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A methodology for optimal ground-based sensor network design for an evapotranspiration (ET)
estimation method which uses solar radiation as the only parameter is developed and evaluated in
this study. The methodology employs geospatial analyses and a geostatistical approach, and data
from ground-based sensors and satellite-based estimates of solar insolation (i.e. total amount of
solar radiation energy received on a given surface area during a given time) considering the
spatial variability of the data. The applicability of the methodology is demonstrated by using
Geostationary Operational Environmental Satellite (GOES)-estimated and 29 ground sensor-
based observed solar insolation data in the South Florida region of the USA. Results indicate that
the optimal design of network depends on the spatial variability of insolation, analysis block size
defined based on region-specific radiation characteristics, and the standard error used as a metric
of network estimation accuracy.
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1. Introduction

Evapotranspiration (ET) is one of the major

components of the hydrological cycle. Esti-

mation of this hydro-meteorological parameter

is critical for hydrological modelling and

management of surface and groundwater

resources. The most common meteorological

parameters that are essential for ET estimation

are air temperature, humidity, solar radiation,

barometric pressure and wind speed. Potential

ET (PET) and reference ET (RET) are the two

ET-related parameters that are needed to

estimate ET, which is the rate that water loss

to the atmosphere occurs from well-watered

soil and plant surfaces. Methods available for

ET estimation are generally classified as: (1)

temperature-based methods (Blaney–Criddle

method; Doorenbos & Pruitt 1977; Abtew &

Melesse 2013; Hargreaves–Samani method,

1985); (2) radiation-based methods (Abtew

method, 1996); (3) the mass transfer method

(Abtew & Melesse 2013); (4) energy balance

methods and their variants (such as Penman

1948, corrected Penman, and Penman–Mon-

teith; Monteith 1973). ET is a multi-dimen-

sional process occurring in space and time and
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solar radiation (insolation) flux is the largest

determinant of temporal variation in ET flux.

An important parameter for estimation of ET

(PET and RET) is net radiation (Rnet). One

component of Rnet is incoming (downwelling)

solar radiation, which can be estimated as solar

insolation from a geostationary satellite data or

ground-based sensors referred to as pyran-

ometers. Figure 1 illustrates solar insolation in

the context of a simple energy balance model.

The main focus of this study is the

development of a methodology for design of an

optimal solar radiation sensor network that can

help estimation of ET in South Florida, USA,

using a conceptually simple solar radiation-based

ET estimation method (Abtew 1996). This

method uses solar radiation as the only input

variable and can be used for estimation of daily

wetland evapotranspiration or shallow open

water evaporation or potential evapotranspira-

tion. Abtew and Melesse (2013) point out that in

many regions of the world where solar radiation

explains most of the variation in evaporation and

evapotranspiration, a simple method such as the

one suggested by Abtew (1996) is adequate for

estimation of ET. Several studies conducted all

over the world (Abtew & Melesse 2013; Abtew,

Irizarry-Ortiz, Lyon, & Obeysekera, 2002; Enku

et al. 2011; Zhai et al. 2009; Delclaux &

Coudrain 2005; Oudin et al. 2005; Shoemaker &

Sumner 2006; Xu & Singh 2000; Jacobs et al.

2002) have confirmed the application and

benefits of this method over other methods.

Even though ET is influenced by several

meteorological parameters, the availability of a

conceptually simple method (Abtew 1996) to

accurately estimate the same using solar radiation

as the sole parameter in the study region forms

the motivation for development of an optimal

solar radiation sensor-based monitoring network.

The most desirable ET datasets for the

purposes of distributed hydrological modelling

and water budget and resource analysis are

spatially continuous gridded data, rather than

point values derived from the traditional field

weather station networks. Estimation of ET

using satellite-based solar radiationwith the help

of methods (e.g. Abtew 1996) that primarily use

this parameter can provide such datasets.

A number of methods currently exist in the

literature for estimating solar insolation using

geostationary operational environmental satel-

lite (GOES) visible channel observations. The

methods ranged from statistical-empirical

relationships (Tarpley 1979) to physical models

of varying complexity (Gautier et al. 1984;

Figure 1. Schematic of simplified energy balance model. Here, ‘up’ and ‘dn’ relate to the upward and
downward components, respectively. ‘SW’ is shortwave radiation, and ‘LW’ is longwave radiation.

R.S.V. Teegavarapu et al.2
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Moser & Raschke 1984; Pinker & Ewing 1985;

Dedieu et al. 1987; Darnell et al. 1988; Frouin&

Chertock 1992; Pinker & Laszlo 1992; Wey-

mouth & LeMarshall 1999; Paech et al. 2009).

Schmetz (1989) and Pinker et al. (1995) confirm

the utility of satellite-estimated solar insolation

methods in producing accurate estimates of

insolation for different sky conditions.

Development of a methodology to design an

optimal solar radiation sensor-based monitoring

network requires assessment of the available

ground sensor- and/or satellite-based solar

radiation data. In the first phase of this study

spatial variability solar insolation based on

GOES-estimated datasets at a specific spatial

resolution using geospatial analysis is evaluated.

This task is expected to help in development of

spatial evapotranspiration estimates in the next

phase. The initial phase will also help understand

the variability in land-surface features and land-

use across the region of interest that contribute to

regional variations in solar insolation due to the

heterogeneity in heating (from both sensible and

latent contributions) that in turn cause (a) meso-

scale circulations and (b) local enhancements in

convective cloud formation and maintenance.

It is expected that some sub-regions may

experience spatially uniform insolation due to

prevalence of land-surface features such as large

lakes and non-varying types of land-use and

ecosystem-related vegetation. The results from

the initial phase of spatial analysis are used in a

geostatistical framework to determine an optimal

sensor network to measure and characterise the

variable solar radiation across the region.

A properly sized and optimised network can

result in significantly increased efficiency in

measurement of spatially varying solar insolation.

2. Monitoring network design

Design of optimal monitoring networks requires

an evaluation of heterogeneity of the solar

insolation based on observations at sampling

locations in a region. Fortin and Dale (2005)

indicate that any optimal spatial sampling

scheme requires a careful balance between

sampling locations that are too close to one

another, thus not providing enough new

information (data highly auto-correlated), and

sampling locations that are too sparse, so that

processes at other spatial scales introduce too

much variability (Haining 1990). Similarities

exist between the designs of solar radiation

sensor and rain gauge networks as they measure

a spatially varying meteorological parameter.

Existing or variants of approaches available for

rain gauge network design can be adopted for

solar radiation network design. Several

approaches exist in the context of rain gauge

monitoring network design, and they rely on

conceptually simple methods based on variance

of rainfall in space. The variance of rainfall is

calculated based on the existing number of rain

gauges in the region. Rakhecha and Singh

(2009) provide a review of several methods of

rain gauge network design, by Rycroft (1949),

Ganguli et al. (1951) and Ahuja (1960). Rycroft

(1949) used variance in space and allowable

variance in estimate of mean rainfall to

determine the optimum number of rain gauges,

while Ganguli et al. (1951) used the mean

monthly coefficient of variation and a pre-

defined tolerance value and the existing gauges

to obtain the optimum number of rain gauges.

A review of recent literature related to optimal

design of monitoring networks points to several

different currently available methods for a

variety of applications and they include an

information-theoretic approach for transpor-

tation applications (Xing et al. 2013) and

wireless sensor networks (Larish & Riley 2011),

an entropy and multi-objective-based approach

(Mogheir et al. 2013) and fuzzy theory and

multiple criteria analysis (Chang & Lin 2014)

for water quality monitoring. In the current

study a geostatistical approach is used for the

design of a solar radiation monitoring network.

