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Abstract. The assessment of regional homogeneity is a critical point in9

regional frequency analysis. To this end many homogeneity tests have been10

proposed, even though a general comparison among them is still lacking. Com-11

monly used homogeneity tests, based on L-moments ratios, are considered12

here in a comparison with two rank tests that do not rely on particular as-13

sumptions regarding the parent distribution. The performance of these tests14

is assessed in a series of Monte Carlo simulation experiments. In particular,15

the power and Type I error of each test are determined for different scale and16

shape parameters of the regional parent distributions. The tests are also eval-17

uated by varying the number of sites belonging to the region, the series length,18

the type of the parent distributions and the degree of heterogeneity. We find19

that L-moments based tests are more powerful when the samples are slightly20

skewed while the rank tests have better performances in case of high skew-21

ness. Based on these findings, we propose a simple method to guide the choice22

of the homogeneity test to be used for the different possible cases.23
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1. Introduction

Estimation of the frequency of extreme events is often required in the hydrological24

practice. The procedures for the analysis of a single set of data are well-established,25

but often observations of the same variable at different measuring sites are available,26

and more accurate conclusions can be reached by analyzing many data samples together.27

This constitutes the basis for regional frequency analysis [e.g., Hosking and Wallis, 1997].28

Critical points of the regional approach to frequency analysis are in the choice of the29

method to group the data samples together, and in the assessment of the plausibility30

of the obtained groupings. This involves testing whether the proposed regions may be31

considered homogeneous or not. The hypothesis of homogeneity implies that frequency32

distributions for different sites are the same, except for a site-specific scale factor.33

Many Authors have proposed homogeneity tests in the hydrologic literature, including34

Dalrymple [1960], Wiltshire [1986a,b,c], Chowdhury et al. [1991], Lu and Stedinger [1992],35

Fill and Stedinger [1995], and Hosking and Wallis [1993; 1997]. However, few comparisons36

have been carried out between the tests, with the effect of leaving the user without clear37

ideas regarding the merits and drawbacks of each method. L-moments based statistics38

[Hosking and Wallis, 1993; 1997] are nowadays routinely used in regional analyzes, but no39

detailed studies are available that demonstrate their superiority towards other methods.40

Here we compare, in a very general setting, four homogeneity tests: the first two tests,41

proposed by Hosking and Wallis [1993], are based on L-moments statistics. The other42

considered tests are novel in the hydrologic field: these are the k-sample Anderson-Darling43

test [Scholz and Stephens, 1987], opportunely modified to account for the normalization by44
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the index value, and the Durbin and Knott [1971] test, routinely used as a goodness-of-fit45

test but adopted here for the heterogeneity assessment. The following Section is devoted46

to the description of the considered tests. In Section 3 we describe the procedure adopted47

for carrying out the comparison among the tests, in Section 4 the obtained results are48

presented, and in Section 5 some conclusions are drawn.49

2. Homogeneity tests

Suppose that k samples of observations of the same variable at different measuring sites50

are available, and that one wishes to verify if they can be grouped to form a statistically51

homogeneous region: let Yij be the j-th observation in the i-th sample, sorted in ascending52

order (Yi1 ≤ Yi2 ≤ . . . ≤ Yini
, where i = 1, . . . , k). Following an index value procedure,53

the observations are first rescaled with respect to a site specific index value Yi (details54

on the choice of the index value are provided in Section 4.1) obtaining Xij =
Yij

Yi
. If the55

observations are independent and the i-th rescaled sample has distribution function Fi, the56

homogeneity test corresponds to verifying the hypothesis H0 : F1 = ... = Fk = F , without57

specifying the common distribution F . The merits and drawbacks of a test statistic are58

evaluated by considering its power and its Type I error. Given the null hypothesis H059

(in our case the hypothesis of regional homogeneity), the power of the test is defined as60

the probability of correctly rejecting H0 when it is not true. If instead the hypothesis is61

rejected when it should be accepted, one makes a Type I error. The test is unbiased when62

the probability of making a Type I error is equal to the selected level of significance, α,63

of the test.64

Homogeneity tests involve finding, for each site, an estimate of a quantity, θi, that mea-65

sures some aspects of the (at-site) frequency distributions, and verifying if the dispersion66
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of the θi values around their regional counterpart, θR, is consistent with the hypothesis67

of homogeneity. This requires defining the distribution of θ under the null hypothesis H0,68

