provided 30 percent and 17.5 percent lower
values of MAE and RMSE values respectively
compared to those based on application of
kriging. The correlation coefficients based on
observed and estimated data at four locations
are 0.9 and 0.6 for IDWM and kriging
respectively.

The range parameter from an exponential
semivariogram used to model the covariance
structure of the solar insolation from satellite
data is obtained for each block. The effective
number of sensors is then obtained from the
correlation distance from satellite data and

Table 3a.

point variance from sensor data for each
analysis block. The variations in normalised
SE in relation to number of sensors are evident
from plots shown in Figure 8a and Figure 8b.
The exponential decay curves defining the
relationship between SE values and number of
sensors in all the 40-km analysis blocks are also
shown in these plots. It can be observed that as
the number of sensors increases the value of SE
decreases and remains more or less constant
after a specific number for each analysis block.
This information is used to estimate the number
of sensors needed in each block.

Range parameter (in km) values for different 20-km analysis blocks based on 10-year solar

insolation data. See Figure 7 for locations of blocks listed.

20 X 20km analysis block

Year B1-1 BI-2 B2-1 B2-2 B3-1 B3-2 B4-1 B4-2 B81 D31 D32
1995 9.35  13.79 6.48 433 1977 543 6.74 1050 18.09 17.52 3.24
1996 8.59 1485 8.91 7.70 1977  5.19 11.05 6.48 16.12 6.10 6.37
1997 11.88 505 1758 17.58 1148 693 17.58 9.13 19.76 793 1754
1998 5.67 6.46 17.58 4.80 364 854 10.88 1457 19.76 6.40 591
1999 17.58 4.84 5.25 5.70 4.66  5.69 5.36 496 12.11 1478 7.27
2000 4.04 9.93 690 1758 17.52 17.62 5.51  10.00 1343 17.52 4.69
2001 12.97 10.11 6.40 17.58 772 5.64 572 11.19  19.76 8.45 8.52
2002 9.75 8.16 552 1518 12.04 724 6.74 13.14 17.98 9.77 16.55
2003 11.64 18.67 4.38 7.96 9.62 8.61 9.12 7.36  16.27 6.18 7.24
2004 17.58 6.40 1059 11.00 939 764 11.84 17.58 10.53 4.81 5.00
Average  10.90 9.83 896 1094 11.56 6.85 9.05 1049 16.38 9.94 8.23
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Table 3b. Range parameter (in km) values for different 20-km analysis blocks based on 10-year solar
insolation data.

20 X 20km analysis block

Year E3-1 E32 F41 F51 TF52 F61 F62 F7-1 F72 F8-1 E3-I
1995 1196 519 533 934 974 1284 1612 1088 470 457 17.61
1996 6.92 1759 868 1392 1205 11.18 1459 1536 870 839 11.24
1997 522 1759 931 1871 565 13.61 1502 797 17.61 1091 17.61
1998 1681 12.17 17.62 1120 853 1082 588 732 923 1185 10.55
1999 531 789 1762 1871 1762 755 571 7.1 1761 652 17.61
2000 774 733 418 934 1231 1045 9.16 17.61 1761 6.69 17.61
2001 1757 9.7 1598 929 472 1274 1085 7.81 1483 1353 17.61
2002 514 520 741 672 722 1473 1406 504 1761 689  6.19
2003 574 731 1762 1183 1339 733 656 758 1353 721 17.61
2004 949 1036 678 1143 1266 610 638 990 17.61 12.01 10.20
Average  9.19 998 11.05 1205 1039 1073 1043 9.66 1390 886 14.38

Optimal network design

The optimal network design is conditioned on
a specific value of achievable SE to obtain the
number of sensors in each block. Based on the
covariance structure of the solar insolation
data, it is evident that there is no uniform
analysis block size that is identifiable for the
region under consideration. Two analysis size
blocks, 40 X 40 km and 20 X 20km as shown
in Figure 7[!—insert—], are identified for use of
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other constraints. In this study, a uniform value
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Table 4a. Variation of standard error (SE) with the number of sensors for each 40-km analysis block. See
Figure 7 for locations of blocks listed.