Methodology

The methodology adopted in the current study is

shown as a series of tasks to be executed in two

parallel tracks, as shown in Figure 2.
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As indicated in Figure 2, initially the solar

insolation data from the GOES satellite are

validated using pyranometer data (i.e. ground-

based sensors). Stratification of the region into

an array of analysis blocks of specific spatial

resolution is essential to determine an optimal

network of sensors. Methods for partitioning of

spatial data such as k-means clustering (Han &

Kamber 2006; Teegavarapu 2014) and variance

quad-tree (Minasny, McBratney, & Walvoort,

2007; Fortin & Dale 2005) can be used for

determination of analysis block size. However,

Figure 2. Schematic of steps utilised in optimal design of a solar insolation network.

R.S.V. Teegavarapu et al.4
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the size of the block is determined using the

range parameter of an empirical semivariogram

fitted to the solar radiation data in the current

study. Once the spatial partitioning task is

completed, GOES insolation data are analysed

for spatial variability in the region and

geostatistical analysis using ordinary kriging

is completed to determine the appropriate size

of the analysis block. In a series of parallel

tasks, point variance is estimated from the

ground sensor data measurements and an

interpolated surface of this variance is created

covering the entire region using any spatial

interpolation method. Point variance is calcu-

lated using temporal observations of insolation

from a single point thereby assessing the

seasonal variation. Multiple spatial interp-

olation methods are then evaluated using

different performance measures before the

best method is selected for creation of an

authentic surface of point variance of insola-

tion. For a selected analysis block size, the

optimal number of sensors needed is deter-

mined with the help of any unconstrained

nonlinear optimisation method using infor-

mation about point variance for that particular

block and a pre-specified standard error. In each

analysis block, after accounting for already

existing sensors, the number of additional

sensors is determined. A few steps shown in

Figure 2 are executed in an iterative way until

an implementable network design is achieved

considering sensor placement and monetary

constraints. Even though the methodology

developed in this study is mainly aimed at

enhancing the existing monitoring network, it

can be applied to regions with no existing

network of sensors.

3. Geospatial analysis

This section briefly describes geospatial data

processing tasks carried out in this study using

several tools available under ArcGIS including

the geostatistical toolbox. Initially detrending of

insolation data sets was performed for purposes

of identification of spatial correlations through a

(semi) variogram analysis approach. Detrending

specifically will remove the means of the data,

and any trend in insolation not yet addressed in

the calibration work of Paech et al. (2009) to

better isolate the true variability within the data.

A ‘parametric’ form of detrending in each

analysis block is used to remove trends, which is

later explained in Section 9.

4. Geostatistical analysis

The degree of spatial dependence is generally

expressed as a semivariogram in geostatistical

analysis (O’Sullivan & Unwin 2010; Teega-

varapu 2007). A general expression

(O’Sullivan & Unwin 2010) used to estimate

the semivariogram is given by Equation 1

gðdÞ ¼
1

2nðdÞ

X

dij¼d

ðui 2 ujÞ
2 ð1Þ

where g(d) is the semivariance which is defined

over observations ui and uj, which are lagged

successively by distance d, and n(d) is the

number of pairs of points at separation distance

d. Depending on the shape of the semivario-

gram cloud several mathematical models are

possible, including linear, spherical, circular,

exponential and Gaussian. Three semivario-

gram models, namely spherical, exponential

and Gaussian, defined by Equations, 2, 3 and 4

are evaluated in this study.

gðhÞ1 ¼ Co þ C1

1:5h

R
2 0:5

h

R

! "3
" #

ð2Þ

gðhÞ2 ¼ Co þ C1 12 exp 2
3h

R

! "% &

ð3Þ

gðhÞ3 ¼ Co þ C1 12 exp 2
3h2

R2

! "% &

ð4Þ

The parameters Co, h and R are referred to as

the nugget (or nugget effect), distance and range

parameters of a semivariogram respectively.

The value at zero separation distance is referred

to as the nugget. The summation ofCo and C1 is

referred to as the sill and the semivariance at

Journal of Spatial Science 5
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range R is equal to the sill value. The range

parameter (R) defines the distance at which no

spatial correlation exists or semivariance is

constant. This parameter can be used to define

the analysis block size as recommended by

Pathak and Vieux (2007). A nonlinear least

squares fitting method available through the

‘nls’ function in the proprietary statistical

package S-plus (S-Plus 2007) is used to obtain

the values of Co and C1 (SFWMD 2008).

Preliminary analyses (SFWMD 2008) of

insolation data indicated that the exponential

semivariogram model is the best among the

three models evaluated to characterise the solar

insolation in the current study region.

5. Analysis of point variance solar insolation

from ground sensors

Spatial interpolation using point variance

values based on observations at ground-based

sensor locations is adopted to spatially

characterise the solar insolation over a region.

A surface (continuous field) from the point

variances of solar insolation values is gener-

ated. Two different interpolation methods (one

deterministic and another stochastic) are

investigated: (1) the inverse distance weight-

ing method (IDWM) and (2) ordinary kriging

(O’Sullivan & Unwin 2010; Teegavarapu

2007). The IDWM (Teegavarapu & Chandra-

mouli 2005) for spatial interpolation uses

distance as weight for a weighted estimate at a

point in space. The estimate of an observation,

um, at a point in space, using the observed

values at other sensors, is given by Equation 5:

um ¼

Pn
i¼1 uid

2k
mi

Pn
i¼1 d

2k
mi

; ð5Þ

where again um is the estimate of the observation

at a point in space m; n is the number of sensors;

ui is the observation at sensor i, dmi is the

distance from the location of sensor i to the

observation point m; and k is referred to as

friction distance that ranges from 1 to 6. A value

of 2 is chosen in this study for the friction

distance (i.e. k), which is the most commonly

adopted value (O’Sullivan & Unwin 2010). The

number of nearest neighbours used for interp-

olation is another parameter that is critical for

the success of the method. The number of

neighbours is selected by a trial and error process

and the number that results in the lowest root

mean squared error (RMSE) based on observed

and estimated values of variance is selected.

Ordinary kriging (Isaaks & Srivastava

1989; Webster & Oliver 2001; Teegavarapu

2007) is a stochastic interpolation method

based on scalar measurements at different

points in space. Surface interpolation using

kriging depends on the selected semivariogram

model and the same fitted with a mathematical

function or model. Depending on the shape of

the empirical semivariogram, kriging weights

(Webster & Oliver 2001) are derived and the

estimate at any point in space is obtained by

the weighted sum of observations at all other

locations. The estimation of a value um at a

location is given by Equation 6.

um ¼
X

n

i¼1

diui ð6Þ

The variable ui is the value of observation at

location i and di is a weight associated with the

observation.

6. Sensor network design

The design of the sensor network is aimed at

capturing and characterising the spatial varia-

bility of the solar radiation across the region.