GH0
(θ), which in many cases implies that the common distribution F is selected a priori.69

This is a theoretical problem affecting the application of many homogeneity tests (an70

exception is the Wiltshire [1986a] CV-based test). The necessity to preselect F implies71

that the test actually do not allow one to verify the homogeneity hypothesis alone, but72

the composite (homogeneity + goodness of fit) hypothesis that the parent distribution is73

the same at each site, and has a pre-defined mathematical form F . As a consequence, the74

possible reasons why the test is not passed can be either that the region is heterogeneous,75

or that the adopted regional probability distribution F is inadequate. We will return to76

this point in Section 2.2, where the Anderson-Darling test is described.77

A second problem occurs as an effect of the normalization by the index value, which78

in some cases can distort the distribution GH0
(θ) of the test statistic under the null79

hypothesis: this is the case, for example, of the Wiltshire [1986a] rank-based test or of80

the k-sample Anderson-Darling test. The problem will be treated in detail in Section 2.3.81

We now describe the four homogeneity tests selected for the comparison. The R package82

HOMTEST, developed to facilitate the practical application of the tests, is available at83

the web page http://www.idrologia.polito.it/~alviglio/software/Rindex.htm .84

2.1. The Hosking and Wallis heterogeneity measures

The idea underlying Hosking and Wallis [1993] heterogeneity statistics is to measure the85

sample variability of the L-moment ratios and compare it to the variation that would be86

expected in a homogeneous region. The latter is estimated through repeated simulations87
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of homogeneous regions with samples drawn from a four parameter kappa distribution88

[see Hosking and Wallis, 1997, pp. 202-204]. More in detail, the steps are the following:89

1. With regards to the k samples belonging to the region under analysis, find the sample90

L-moment ratios (see Hosking and Wallis [1997] for details) pertaining to the i-th site:91

these are the L-coefficient of variation (L-CV),92

t(i) =

1
ni

∑ni

j=1

(
2(j−1)
(ni−1)

− 1
)
Yi,j

1
ni

∑ni

j=1 Yi,j

, (1)93

the coefficient of L-skewness,94

t
(i)
3 =

1
ni

∑ni

j=1

(
6(j−1)(j−2)
(ni−1)(ni−2)

−
6(j−1)
(ni−1)

+ 1
)
Yi,j

1
ni

∑ni

j=1

(
2(j−1)
(ni−1)

− 1
)
Yi,j

, (2)95

and the coefficient of L-kurtosis96

t
(i)
4 =

1
ni

∑ni

j=1

(
20(j−1)(j−2)(j−3)
(ni−1)(ni−2)(ni−3)

−
30(j−1)(j−2)
(ni−1)(ni−2)

+ 12(j−1)
(ni−1)

− 1
)
Yi,j

1
ni

∑ni

j=1

(
2(j−1)
(ni−1)

− 1
)
Yi,j

. (3)97

Note that the L-moment ratios are not affected by the normalization by the index value,98

i.e. it is the same to use Xi,j or Yi,j in Equations (1)-(3).99

2. Define the regional averaged L-CV, L-skewness and L-kurtosis coefficients,100

tR =

∑k
i=1 nit

(i)∑k
i=1 ni

tR3 =

∑k
i=1 nit

(i)
3∑k

i=1 ni

tR4 =

∑k
i=1 nit

(i)
4∑k

i=1 ni

(4)101

and compute the statistic102

V =

{
k∑

i=1

ni(t
(i) − tR)2/

k∑
i=1

ni

}1/2

. (5)103

3. Fit the parameters of a four-parameters kappa distribution to the regional averaged104

L-moment ratios tR, tR3 and tR4 , and then generate a large number Nsim of realizations of105

sets of k samples. The i-th site sample in each set has a kappa distribution as its parent106

and record length equal to ni. For each simulated homogeneous set, calculate the statistic107
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in Equation 5, obtaining Nsim values. On this vector of V values determine the mean µV108

and standard deviation σV that relate to the hypothesis of homogeneity (actually, under109

the composite hypothesis of homogeneity and kappa parent distribution).110

4. An heterogeneity measure, which is called here HW1, is finally found as111

θHW1
=

V − µV

σV

. (6)112

θHW1
can be approximated by a normal distributed with zero mean and unit variance:113