Standard error (MJ dayf1 m72)

Number of

Sensors AS B5 B6 B7 Cl C2 C3 C4 C5 C6 C7
1 5448 5541 5418 5010 5784 5659 5560 5493 5.684 5425 5.250
2 3944 3946 3.834 3.674 4.092 4012 3968 4.019 4.137 3.842 3.722
3 3.399 3297 3.145 3225 3.349 3.311 3.333 3.517 3.595 3.159 3.072
4 3.166 2968 2753 3.051 2920 2930 3.021 3.319 3.373 2.778 2.718
5 3.069 2794 2506 2990 2643 2706 2.861 3.247 3.288 2.545 2.510
6 3.041 2705 2346 2983 2456 2573 2786 3.237 3.269 2399 2.386
7 3.045 2664 2241 3.001 2328 2495 2756 3.254 3.281 2308 2314
8 3.067 2653 2172 3.029 2239 2453 2752 3.284 3.308 2253 2274
9 3.103 2664 2.133 3.067 2.182 2439 2771 3.325 3.349 2226 2.261
10 3.137 2681 2109 3.103 2.143 2437 2793 3.363 3.387 2226 2.259

optimal number, then a recommendation is
made to remove the additional number of

required for different values of SE is given in
Table 6. The number of sensors required in

sensors. Additional sensors are recommended
for any block if the existing number of sensors
in that block is less than the optimal.

Ground sensor network determination

For recommending an optimal sensor network
to the District, several values of SE are
evaluated for each block. SE values for
different numbers of sensors in each 40-km
and 20-km analysis block are provided in
Tables 4a and 4b and Tables 5a and 5b
respectively. The total number of new sensors

each analysis block for a specific value of SE
is provided in Table 7. Considering the cost
associated with installation and long-term
maintenance of new sensors and consultation
with District staff, the proposed ground
sensor network with SE of 5.0MJ day '
m~ 2 that would require 19 additional new
sensors is identified. The selection of this
network is based on two facts: (a) the standard
deviation of satellite solar insolation data
from wet seasons over 10 years varied
between 5.23 and 6.07MJ day ' m?
(Figure 5), which is in the range of the

Table 4b. Variation of standard error (SE) with the number of sensors for each 40-km analysis block.

Standard error (MJ day_l m ?)

Number of

Sensors C8 D4 D5 D6 D7 D8 E4 E5 E6 E7 E8 E9
1 5272 5874 5975 5453 5310 5346 5.846 5.877 5526 5.350 5411 6.011
2 3755 4.212 4340 3.857 3.762 3.804 4.328 4.166 3.948 3.807 3.896 4.292
3 3.140 3.570 3.759 3.155 3.098 3.172 3.842 3.437 3.322 3.176 3.328 3.609
4 2.831 3.270 3.517 2746 2.731 2.848 3.665 3.039 3.017 2.853 3.073 3.276
5 2.667 3.128 3.421 2479 2510 2673 3.612 2804 2.863 2.680 2958 3.107
6 2.585 3.069 3.396 2296 2375 2.582 3616 2663 2792 2590 2916 3.028
7 2.548 3.053 3.407 2.168 2.293 2538 3.643 2.581 2.766 2547 2912 2.998
8 2.539 3.062 3.433 2076 2246 2.523 3.680 2.535 2.765 2.533 2927 2.996
9 2.551 3.090 3.475 2.015 2225 2531 3.727 2519 2785 2542 2958 3.017
10 2.568 3.120 3.514 1971 2217 2546 3.769 2.515 2.808 2.556 2.989 3.042
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Table Sa. Variation of standard error (SE) with the number of sensors for each 20-km analysis block.
Standard error (MJ day ' m~?)

Number of

Sensors B1-1 Bl-2 B2-1 B2-2 B3-1 B32 B4-1 B4-2 B8-1 D31 D32
1 5.741 5756 5.574 5596 5.618 5.594 5588 5.622 5.146 5559 5.701
2 4.098 4.089 3945 3979 4.008 3960 3.960 4.007 3.789 3.942 4.035
3 3443 3395 3236 3314 3363 3.254 3267 3.355 3342 3256 3.312
4 3.120 3.031 2.834 2970 3.045 2.857 2.888 3.028 3.173 2.885 2.902
5 2956 2.827 2582 2782 2881 2.613 2663 2858 3.117 2667 2.647
6 2.882 2718 2420 2.686 2.806 2460 2.531 2777 3.119 2543 2484
7 2.847 2.656 2311 2.634 2770 2360 2449 2736 3.135 2466 2.375
8 2.844 2.631 2242 2615 2765 2299 2406 2728 3.166 2427 2.307
9 2.867 2.636 2205 2.625 2.786 2.270 2393 2747 3210 2419 2.272
10 2.886 2.641 2179 2.635 2.804 2251 2386 2.762 3.243 2415 2.247