The design of the network depends on several

factors, including (1) placement of sensors to

maximise the information obtained from the

sensors, (2) the existing network of sensors and

(3) the monetary cost involved in the purchase

and placement of the sensors. The standard

error (SE) of the mean is used as a metric of

accuracy of the monitoring network, to

identify the optimal number of ground sensors

in this study. Multiple studies (e.g. Olea 1984;

Spruill & Candela 1990; Bhat et al. 2015) in

R.S.V. Teegavarapu et al.6
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the past have used the SE as an accuracy metric

for monitoring network design. Olea (1984)

indicated that the average standard error and

the maximum standard error of estimation over

the sampling domain can be used as global

indices of sampling efficiency. The required

number of sensors in a specific analysis block

can be obtained by improving the accuracy of

the mean solar insolation measurement.

An exponential semivariogram model is

found to be appropriate based on preliminary

analysis of insolation data conducted

(SFWMD 2008) using three different semivar-

iogram models discussed in the Section 4. The

semivariogram model expressed in terms of

the range, R, distance parameter, h, and point

variance, s2
o, is given by Equation 7.

gðhÞ ¼ s2
o 12 e

23h
R

! "

ð7Þ

The variable R is the range in the same units as

the distance, h. A relationship is derived

between correlation represented by the semi-

variogram and the same correlation represented

by the correlogram. The correlation coefficient,

rh, between observations at two insolation

measurement locations at a separation distance,

h, is defined as (Equations 8–11),

rh ¼
sh

s2
o

ð8Þ

gh ¼ s2
o 2 sh ð9Þ

gh ¼ s2
oð12 rhÞ ð10Þ

rh ¼ e
23h
Rð Þ ð11Þ

An exponential semivariogram, used to

model the covariance structure of the solar

insolation from satellite data, provides the

range parameter that indicates the distance at

which no spatial correlation exists. The

effective number (or minimum number) of

sensors is obtained from the correlation

distance from satellite data and point

variance information from ground-based

sensor data for each analysis block. Haan

(2002) and Matalas and Langbein (1962)

indicate that information contained in data

from nmonitoring stations in a region having

an average inter-station correlation of rh (i.e.

correlation coefficient among n stations) is

equivalent to the information contained in n0

uncorrelated stations (sensors) in the region.

The relationship between n0 and n can be

established and is given by Equation 12

(Haan 2002).

n0 ¼
n

1 þ rhðn2 1Þ
ð12Þ

Equation 12 suggests that as n increases, n0

approaches 1/rh. Hence, the effective num-

ber of sensors n0 can be related to separation

distance h. The SE of the mean is calculated

for all the analysis blocks using Equation 13.

SE ¼

ffiffiffiffiffiffi

s2

n0

r

ð13Þ

A scaled or normalised SE referred to as SE’

is obtained by Equation 14. The SE is

calculated based on effective number of

sensors (n0).

SE‘ ¼

ffiffiffiffi

s 2

n0

q

SEn0¼1

ð14Þ

7. Optimal network design

The optimal network design is based on the SE

and the number of sensors in each analysis

block. The network size is optimal when an

optimisation formulation is solved using

constraints related to block size and cost

associated with installation and removal of

sensors.

Journal of Spatial Science 7
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Variable density analysis block approach

In the variable density analysis block

approach, the point variance (s2) for each

block is used to identify the number of sensors

(n) that have a correlation coefficient (r) to

achieve a desired constant level of accuracy

defined by the magnitude of SE. The

relationship linking s2, n, r and SE is given

by Equation 15.

nkðSEÞ2 ¼ ð1 þ rkðnk 2 1ÞÞs2
k ;k ð15Þ

The variable k identifies each analysis block.

Equation 15 is solved for nk for different values

of SE for each analysis block by using a

nonlinear root-finding method (Brent 1973).

The value obtained for n is rounded off to the

nearest integer to obtain the number of sensors.

The approach provides the number of sensors

needed within each block. Further study using

land-cover data and other information would

be needed to assess exact placements of

sensors within a given block.

8. Case study area description and data

The region of interest in South Florida for the

current study is shown in Figure 3[!–insert–];

its boundary is defined and managed by a state

agency, the South Florida Water Management

District (SFWMD). The state water agency

SFWMD is referred to as ‘District’ and is

responsible for the collection, validation and

archiving of the hydrological and meteorolo-

gical data (such as barometric pressure, solar

radiation, air temperature, relative humidity

and wind speed) at stations that form the

District’s meteorological monitoring network.

The District’s broad objective is to optimise

the regional hydro-meteorological monitoring

network to cater to the needs of different water

resources and environmental management

projects in the region. Locations of existing

solar radiation ground-based sensors in the

SFWMD region are shown in Figure 3 and the

details of these sensors are provided in Table 1.

The solar insolation data used in this study

are derived from NOAA (National Oceano-

graphic and Atmospheric Administration)

GOES observations that cover the state of

Florida, as described by Paech et al. (2009).

GOES data are obtained from the GOES data

archive at the Space Science and Engineering

Center at the University of Wisconsin-

Madison. For the Paech et al. (2009) study,

which produced an extended GOES insolation

data record from 1995–2004, over 102,000

individual GOES images were processed using

the model of Gautier et al. (1980) to produce

half-hourly and daily-integrated solar insola-

tion throughout the state of Florida at a 2 km

spatial resolution. In 2005 and 2006, the

University of Alabama in Huntsville (UAH),

the University of New Hampshire (UNH), all

water management districts (WMDs) in the

state of Florida, and the United States

Geological Survey (USGS) took part in the

creation of a decade-long (1995–2004) state-

wide daily ET datasets at 2 £ 2 km resolution

(SFWMD 2008). Key inputs into this ET

estimation methodology included GOES sat-

ellite estimated incoming solar insolation

(Gautier et al. 1980; Diak et al. 1996; Otkin

et al. 2005), as well as ancillary weather (e.g.

wind, temperature, humidity) and land-surface

information. This ongoing project provides a

critical database for estimation of ET statewide

and this effort will continue towards the

creation of a multi-decadal dataset. Work also

included calibrating the GOES solar insolation

data (Paech et al. 2008) with ground sensors.

The efforts of Paech et al. (2008) found that

calibration of the GOES insolation reduced

errors to 1.7MJ m22 day21 (10 percent), and

also removed temporal-, seasonal- and satellite

sensor-related biases. Also, coefficient of

determination (R 2) values based on satellite

and ground (pyranometer)-based values

reached values closer to 0.90 following further

calibration activities to remove month-to-

month and cloudiness-related error biases.

Solar radiation amounts vary geographi-

cally within central and South Florida.

R.S.V. Teegavarapu et al.8
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Figure 3. Location of 29 solar radiation sensor stations in the SFWMD region with overlay of 20 £ 20 km
grid. Each 20 £ 20 km region represents an analysis ‘block’ as described in the text.
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Radiation characteristics and patterns on land

surrounding Lake Okeechobee and ocean are

different from those of central overland mass.

In addition, spatial variation in radiation

amounts for shorter durations, such as one

day, is significantly greater than for monthly,

seasonal and annual radiation. Therefore, in

this study the spatially varying sensor density

is considered based on varying solar radiation

conditions during dry and wet periods.

In addition, solar radiation estimates of local

patterns are used for determining optimum

sensor placement as opposed to laying out the

sensor in an evenly spaced grid. The GOES

satellite-based daily solar radiation data from

1995 to 2004 available from University of

Alabama in Huntsville (UAH) are used in this

study. Daily solar radiation data from 29

ground-based LI-COR model LI-200S pyran-

ometers (LI-COR 2015; Pathak 2008) installed

in the SFWMD region are used for the study.