following Hosking and Wallis [1997], the region under analysis can therefore be regarded114

as “acceptably homogeneous” if θHW1
< 1, “possibly heterogeneous” if 1 ≤ θHW1

< 2,115

and “definitely heterogeneous” if θHW1
≥ 2. Hosking and Wallis [1997] suggest that these116

limits should be treated as useful guidelines. Even if the θHW1
statistic is constructed like117

a significance test, significance levels obtained from such a test would in fact be accurate118

only under special assumptions: to have independent data both serially and between sites,119

and the true regional distribution being kappa.120

The θHW1
statistic measures heterogeneity only in the dispersion of the samples, since121

it is based solely on the differences between the sample L-CV’s in the region. As such, it122

is insensitive to heterogeneity that arises between sites having equal L-CV but different123

L-skewness. Hosking and Wallis [1993] also give an alternative heterogeneity measure124

(that we call HW2), in which V in Equation (5) is replaced by:125

V2 =
k∑

i=1

ni

{
(t(i) − tR)2 + (t

(i)
3 − tR3 )2

}1/2
/

k∑
i=1

ni , (7)126

The test statistic in this case becomes127

θHW2
=

V2 − µV2

σV2

, (8)128
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with similar acceptability limits as the HW1 statistic. Hosking and Wallis [1997] judge129

θHW2
to be inferior to θHW1

and say that it rarely yields values larger than 2 even for130

grossly heterogeneous regions. Moreover they stress that in practice it is uncommon to131

have sites with equal L-CV and different L-skewness (sites with high L-skewness tend to132

have high L-CV too). Anyway we decided to consider also this statistic in the present133

paper because it is used in the most systematic and documented regional flood study134

available [Robson and Reed, 1999].135

2.2. The k-sample Anderson-Darling test

As mentioned, the HW1 and HW2 heterogeneity measures suffer from the limitation136

that they take a kappa parent distribution, thus reverting the homogeneity test into a137

goodness-of-fit + homogeneity test. The kappa distribution is probably flexible enough to138

limit the consequences of this assumption [Hosking and Wallis, 1997], but the theoretical139

inconsistency remains. We therefore decided to propose in the comparison also tests that140

do not have this problem. A possible candidate could be the Wiltshire [1986a] CV-based141

test, unless it was shown by the same Author to be unreliable. Another test that does not142

make any assumption on the parent distribution is the Anderson-Darling (AD) rank test143

[Scholz and Stephens, 1987]. The AD test is the generalization of the classical Anderson-144

Darling goodness of fit test [e.g., D’Agostino and Stephens, 1986], and it is used to test the145

hypothesis that k independent samples belong to the same population without specifying146

their common distribution function.147

The test is based on the comparison between local and regional empirical distribution148

functions. The empirical distribution function, or sample distribution function, is defined149

by F (x) = j
η
, x(j) ≤ x < x(j+1), where η is the size of the sample and x(j) are the150

D R A F T September 26, 2006, 5:31pm D R A F T



VIGLIONE ET AL.: HOMOGENEITY TESTS FOR REGIONAL FREQUENCY ANALYSIS X - 9

order statistics, i.e. the observations arranged in ascending order. Denote the empirical151

distribution function of the i-th sample (local) by F̂i(x), and that of the pooled sample of152

all N = n1 + ... + nk observations (regional) by HN(x). The k-sample Anderson-Darling153

test statistic is then defined as154

θAD =
k∑

i=1

ni

∫
all x

[F̂i(x) − HN(x)]2

HN(x)[1 − HN(x)]
dHN(x) . (9)155

If the pooled ordered sample is Z1 < ... < ZN , the computational formula to evaluate156

Equation (9) is:157

θAD =
1

N

k∑
i=1

1

ni

N−1∑
j=1

(NMij − jni)
2

j(N − j)
, (10)158

where Mij is the number of observations in the i-th sample that are not greater than Zj .159