selected SE (5.5MJ day_l m %) of the
proposed network; and (b) the selected
proposed network would require three
additional sensors compared to the 16 new
sensors required for the proposed network
with the SE of 5.5MJ day ' m™? that is
considered to be an optimal network. There-
fore, the recommended optimal ground sensor
network would need a total of 19 new sensors
with the SE of 5.0MJ day ' m™ 2. Figure 9
and Figure 10 show excess and insufficient
sensor distributions for the SFWMD region
for the SE of 5.0 MJ day ' m 2. Table 8a and
Table 8b provide the details of the required,
existing and excess number of sensors in each
block.

Data accuracy validation and sensor
placement

Sensors may be added or removed from an
analysis block based on the optimal number
specified by the geo-statistics-based method-
ology. The accuracy of the sensor network can
be analysed when a selected number of sensors
are removed from the analysis blocks.
Analysis block D5 is selected to demonstrate
the effect of withholding the sensors. Four
ground sensors are located in the analysis
block of D5 and are shown in Figure 3. The
approach for accuracy assessment is to
calculate the average value of solar insolation
estimated by the satellite observations in the
analysis block, and then compare them with

Table Sb. Variation of standard error (SE) with the number of sensors for each 20-km analysis block.

Standard error (MJ day71 m %)

Number of

Sensors E3-1 E3-2 F4-1 F5-1 F5-2 F6-1 F6-2 F7-1 F7-2 F8-1 F8-2
1 5769 5759 5743 5801 5969 5880 5715 5559 5500 5.532 5.552
2 4.086 4.087 4.079 4.150 4.264 4201 4.070 3.940 4.029 3.920 4.099
3 3360 3.382 3.386 3.503 3.587 3.538 3402 3249 3532 3.231 3.627
4 2956 3.005 3.021 3.193 3.257 3215 3.064 2.871 3.337 2.853 3.452
5 2710 2789 2817 3.040 3.091 3.054 2.885 2.647 3268 2.627 3.397
6 2558 2668 2707 2977 3.018 2984 2798 2514 3.264 2494 3.402
7 2460 2596 2644 2950 2985 2953 2753 2432 3277 2410 3421
8 2403 2562 2618 2954 2983 2952 2741 2387 3.308 2.364 3.455
9 2378 2559 2622 2982 3.009 2979 2757 2374 3354 2349 3.504
10 2362 2559 2627 3.005 3.030 3.000 2771 2366 3.388 2340 3.539
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Table 6. Variations in the number of sensors required and additional needed (new) for different values of

standard error.

Number of sensors

Standard error

MmJ dayfl m %) Required Available New
3.5 124 29 95
3.8 97 29 68
4.5 79 29 50
5.0 48 29 19
5.5 45 29 16

insolation values obtained by averaging the
available ground sensor observations. This
process involves progressively eliminating one
ground sensor at a time and then evaluating the
accuracy of the remaining sensors in char-
acterising the variability of the solar insolation
data. Summary statistics are calculated con-
sidering decreasing numbers of sensors

(Table 9). The results show minimal deviations
in summary statistics of the insolation data
from those from satellite-based data in the
block when two sensors are eliminated.

The sensor assignment and placement for a
new network will depend on the existing
number and required sensors and the practical
considerations and logistics related to main-

Table 7. Number of sensors required in different analysis blocks for a specific standard error.