Each of these sensors is calibrated against an

Eppley precision pyranometer under daylight

conditions (Abtew & Melesse 2013; LI-COR

2015). The typical error noted in measure-

ments under these conditions is ^5 percent

(Kinsman, Kite, & Mtundu, 1994; Pathak

2008; Abtew &Melesse 2013). A sensitivity of

0.2 kilowatts per meters squared per millivolt

(kW m22mV21) is noted for these sensors

(Pathak 2008).

9. Results and analysis

Solar insolation data are processed from the

2 £ 2 km resolution data grids and overlaid

onto 20 £ 20 km analysis blocks covering the

region defined as District (refer to Figure 3).

A total of 119 non-intersecting blocks cover

the District region. Each 20 £ 20 km analysis

block contains approximately 100 insolation

pixels at 2-km resolution (Figure 3). The

insolation data are divided by seasons across

South Florida. The climatology of South

Florida demands that the data set be sub-

divided into cool, warm and transitional

seasons. After initial analysis (SFWMD

2008), the datasets are split into the following

time periods: (a) dry season: November–

March, (b) wet season: April–October, (c) a

set of completely (100 percent cloud cover)

cloudy days, and (d) a set of completely clear

days. Transitional time periods are not

considered to add significance to these

analyses. For sets (c) and (d), considerable

effort is needed to identify days with these

characteristics, given the relative rarity of clear

and cloudy days across the entire District,

especially during the wet season. Using

2 £ 2 km gridded insolation data, surfaces of

mean, standard deviation, and coefficients of

variation are developed. To characterise the

covariance structure of insolation across the

region, definition of analysis blocks large

enough to encompass the range of existing

spatial correlation but sufficiently small to

capture climatological gradients near coastal

areas and inland water features such as Lake

Okeechobee is essential. Characterisation of

these gradients is very important given the

driving forces for cumulus cloud convection

across South Florida. In particular, time-

dependent changes in cumulus clouds due to

land, lake and sea breeze circulations are

considered. Variations of mean and standard

deviation of insolation for the wet season are

shown in Figure 4 and Figure 5 respectively.

These values are derived from measures of

temporal variability at each 2 km grid, based

on daily values. Figures 4 and 5 also shows

layers of 119 non-intersecting 20 £ 20 km

analysis blocks over the SFWMD region.

It can be seen from Figure 4 that the mean

values of insolation decrease slightly from

north to south, reaching maximum values in

the east (and over approximately Lake

Okeechobee). Values are mainly range from

18.6 to 19.6MJ m22 day21 (one MJ, or

megajoule, is 106 joules). in the north and

west, yet locally decrease to near 18MJ m22

day21 in the far southeast. These values are

close to 8MJ m22 day21 and are below the

maximum values that would be expected under

clear-sky conditions, yet this is not unexpected

R.S.V. Teegavarapu et al.10
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Figure 4. Mean solar insolation map based on 2-km grids with an overlay of 20-km analysis blocks for the
wet season (April–October) based on data from years 1995–2004 in MJ m22 day21.

R.S.V. Teegavarapu et al.12
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given the high frequency of occurrence of

convective and other clouds across this portion

of Florida during the wet season. Values over

the ocean and Lake Okeechobee are much

higher than or equal to 20MJ m22 day21. The

standard deviation map of insolation (Figure 5)

shows several features: First, values are lowest

over land, ,5.2–5.8MJ m22 day21. Second,

higher values up to near 6MJ m22 day21 are

found near the coasts, which could be caused

by a high variability in convective clouds

(varying largely from day to day, specifically

either mostly clear or mostly cloudy), and is

especially exemplified near lakes and the

ocean. Third, the analysis of coefficient of

variance (as shown in Figure 6) indicated

gradients in insolation along the east coast,

with values exceeding 0.3 in these areas

(SFWMD 2008). Lastly, the variability in the

entire wet season of the daily solar insolation

dataset and the histogram for all 10,186 days

(April–October, 1995–2004) are determined.

Here, the data are binned about the mean

(19.13MJ m22 day21). The highest frequency

of days with a given value occur at ,1.0MJ

m22 day21 above and below 19.13MJ m22

day21, which suggests a delineation between

cloudier and clearer days, and land and water

regions, across the region. From a meso-scale

weather perspective, this would denote days

with either a low or high coverage of

convective storms, which is not atypical of

tropical (or subtropical) weather regimes

(Byers & Rodebush 1948; Riehl 1954;

Heymsfield et al. 1996).

Range parameter assessment: relationships

to land-surface features

The covariance structure of the solar insolation

data evaluated indicates that there is no

uniform analysis block size that is identifiable

for the region under consideration. Therefore,

two analysis size blocks, 40 £ 40 km and

20 £ 20 km, are identified for developing

the optimum design of sensor network.

A ‘parametric’ form of detrending (Lloyd

2007) in each analysis block is intended to

remove non-stationarity. This type of detrend-

ing by use of regression models is rec-

ommended in several reference texts (e.g.

Llyod 2007; Haan 2002; Isaaks & Srivastava

1989; Webster & Oliver 2001). Non-stationar-

ity of mean insolation, referred to here as a

trend, can affect the successful identification

of the covariance structure. Without detrend-

ing, correlation lengths of the insolation

magnitudes can become spuriously large

(Wilks 2006; Gringarten & Deutsch 2001).

Prior to detrending, days (a) in which large

tropical storms and hurricanes affect the state

of Florida, (b) of consistent cloudiness given

the known deficiencies in the GOES insolation

data in these cases, and (c) with missing GOES

data and low data quality indices (Paech et al.

2009) are omitted from analysis. Through least

squares, detrending is accomplished within

each analysis block by fitting a linear

regression equation to the insolation data in

each time period. The detrended data are then

used to compute empirical semivariograms

using the ‘Geostatistical wizard’ within

ArcGIS, as well as for the covariance analysis.

The semivariogram analysis is carried out

for each analysis block using the daily

insolation data, over subsets of the 10-year

long data set (e.g. wet and dry seasons, cloudy

days). The empirical semivariograms are fitted

with data from the wet season in each year and

in each analysis block; the wet season

possesses the largest fraction of incoming

insolation that can be highly variable due to

small-scale convective cloudiness (of the order

of 1–4 km). As there is a relatively weak

correlation in space for insolation, especially

when small-scale (2–25 km) convective

clouds dominate the cloud climatology (and

hence the insolation variability), the mean

empirical semivariogram ordinates are

selected. Subsequently, an exponential semi-

variogram model is fitted to empirical

semivariograms of mean detrended pixel

values in each block. The ‘upper quartile’

pixel values are used, but did not provide

Journal of Spatial Science 13
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Figure 5. Map of standard deviation of solar insolation map based on 2-km grids with an overlay of 20-km
analysis blocks for the wet season (April–October) based on data from years 1995–2004 in MJ m22 day21.

R.S.V. Teegavarapu et al.14
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useful results because they changed the data’s

distribution away from ‘normal’. A robust

nonlinear estimator is used to obtain the

optimal range and sill parameters of the two-

parameter model. The nugget variance of

insolation is found to be close to zero in almost

all blocks. This is because the sub-grid

variability (within the 2 £ 2 km data resol-

Figure 6. Coefficient of variation of solar insolation based on 2-km grids with overlay of 20-km analysis
blocks for the wet season (April–October) based on data from years 1995–2004.

Journal of Spatial Science 15
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ution) is not considered in this analysis. The

range values are found to be directionally

independent (i.e. no dependence on direction

within a block is presumed or made) and hence

isotropic kriging is considered. Analysis of

solar radiation data also confirmed the

hypothesis that variations in land-surface

features and land-use across the SFWMD

region contribute to regional variations in solar

insolation due to the heterogeneity in heating.