The homogeneity test can be carried out by comparing the obtained θAD value to the tab-160

ulated percentage points reported by Scholz and Stephens [1987] for different significance161

levels.162

The statistic θAD depends on the sample values only through their ranks. This guar-163

antees that the test statistic remains unchanged when the samples undergo monotonic164

transformations, an important stability property not possessed by HW heterogeneity165

measures. However, problems arise in applying this test in a common index value pro-166

cedure. In fact, the index value procedure corresponds to dividing each site sample by167

a different value, thus modifying the ranks in the pooled sample. In particular, this has168

the effect of making the local empirical distribution functions much more similar to the169

other, providing an impression of homogeneity even when the samples are highly hetero-170

geneous. The effect is analogous to that encountered when applying goodness-of-fit tests171

to distributions whose parameters are estimated from the same sample used for the test172
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[e.g., D’Agostino and Stephens, 1986; Laio, 2004]. In both cases, the percentage points173

for the test should be opportunely redetermined. This can be done with a nonparametric174

bootstrap approach presenting the following steps:175

1. Build up the pooled sample S of the observed non-dimensional data.176

2. Sample with replacement from S and generate k artificial local samples, of size177

n1, . . . , nk.178

3. Divide each sample for its index value, and calculate θ
(1)
AD.179

4. Repeat the procedure for Nsim times and obtain a sample of θ
(j)
AD, j = 1, . . . , Nsim val-180

ues, whose empirical distribution function can be used as an approximation of GH0
(θAD),181

the distribution of θAD under the null hypothesis of homogeneity.182

5. The acceptance limits for the test, corresponding to any significance level α, are then183

easily determined as the quantiles of GH0
(θAD) corresponding to a probability (1 − α).184

We will call the test obtained with the above procedure the bootstrap Anderson-Darling185

test, hereafter referred to as AD.186

2.3. Durbin and Knott test

The last considered homogeneity test derives from a goodness-of-fit statistic originally187

proposed by Durbin and Knott [1971]. The test is formulated to measure discrepancies188

in the dispersion of the samples, without accounting for the possible presence of discrep-189

ancies in the mean or skewness of the data. Under this aspect, the test is similar to the190

HW1 test, while it is analogous to the AD test for the fact that it is a rank test. The191

original goodness-of-fit test is very simple: suppose to have a sample Xi, i = 1, ..., n, with192

hypothetical distribution F (x); under the null hypothesis the random variable F (Xi) has193
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a uniform distribution in the (0, 1) interval, and the statistic D =
∑n

i=1 cos[2πF (Xi)] is194

approximately normally distributed with mean 0 and variance 1 [Durbin and Knott, 1971].195

D serves the purpose of detecting discrepancy in data dispersion: if the variance of Xi196

is greater than that of the hypothetical distribution F (x), D is significantly greater than197

0, while D is significantly below 0 in the reverse case. Differences between the mean (or198

the median) of Xi and F (x) are instead not detected by D, which guarantees that the199

normalization by the index value does not affect the test.200

The extension to homogeneity testing of the Durbin and Knott (DK) statistic is straight-201

forward: we substitute the empirical distribution function obtained with the pooled ob-202

served data, HN(x), for F (x) in D, obtaining at each site a statistic203

Di =
ni∑

j=1

cos[2πHN(Xj)], (11)204

which is normal under the hypothesis of homogeneity. The statistic θDK =
∑k

i=1 D2
i205

has then a chi-squared distribution with k − 1 degrees of freedom, which allows one to206

determine the acceptability limits for the test, corresponding to any significance level α.207

Note that the implementation of the DK test is much simpler compared to the other208

considered statistics.209

3. Basis for test comparison

The main issue of this work is to analyze, through Monte Carlo simulations, which of210

the tests described in Section 2 works better, i.e. is less biased (Type I error close to the211

adopted significance level) and more powerful. The Monte Carlo simulation experiment212

requires that:213
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1. an artificial region is defined by providing the number of samples k, their length n214

(which is kept constant for all sites), the (3-parameter) parent distribution P used for the215

generation of the samples, and the regional average L-moment ratios τR and τR
3 ;216

2. the artificial region has a known heterogeneity, with the local L-moment ratios, τ (i)
217

and/or τ
(i)
3 varying linearly from site 1 through site k, with an overall range of variation218

∆τ and ∆τ3 (when ∆τ and ∆τ3 are both equal to zero, the region is homogeneous);219