Standard error (MJ dayfl m %)

Standard error (MJ day71 m %)

Block 35 3.8 4.5 5
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Tabzle 8a. 40-km analysis blocks with insufficient and excess number of sensors for SE = 5.0 MJ day '

m

Block Required sensors Existing sensors

Existing—required Excess Insufficient

A5
B5
B6
B7
Cl
C2
C3
C4
C5
C6
C7
C8
D4
D5
D6
D7
D8
E4
E5
E6
E7
E8
E9
Total
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tenance and installation options. The required
sensor density is initially determined by using
a specific value of SE in 40-km and 20-km
analysis blocks. Additional sensors are pro-
posed to meet the required optimal sensor
density. These sensors are expected to be
installed within an analysis block with a
consideration given to the inter-sensor separ-
ation distance computed from the range
parameter in the semivariogram analysis. The
inter-sensor optimal separation distances are
identified to be in between 32 and 40 km for
40-km analysis blocks and 16 and 20 km for
20-km analysis blocks respectively. The excess
sensors from one or more analysis blocks can
be utilised in blocks where the number of
required sensors is greater than the existing
number. The locations of the sensors in blocks
near the coast (20-km blocks) need to be
decided based on the field conditions.

10. General remarks

The focus of the current study is only on the
design of an optimal solar radiation measure-
ment sensor network. The placement of the
proposed sensors within different analysis
blocks of fixed spatial resolution will require
an additional study that will address the cost
associated with the installation and/or removal
(if required) of sensors and other logistical
issues. The methodology developed in the
current study can also be applied to regions
where there are no existing ground-based
sensors. In the current study, data from an
existing network of ground-based sensors are
used to validate the satellite-based data.
However, there is no need for ground-based
sensors to obtain the design of the network as
long as the satellite-based data are assured to
be of good quality without any errors or
anomalies. The establishment of spatially
homogeneous areas for the definition of
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Tabzle 8b. 20-km analysis blocks with insufficient and excess number of sensors for SE. = 5.0 MJ day

m

1

Block Required sensors Existing sensors

Existing—required Excess Insufficient

Bl-1
B1-2
B2-1
B2-2
B3-1
B3-2
B4-1
B4-2
B8-1
D3-1
D3-2
E3-1
E3-2
F4-1
F5-1
F5-2
F6-1
F6-2
F7-1
F7-2
F8-1
F8-2
Total
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analysis blocks is carried out by evaluating the
mean, standard deviation and coefficient of
variation of solar insolation data in this study.
Methods for identification of homogeneous
areas using these summary statistics of data,
similarity of probability distributions of
observations at several sites in a region, and
cluster analysis were recommended by Haan
(2002) and Hosking, Wallis, and Wood (1985).

The summary statistics-based method used for
definition of analysis blocks (i.e. homogeneous
areas) in the current study is conceptually
simple and involves an iterative process.
However, use of the variance quad-tree or
cluster approach is recommended for defi-
nition of block sizes to avoid any element of
subjectivity in the delineation process of
homogeneous areas.

Table 9. Summary statistics of sensor data in the analysis block D5 with different number of sensors

removed.

Summary statistic Satellite All four sensors Three sensors’ Two sensors”
Average 19.422 18.721 18.713 18.383
Median 19.743 18.943 18.936 18.727
Standard deviation 3.058 3.147 3.365 4.007
Minimum 5.658 6.912 5.501 5.227
Maximum 25.600 25.661 26.064 27.950

!'Sensor L0035 not included.
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11. Conclusions

A methodology to design an optimal sensor
network to characterise the spatial variability of
solar insolation useful for estimation of
evapotranspiration (ET) in a region is proposed
and evaluated in this study. Application of the
methodology to upgrade an existing network of
solar radiation sensors (i.e. pyranometers) in a
region of South Florida, USA, is reported in this
paper. Geostationary operational environmental
satellite (GOES) satellite and ground sensor
network-based data are used in this study for the
design of the network. The optimal network is
expected to improve the estimation of ET using a
simple solar-radiation-based ET estimation
method in the region. An array of analysis
blocks with two different fixed spatial resol-
utions (20 and 40km) is defined based on the
evaluation of spatial variability of solar insola-
tion data in the study region. Geospatial and
geostatistical analyses are used to assess the
solar insolation within each analysis block and to
obtain an optimal number of sensors. Results
from the analyses conducted in this study
indicate that the number of sensors required in
each analysis block depends on the standard
error (SE) set as a criterion for network
measurement accuracy. An optimal sensor
network that is expected to provide a standard
error (SE) of 5.0MJ day” m 2 is selected to
demonstrate the utility of the proposed method-
ology in this study. A separate study needs to be
carried out to clearly define the implementation
strategies for the recommended network devel-
oped in this study. The methodology proposed
and evaluated in this study is generic and can
used for design of an optimal monitoring
network for any hydro-meteorological variable.
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