Due to this the range parameter increases in

regions with more spatially uniform insolation.

The existence of wet lands, large lakes and

continuous fields of sugarcane in the region

contribute to some of the variations in

observed insolation.

Figures 4–6 clearly show low insolation

variability over the Lake Okeechobee.

In contrast, locations where differential sur-

face heating is dominated by small-scale (20 to

,100 km) surface characteristics, solar

insolation would be more variable from day

to day, and even from hour to hour (Campbell

& Norman 1998, Chapter 10). An example of

this would be shorelines where sea breeze

circulations cause convective clouds to form

(Atkinson 1981), and in areas containing a

large lake such as Lake Okeechobee in the

study region. A tendency for smaller ranges

along the eastern and southeastern coastal

boundary, from the Atlantic coast to approxi-

mately 40–50 km inland, is noted. Similar

patterns are seen for regions on the southwest

Gulf of Mexico coast. Over the far north, range

values are highly variable, differing by nearly

15 km. This high block-to-block variability

may be caused by the small lakes mixed with

natural vegetation in this portion of the

SFWMD region. The Lake Okeechobee area

is mostly dominated by range parameters of

approximately 19 km.

In summary, from the analysis of upper

quartile and mean detrended GOES insolation

data for the wet season, it can be concluded

that: (1) wet season insolation had lower range

values than those from the dry season;

therefore, wet season insolation data are used

for the network design analysis; this is due to

the higher frequency of occurrence of small

cumulus clouds; (2) mean detrended data

provide reasonable and more stable (i.e.

consistent across years) range values, and these

are used in the following analysis; (3) range

values are highly variable in time; therefore,

annual mean insolation data for the wet season,

and for each year, are used for the following

analysis; and (4) range values are highly variable

in space for 20-km, 40-km, 60-km and 80-km

block sizes. Therefore, based on these results, a

combination of 20- and 40-km blocks across the

District are chosen for the detailed semivario-

gram analysis. These analysis blocks are shown

in Figure 7. A sensitivity analysis between the

block size and correlation lengths is performed.

The computed correlation lengths (i.e. range

parameter values from semivariograms) defined

the optimal distances between the ground

sensors for the network design, which are

determined as a function of location across the

District. The range parameter values for 40-km

and 20-km analysis blocks are provided in

Tables 2a–2c and Tables 3a and 3b, respect-

ively.

Ground-based sensor data analysis

Solar insolation data collected from 29 ground

sensors in the SFWMD region shown in

Figure 3 are used for the analysis. Details of

these sensors, data collection methods and

frequency of measurements are provided by

Pathak (2008). An initial assessment of

available solar insolation data from the

SFWMD revealed several limitations of

ground sensor data due to observational and

systematic errors. The suspicious data flagged

by the SFWMD are removed prior to the

subsequent outlier identification analyses. The

sensor-based data are screened for outliers

using a Z-score method (Shiffler 1988).

Observations having a Z-score equal to or

greater than 3 are identified as outliers and are

removed. Anomalous observations are also

identified and eliminated. The satellite-sensor

R.S.V. Teegavarapu et al.16
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observation pairs are eliminated if the sensori

or satellite-based data on any given day are

identified as an outlier or an anomaly. Several

outliers identified were already flagged as

suspicious observed sensor data by the

SFWMD. Summary statistics of processed

insolation data for each of these sensors is

provided in Table 1. The correlation

coefficient values provided in Table 1 indicate

a good agreement between satellite- and

sensor-based radiation datasets. In order to

spatially characterise the solar insolation data,

the analysis of variance of the point measure-

ments is needed. The point variance values are

Figure 7. Analysis blocks of different sizes (40 km and 20 km) used for this study in the SFWMD region.

Journal of Spatial Science 17
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obtained from 29 ground sensors for the wet

periods in each of the years from 1995 to 2004.

Two different interpolation methods, (1) the

inverse distance weighting method (IDWM)

and (2) ordinary kriging, are used to obtain an

interpolated surface from the point variances

of solar insolation. Twenty-five ground sensors

are used for developing the surface, and four

sensors (viz., sensor numbers 12, 18, 20, 26)

are used for validation purposes. Ordinary

kriging requires that the observations follow a

Gaussian distribution. The normality of the

point variance data from the ground sensors is

evaluated using a normal probability plot

(Mage 1982) and the Kolmogorov and

Smirnov (KS) test (Sheskin 2003).

An exponential semi-variogram model is

selected in the case of kriging after several

variogram models are evaluated. The IDWM is

implemented using four nearest neighbours

(i.e. sensor sites). The two interpolation

methods are evaluated using two error

measures (viz., mean absolute error and root

mean squared error) based on observed and

estimated values of solar radiation at vali-

dation sensor locations. The IDWM method

Table 2a. Range parameter (in km) values for different 40-km analysis blocks based on 10-year solar
insolation data. See Figure 7 for locations of blocks listed.

40 £ 40 km analysis block

Year B7 E8 C4 C5 A5 C3 C8 E4 E9

1995 37.36 25.25 37.27 33.95 29.39 10.29 38.35 37.35 17.83
1996 37.36 18.94 37.27 38.36 31.72 39.46 16.83 37.35 18.91
1997 37.36 38.43 17.19 36.61 16.62 25.24 17.83 37.35 21.79
1998 32.60 10.75 19.62 38.36 39.66 11.49 35.52 26.20 26.54
1999 33.09 28.18 15.55 10.44 33.06 23.06 38.35 12.53 30.19
2000 27.81 32.34 37.27 10.44 29.67 19.67 29.37 37.35 19.13
2001 29.65 14.11 26.73 37.58 26.48 39.46 12.06 37.35 21.54
2002 29.15 26.07 37.27 26.27 24.21 12.45 20.69 34.42 18.47
2003 31.64 38.43 37.27 23.39 16.87 14.97 13.88 35.07 38.09
2004 37.36 15.92 14.95 11.37 26.54 23.52 19.66 26.08 30.74
Average 33.34 24.84 28.04 26.68 27.42 21.96 24.26 32.11 24.33

Table 2b. Range parameter (in km) values for different 40-km analysis blocks based on 10-year solar
insolation data.

40 £ 40 km analysis block

Year B5 B6 C1 C2 C6 C7 D4

1995 28.89 13.27 7.51 37.27 13.90 21.61 23.04
1996 12.26 30.05 16.30 26.53 15.05 12.00 25.24
1998 23.54 9.58 24.18 12.97 13.93 14.35 23.75
1999 13.20 7.87 12.05 16.12 39.45 24.48 25.47
2000 38.47 29.16 8.55 31.85 10.43 11.69 24.33
2001 11.05 10.49 9.34 12.33 14.56 9.69 27.16
2002 19.93 15.63 14.33 13.87 10.12 21.19 14.96
2003 38.47 39.56 10.48 10.31 32.75 16.09 20.00
2004 10.51 10.17 11.91 37.27 20.40 24.86 13.70
Average 21.81 18.42 12.74 22.06 18.95 17.33 21.96

R.S.V. Teegavarapu et al.18
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provided 30 percent and 17.5 percent lower

values of MAE and RMSE values respectively

compared to those based on application of

kriging. The correlation coefficients based on

observed and estimated data at four locations

are 0.9 and 0.6 for IDWM and kriging

respectively.