3. for each site in the region, the three parameters of the parent distribution P are220

estimated from the local L-moments, and a sample of size n is generated from P and221

normalized by the index value;222

4. the four homogeneity tests are applied to the obtained artificial region, after hav-223

ing selected a significance level α for the AD and DK tests, or an almost equivalent224

acceptability limit for the HW1 and HW2 heterogeneity measures;225

5. 1000 replications of the artificial regions are generated, and each replication is sep-226

arately tested for homogeneity with the four tests; the power of each test (or its Type I227

error) is estimated as the percentage of the 1000 replicates recognized as heterogeneous.228

The comparison among the tests should be as general as possible; different values of k,229

n, P, τ , τ3, ∆τ , ∆τ3, and α need then to be considered, which complicates the numerical230

simulation. In particular, the average dispersion and skewness of the samples, τR and231

τR
3 , are very likely to relevantly affect the performances of the test. The same is true for232

the other parameters, but the effects on the tests of a change of, say, n is much easier to233

predict and therefore less interesting. For this reason we decided to consider several τR
234

and τR
3 values, i.e. to explore in our simulation experiment a large portion of the τ -τ3235

diagram. Numerical constraints to the τ and τ3 values are given by Hosking and Wallis236
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[1997]: these are 0 ≤ τ < 1, −1 < τ3 < 1, and 2τ − 1 < τ3 (valid for variables that can237

take only positive values). However, the portion of the τ − τ3 space bounded by these238

constraints remains still too big in an operational perspective.239

To choose tighter bounds in the τ − τ3 space we refer to a hydrological perspective240

considering Vogel and Wilson [1996] work, who use L-moment diagrams to select a regional241

distribution for annual minimum, average and maximum streamflows. Vogel and Wilson242

[1996] build these diagrams for more than 1400 river basins in the continental United243

States. All the observed τ −τ3 values, independently of the type of flow, occupy a bisector244

band of the graphic with τ3 − 0.2 < τ < τ3 + 0.4 (see Figure 1) and very few points have245

a τ3 larger than 0.5 or smaller than -0.1. We therefore choose to limit our investigations246

to the region with the following bounds (Figure 1):247 ⎧⎪⎨
⎪⎩

0.1 < τ < 0.6 ,
−0.1 ≤ τ3 < 0.5 ,

τ3 − 0.2 < τ < τ3 + 0.4 ,
(12)248

We consider all τR and τR
3 pairs inside that region on a grid with a 0.1 spacing (gray249

points in Figure 1).250

As for the other involved variables (k, n, P, ∆τ , ∆τ3, and α), the adopted simulation251

strategy involves building up a main case study, with reasonable parameter values, and252

then carrying out a sort of sensitivity analysis. The parameters selected for the main253

case study are the following: k = 11; n = 30; P ≡ generalized extreme value (GEV)254

distribution; α = 5% (or, equivalently, θHW ≤ 2); ∆τ = 0 and ∆τ3 = 0 for verifying the255

Type I error, or ∆τ = 0.5τ and ∆τ3 = 0 for verifying the power of the tests (see Section256

4.2). The type and degree of heterogeneity, the sample size, the number of sites in the257

region, the significance level, and the parent distribution are then varied once at a time258
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(see Section 4.3), and the results are analyzed for 4 points in the central part of the τ − τ3259

diagram (points A, B, C and D in Figure 1).260

4. Results

This section is divided into three parts: in the first one the choice of the index value is261

discussed, in the second one the main case study is described and in the third part the262

effects of the variation of k, n, P, ∆τ , ∆τ3, or α is analyzed.263

4.1. Choice of the index-value

A relevant issue in regional frequency analysis, which is related to the main subject264

of this paper, is the choice of the index-value, i.e. of the parameter used to normalize265

the samples. We decided to include a specific section regarding this topic both because266

the choice of the index value can affect the performances of the homogeneity tests, and267

because we wish to raise some discussion on this important, but often neglected, topic. In268

the original formulation of the index-value method by Dalrymple [1960], the index value269

was intended to be the population mean. However, the passage from theory to practice270

involved replacing the population mean by the sample mean. As clearly pointed out by271

Sveinsson et al. [2001], this change is not trouble-free, since replacing the population mean272

by its sampling counterpart can produce relevant distortions in the regional frequency273

analysis. The induced distortions can be expected to be rather large when the sample274

mean is not a “good” estimator of the population mean, i.e. when it is either biased or275

has a large estimation variance. In those cases a possible alternative would be to use the276

sample median as the index value, as proposed for example by Robson and Reed [1999].277