The range parameter from an exponential

semivariogram used to model the covariance

structure of the solar insolation from satellite

data is obtained for each block. The effective

number of sensors is then obtained from the

correlation distance from satellite data and

point variance from sensor data for each

analysis block. The variations in normalised

SE in relation to number of sensors are evident

from plots shown in Figure 8a and Figure 8b.

The exponential decay curves defining the

relationship between SE values and number of

sensors in all the 40-km analysis blocks are also

shown in these plots. It can be observed that as

the number of sensors increases the value of SE

decreases and remains more or less constant

after a specific number for each analysis block.

This information is used to estimate the number

of sensors needed in each block.

Table 2c. Range parameter (in km) values for different 40-km analysis blocks based on 10-year solar
insolation data.

40 £ 40 km analysis blocks

Year D5 D6 D7 D8 E5 E6 E7

1995 36.35 14.88 18.69 19.34 27.59 9.07 13.19
1996 28.97 23.32 10.64 22.26 12.07 21.83 12.04
1998 29.25 29.69 11.24 15.78 15.93 39.54 27.19
1999 32.15 10.28 15.22 32.05 22.80 18.87 19.48
2000 38.34 7.75 13.90 38.34 25.09 19.40 11.21
2001 22.19 11.22 37.25 16.28 13.64 24.78 37.34
2002 29.36 9.07 18.99 19.36 11.59 15.88 12.24
2003 20.47 12.56 9.73 17.85 13.36 22.21 20.54
2004 24.69 9.62 37.25 26.28 25.44 23.76 22.46
Average 29.09 14.27 19.21 23.06 18.61 21.7 19.52

Table 3a. Range parameter (in km) values for different 20-km analysis blocks based on 10-year solar
insolation data. See Figure 7 for locations of blocks listed.

20 £ 20 km analysis block

Year B1-1 B1-2 B2-1 B2-2 B3-1 B3-2 B4-1 B4-2 B8-1 D3-1 D3-2

1995 9.35 13.79 6.48 4.33 19.77 5.43 6.74 10.50 18.09 17.52 3.24
1996 8.59 14.85 8.91 7.70 19.77 5.19 11.05 6.48 16.12 6.10 6.37
1997 11.88 5.05 17.58 17.58 11.48 6.93 17.58 9.13 19.76 7.93 17.54
1998 5.67 6.46 17.58 4.80 3.64 8.54 10.88 14.57 19.76 6.40 5.91
1999 17.58 4.84 5.25 5.70 4.66 5.69 5.36 4.96 12.11 14.78 7.27
2000 4.04 9.93 6.90 17.58 17.52 7.62 5.51 10.00 13.43 17.52 4.69
2001 12.97 10.11 6.40 17.58 7.72 5.64 5.72 11.19 19.76 8.45 8.52
2002 9.75 8.16 5.52 15.18 12.04 7.24 6.74 13.14 17.98 9.77 16.55
2003 11.64 18.67 4.38 7.96 9.62 8.61 9.12 7.36 16.27 6.18 7.24
2004 17.58 6.40 10.59 11.00 9.39 7.64 11.84 17.58 10.53 4.81 5.00
Average 10.90 9.83 8.96 10.94 11.56 6.85 9.05 10.49 16.38 9.94 8.23
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Optimal network design

The optimal network design is conditioned on

a specific value of achievable SE to obtain the

number of sensors in each block. Based on the

covariance structure of the solar insolation

data, it is evident that there is no uniform

analysis block size that is identifiable for the

region under consideration. Two analysis size

blocks, 40 £ 40 km and 20 £ 20 km as shown

in Figure 7[!–insert–], are identified for use of

an optimum design of the sensor network. The

network designed is optimal considering the

stipulations imposed on the block size and

other constraints. In this study, a uniform value

of SE is adopted to obtain the optimum number

of sensors for each block. Once the optimum

number is obtained for each block, this number

is compared with the existing number of

sensors in each analysis block. If the existing

number of sensors in a block is higher than the

Table 3b. Range parameter (in km) values for different 20-km analysis blocks based on 10-year solar
insolation data.

20 £ 20 km analysis block

Year E3-1 E3-2 F4-1 F5-1 F5-2 F6-1 F6-2 F7-1 F7-2 F8-1 E3-1

1995 11.96 5.19 5.33 9.34 9.74 12.84 16.12 10.88 4.70 4.57 17.61
1996 6.92 17.59 8.68 13.92 12.05 11.18 14.59 15.36 8.70 8.39 11.24
1997 5.22 17.59 9.31 18.71 5.65 13.61 15.02 7.97 17.61 10.91 17.61
1998 16.81 12.17 17.62 11.20 8.53 10.82 5.88 7.32 9.23 11.85 10.55
1999 5.31 7.89 17.62 18.71 17.62 7.55 5.71 7.11 17.61 6.52 17.61
2000 7.74 7.33 4.18 9.34 12.31 10.45 9.16 17.61 17.61 6.69 17.61
2001 17.57 9.17 15.98 9.29 4.72 12.74 10.85 7.81 14.83 13.53 17.61
2002 5.14 5.20 7.41 6.72 7.22 14.73 14.06 5.04 17.61 6.89 6.19
2003 5.74 7.31 17.62 11.83 13.39 7.33 6.56 7.58 13.53 7.21 17.61
2004 9.49 10.36 6.78 11.43 12.66 6.10 6.38 9.90 17.61 12.01 10.20
Average 9.19 9.98 11.05 12.05 10.39 10.73 10.43 9.66 13.90 8.86 14.38
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Figure 8. Variation of normalised standard error based on the number of sensors in all the 40-km analysis
blocks.
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optimal number, then a recommendation is

made to remove the additional number of

sensors. Additional sensors are recommended

for any block if the existing number of sensors

in that block is less than the optimal.

Ground sensor network determination

For recommending an optimal sensor network

to the District, several values of SE are

evaluated for each block. SE values for

different numbers of sensors in each 40-km

and 20-km analysis block are provided in

Tables 4a and 4b and Tables 5a and 5b

respectively. The total number of new sensors

required for different values of SE is given in

Table 6. The number of sensors required in

each analysis block for a specific value of SE

is provided in Table 7. Considering the cost

associated with installation and long-term

maintenance of new sensors and consultation

with District staff, the proposed ground

sensor network with SE of 5.0MJ day21

m22 that would require 19 additional new

sensors is identified. The selection of this

network is based on two facts: (a) the standard

deviation of satellite solar insolation data

from wet seasons over 10 years varied

between 5.23 and 6.07 MJ day21 m22

(Figure 5), which is in the range of the

Table 4a. Variation of standard error (SE) with the number of sensors for each 40-km analysis block. See
Figure 7 for locations of blocks listed.

Number of
Standard error (MJ day21 m22)

sensors A5 B5 B6 B7 C1 C2 C3 C4 C5 C6 C7

1 5.448 5.541 5.418 5.010 5.784 5.659 5.560 5.493 5.684 5.425 5.250
2 3.944 3.946 3.834 3.674 4.092 4.012 3.968 4.019 4.137 3.842 3.722
3 3.399 3.297 3.145 3.225 3.349 3.311 3.333 3.517 3.595 3.159 3.072
4 3.166 2.968 2.753 3.051 2.920 2.930 3.021 3.319 3.373 2.778 2.718
5 3.069 2.794 2.506 2.990 2.643 2.706 2.861 3.247 3.288 2.545 2.510
6 3.041 2.705 2.346 2.983 2.456 2.573 2.786 3.237 3.269 2.399 2.386
7 3.045 2.664 2.241 3.001 2.328 2.495 2.756 3.254 3.281 2.308 2.314
8 3.067 2.653 2.172 3.029 2.239 2.453 2.752 3.284 3.308 2.253 2.274
9 3.103 2.664 2.133 3.067 2.182 2.439 2.771 3.325 3.349 2.226 2.261
10 3.137 2.681 2.109 3.103 2.143 2.437 2.793 3.363 3.387 2.226 2.259

Table 4b. Variation of standard error (SE) with the number of sensors for each 40-km analysis block.

Number of
Standard error (MJ day21 m22)

sensors C8 D4 D5 D6 D7 D8 E4 E5 E6 E7 E8 E9

1 5.272 5.874 5.975 5.453 5.310 5.346 5.846 5.877 5.526 5.350 5.411 6.011
2 3.755 4.212 4.340 3.857 3.762 3.804 4.328 4.166 3.948 3.807 3.896 4.292
3 3.140 3.570 3.759 3.155 3.098 3.172 3.842 3.437 3.322 3.176 3.328 3.609
4 2.831 3.270 3.517 2.746 2.731 2.848 3.665 3.039 3.017 2.853 3.073 3.276
5 2.667 3.128 3.421 2.479 2.510 2.673 3.612 2.804 2.863 2.680 2.958 3.107
6 2.585 3.069 3.396 2.296 2.375 2.582 3.616 2.663 2.792 2.590 2.916 3.028
7 2.548 3.053 3.407 2.168 2.293 2.538 3.643 2.581 2.766 2.547 2.912 2.998
8 2.539 3.062 3.433 2.076 2.246 2.523 3.680 2.535 2.765 2.533 2.927 2.996
9 2.551 3.090 3.475 2.015 2.225 2.531 3.727 2.519 2.785 2.542 2.958 3.017
10 2.568 3.120 3.514 1.971 2.217 2.546 3.769 2.515 2.808 2.556 2.989 3.042
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selected SE (5.5MJ day21 m22) of the

proposed network; and (b) the selected

proposed network would require three

additional sensors compared to the 16 new

sensors required for the proposed network

with the SE of 5.5MJ day21 m22 that is

considered to be an optimal network. There-

fore, the recommended optimal ground sensor

network would need a total of 19 new sensors

with the SE of 5.0MJ day21 m22. Figure 9

and Figure 10 show excess and insufficient

sensor distributions for the SFWMD region

for the SE of 5.0MJ day21 m22. Table 8a and

Table 8b provide the details of the required,

existing and excess number of sensors in each

block.

Data accuracy validation and sensor

placement

Sensors may be added or removed from an

analysis block based on the optimal number

specified by the geo-statistics-based method-

ology. The accuracy of the sensor network can

be analysed when a selected number of sensors

are removed from the analysis blocks.

Analysis block D5 is selected to demonstrate

the effect of withholding the sensors. Four

ground sensors are located in the analysis

block of D5 and are shown in Figure 3. The

approach for accuracy assessment is to

calculate the average value of solar insolation

estimated by the satellite observations in the

analysis block, and then compare them with

Table 5a. Variation of standard error (SE) with the number of sensors for each 20-km analysis block.

Number of
Standard error (MJ day21 m22)

sensors B1-1 B1-2 B2-1 B2-2 B3-1 B3-2 B4-1 B4-2 B8-1 D3-1 D3-2

1 5.741 5.756 5.574 5.596 5.618 5.594 5.588 5.622 5.146 5.559 5.701
2 4.098 4.089 3.945 3.979 4.008 3.960 3.960 4.007 3.789 3.942 4.035
3 3.443 3.395 3.236 3.314 3.363 3.254 3.267 3.355 3.342 3.256 3.312
4 3.120 3.031 2.834 2.970 3.045 2.857 2.888 3.028 3.173 2.885 2.902
5 2.956 2.827 2.582 2.782 2.881 2.613 2.663 2.858 3.117 2.667 2.647
6 2.882 2.718 2.420 2.686 2.806 2.460 2.531 2.777 3.119 2.543 2.484
7 2.847 2.656 2.311 2.634 2.770 2.360 2.449 2.736 3.135 2.466 2.375
8 2.844 2.631 2.242 2.615 2.765 2.299 2.406 2.728 3.166 2.427 2.307
9 2.867 2.636 2.205 2.625 2.786 2.270 2.393 2.747 3.210 2.419 2.272
10 2.886 2.641 2.179 2.635 2.804 2.251 2.386 2.762 3.243 2.415 2.247

Table 5b. Variation of standard error (SE) with the number of sensors for each 20-km analysis block.

Number of
Standard error (MJ day21 m22)

sensors E3-1 E3-2 F4-1 F5-1 F5-2 F6-1 F6-2 F7-1 F7-2 F8-1 F8-2

1 5.769 5.759 5.743 5.801 5.969 5.880 5.715 5.559 5.500 5.532 5.552
2 4.086 4.087 4.079 4.150 4.264 4.201 4.070 3.940 4.029 3.920 4.099
3 3.360 3.382 3.386 3.503 3.587 3.538 3.402 3.249 3.532 3.231 3.627
4 2.956 3.005 3.021 3.193 3.257 3.215 3.064 2.871 3.337 2.853 3.452
5 2.710 2.789 2.817 3.040 3.091 3.054 2.885 2.647 3.268 2.627 3.397
6 2.558 2.668 2.707 2.977 3.018 2.984 2.798 2.514 3.264 2.494 3.402
7 2.460 2.596 2.644 2.950 2.985 2.953 2.753 2.432 3.277 2.410 3.421
8 2.403 2.562 2.618 2.954 2.983 2.952 2.741 2.387 3.308 2.364 3.455
9 2.378 2.559 2.622 2.982 3.009 2.979 2.757 2.374 3.354 2.349 3.504
10 2.362 2.559 2.627 3.005 3.030 3.000 2.771 2.366 3.388 2.340 3.539
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insolation values obtained by averaging the

available ground sensor observations. This

process involves progressively eliminating one

ground sensor at a time and then evaluating the

accuracy of the remaining sensors in char-

acterising the variability of the solar insolation

data. Summary statistics are calculated con-

sidering decreasing numbers of sensors

(Table 9). The results show minimal deviations

in summary statistics of the insolation data

from those from satellite-based data in the

block when two sensors are eliminated.

The sensor assignment and placement for a

new network will depend on the existing

number and required sensors and the practical

considerations and logistics related to main-

Table 6. Variations in the number of sensors required and additional needed (new) for different values of
standard error.

Standard error
Number of sensors

(MJ day21 m22) Required Available New

3.5 124 29 95
3.8 97 29 68
4.5 79 29 50
5.0 48 29 19
5.5 45 29 16

Table 7. Number of sensors required in different analysis blocks for a specific standard error.

Standard error (MJ day21 m22) Standard error (MJ day21 m22)

Block 3.5 3.8 4.5 5 5.5 Block 3.5 3.8 4.5 5 5.5

A5 2 2 1 1 1 B1-1 2 2 1 1 1
B5 2 2 1 1 1 B1-2 2 2 1 1 1
B6 2 2 1 1 1 B2-1 2 2 2 1 1
B7 2 2 1 1 1 B2-2 3 2 2 1 1
C1 2 2 1 1 1 B3-1 3 2 2 1 1
C2 2 2 1 1 1 B3-2 3 2 2 1 1
C3 2 2 1 1 1 B4-1 3 2 2 1 1
C4 2 2 1 1 1 B4-2 3 2 2 1 1
C5 2 2 1 1 1 B8-1 3 2 2 1 1
C6 3 2 2 1 1 D3-1 3 2 2 1 1
C7 3 2 2 1 1 D3-2 3 2 2 1 1
C8 3 2 2 1 1 E3-1 3 2 2 1 1
D4 3 2 2 1 1 E3-2 3 2 2 1 1
D5 3 2 2 1 1 F4-1 3 2 2 1 1
D6 3 2 2 1 1 F5-1 3 2 2 1 1
D7 3 2 2 1 1 F5-2 3 2 2 1 1
D8 3 2 2 1 1 F6-1 3 2 2 1 1
E4 3 3 2 1 1 F6-2 3 2 2 1 1
E5 3 3 2 1 1 F7-1 3 2 2 1 1
E6 3 3 2 1 1 F7-2 3 2 2 1 1
E7 3 3 2 1 1 F8-1 3 2 2 1 1
E8 3 3 2 2 1 F8-2 3 3 2 2 1
E9 4 3 2 2 1 Total 63 45 42 23 22
Total 61 52 37 25 23
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tenance and installation options. The required

sensor density is initially determined by using

a specific value of SE in 40-km and 20-km

analysis blocks. Additional sensors are pro-

posed to meet the required optimal sensor

density. These sensors are expected to be

installed within an analysis block with a

consideration given to the inter-sensor separ-

ation distance computed from the range

parameter in the semivariogram analysis. The

inter-sensor optimal separation distances are

identified to be in between 32 and 40 km for

40-km analysis blocks and 16 and 20 km for

20-km analysis blocks respectively. The excess

sensors from one or more analysis blocks can

be utilised in blocks where the number of

required sensors is greater than the existing

number. The locations of the sensors in blocks

near the coast (20-km blocks) need to be

decided based on the field conditions.

10. General remarks

The focus of the current study is only on the

design of an optimal solar radiation measure-

ment sensor network. The placement of the

proposed sensors within different analysis

blocks of fixed spatial resolution will require

an additional study that will address the cost

associated with the installation and/or removal

(if required) of sensors and other logistical

issues. The methodology developed in the

current study can also be applied to regions

where there are no existing ground-based

sensors. In the current study, data from an

existing network of ground-based sensors are

used to validate the satellite-based data.

However, there is no need for ground-based

sensors to obtain the design of the network as

long as the satellite-based data are assured to

be of good quality without any errors or

anomalies. The establishment of spatially

homogeneous areas for the definition of

Table 8a. 40-km analysis blocks with insufficient and excess number of sensors for SE ¼ 5.0MJ day21

m22.

Block Required sensors Existing sensors Existing–required Excess Insufficient

A5 1 0 21 0 1
B5 1 0 21 0 1
B6 1 1 0 0 0
B7 1 2 1 1 0
C1 1 0 21 0 1
C2 1 2 1 1 0
C3 1 0 21 0 1
C4 1 2 1 1 0
C5 1 1 0 0 0
C6 1 1 0 0 0
C7 1 0 21 0 1
C8 1 0 21 0 1
D4 1 2 1 1 0
D5 1 4 3 3 0
D6 1 2 1 1 0
D7 1 1 0 0 0
D8 1 1 0 0 0
E4 1 1 0 0 0
E5 1 0 21 0 1
E6 1 3 2 2 0
E7 1 0 21 0 1
E8 2 1 21 0 1
E9 2 1 21 0 1
Total 25 25 0 10 10

R.S.V. Teegavarapu et al.24

D
o

w
n

lo
ad

ed
 b

y
 [

R
am

es
h

 S
.V

. 
T

ee
g

av
ar

ap
u

] 
at

 1
1

:2
3

 0
5

 J
u

ly
 2

0
1

5
 



analysis blocks is carried out by evaluating the

mean, standard deviation and coefficient of

variation of solar insolation data in this study.

Methods for identification of homogeneous

areas using these summary statistics of data,

similarity of probability distributions of

observations at several sites in a region, and

cluster analysis were recommended by Haan

(2002) and Hosking, Wallis, andWood (1985).

The summary statistics-based method used for

definition of analysis blocks (i.e. homogeneous

areas) in the current study is conceptually

simple and involves an iterative process.

However, use of the variance quad-tree or

cluster approach is recommended for defi-

nition of block sizes to avoid any element of

subjectivity in the delineation process of

homogeneous areas.

Table 9. Summary statistics of sensor data in the analysis block D5 with different number of sensors
removed.

Summary statistic Satellite All four sensors Three sensors1 Two sensors2

Average 19.422 18.721 18.713 18.383
Median 19.743 18.943 18.936 18.727
Standard deviation 3.058 3.147 3.365 4.007
Minimum 5.658 6.912 5.501 5.227
Maximum 25.600 25.661 26.064 27.950

1 Sensor L005 not included.

Table 8b. 20-km analysis blocks with insufficient and excess number of sensors for SE ¼ 5.0MJ day21

m22.

Block Required sensors Existing sensors Existing–required Excess Insufficient

B1-1 1 0 21 0 1
B1-2 1 0 21 0 1
B2-1 1 0 21 0 1
B2-2 1 0 21 0 1
B3-1 1 0 21 0 1
B3-2 1 0 21 0 1
B4-1 1 0 21 0 1
B4-2 1 0 21 0 1
B8-1 1 0 21 0 1
D3-1 1 0 21 0 1
D3-2 1 0 21 0 1
E3-1 1 0 21 0 1
E3-2 1 0 21 0 1
F4-1 1 1 0 0 0
F5-1 1 1 0 0 0
F5-2 1 1 0 0 0
F6-1 1 1 0 0 0
F6-2 1 0 21 0 1
F7-1 1 0 21 0 1
F7-2 1 0 21 0 1
F8-1 1 0 21 0 1
F8-2 2 0 22 0 2
Total 23 4 219 0 19
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11. Conclusions

A methodology to design an optimal sensor

network to characterise the spatial variability of

solar insolation useful for estimation of

evapotranspiration (ET) in a region is proposed

and evaluated in this study. Application of the

methodology to upgrade an existing network of

solar radiation sensors (i.e. pyranometers) in a

region of South Florida, USA, is reported in this

paper. Geostationary operational environmental

satellite (GOES) satellite and ground sensor

network-based data are used in this study for the

design of the network. The optimal network is

expected to improve the estimation ofETusing a

simple solar-radiation-based ET estimation

method in the region. An array of analysis

blocks with two different fixed spatial resol-

utions (20 and 40km) is defined based on the

evaluation of spatial variability of solar insola-

tion data in the study region. Geospatial and

geostatistical analyses are used to assess the

solar insolationwithin each analysis block and to

obtain an optimal number of sensors. Results

from the analyses conducted in this study

indicate that the number of sensors required in

each analysis block depends on the standard

error (SE) set as a criterion for network

measurement accuracy. An optimal sensor

network that is expected to provide a standard

error (SE) of 5.0MJ day21 m22 is selected to

demonstrate the utility of the proposed method-

ology in this study. A separate study needs to be

carried out to clearly define the implementation

strategies for the recommended network devel-

oped in this study. The methodology proposed

and evaluated in this study is generic and can

used for design of an optimal monitoring

network for any hydro-meteorological variable.
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