The advantages of this choice are described hereafter.278
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A numerical investigation is conducted for each simulation point in Figure 1. 100000279

samples of length 30 are generated from a GEV distribution with known mean and median.280

The distortion of the sample estimates of the mean and median are estimated by the281

normalized root mean square error,282

RMSE% =

√
1
N

∑N
i=1(x̄i − µ)2

µ
· 100 , (13)283

where µ and x̄i are, respectively, the population and sample mean (or median) of each284

sample. The difference between the RMSE% for the mean and for the median is shown285

in Figure 2. Where the differences are negative, the estimation of the mean by its sample286

counterpart is less biased than the corresponding median estimation, and the mean can287

therefore be regarded as a more reliable index value. It is clear from Figure 2 that288

the differences are almost negligible, except that in the very right part of the graph,289

corresponding to highly skewed samples, where the sample median performs considerably290

better than the sample mean. In fact, the sample median is known to be less sensitive291

than the sample mean to the presence of outliers, and the latter are more likely found in292

samples from highly skewed distributions [Hampel, 1974]. Overall, we believe that Figure293

2 demonstrates the advantages of using the sample median as the index value when skewed294

parent distributions are suspected, as in flood frequency analysis studies. Similar results295

are obtained with distributions other than the GEV. We therefore use the sample median296

as the index value in the following of the paper.297

4.2. Main case study

The main case study corresponds to a full analysis of the performances of the tests for298

all points in the τ -τ3 diagram, with k = 11, n = 30, P ≡ GEV distribution and α = 5%299
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(or θHW ≤ 2). The Type I error of the tests is considered first, through simulation from300

homogeneous regions, with ∆τ = 0 and ∆τ3 = 0. Figure 3 reports on the background301

(gray numbers) the percentage of regions considered heterogeneous by each test, and in302

the foreground (black lines) a fitted “trend-surface” whose isolines show how the Type I303

error varies in the τ − τ3 space. It can be noticed that the average sample values < tR >304

and < tR3 > (i.e., the averages of tR and tR3 over the 1000 replications) can be different305

from their theoretical counterparts τR and τR
3 , i.e. the gray numbers in Figure 3 do not306

precisely lie on the grid defined in Figure 1. This is due to the fact that in small samples307

t and t3 are not unbiased estimators of τ and τ3 [Hosking and Wallis, 1997].308

None of the tests has the expected Type I error everywhere in the τ − τ3 space. In a309

large part of the τ − τ3 space the percentage of regions stated as non-homogeneous by the310

heterogeneity measures of Hosking and Wallis is 2÷ 4%; this percentage rises to 8÷ 10%311

for high L-skewness coefficients (tR3 > 0.4, Figure 3). The rank tests have a correct Type I312

error in the central-diagonal part of the L-moments space, while the percentage of regions313

mistakenly assumed as heterogeneous increases towards the borders (especially for the314

DK test).315

Figure 4 reports the results of the tests for simulated regions whose heterogeneity is316

due to the different dispersion of the frequency distributions at different sites. The range317

of variation of the L-CV’s (∆τ) inside the region is 0.5 times the regional average L-CV318

(τR). Being k = 11 as before, in a region with τR = 0.2 the samples are generated from319

distributions characterized by τ values respectively equal to 0.15, 0.16, 0.17, ..., 0.25. The320

gray points and trend lines in Figure 4 show the power of the tests, i.e. the percentage321

of times when the test succeed in detecting the heterogeneity. The lack of power of the322
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measure HW2, as anticipated by Hosking and Wallis [1997], is evident. For all other tests,323

the power tends to be greater in the diagonal line of the τ − τ3 space and to grow towards324

the upper-right corner of the investigated space. HW1, if compared to the DK and AD325

tests, has a higher power in the bottom-left part of the L-moments space. In contrast,326

for highly skewed regions it has considerably lower power than the non-parametric tests,327

among which the AD test is the most powerful.328

4.3. Sensitivity analysis

As mentioned in Section 3, the effect of a variation of k, n, P, ∆τ , ∆τ3, and α is329

considered in four points (A, B, C and D) located in the central part of the τ − τ3330

diagram (Figure 1), rather than through the whole diagram. As an example, we report in331

Figure 5 the behavior of the tests for regions whose heterogeneity is only due to the shape332

parameter (∆τ = 0, ∆τ3 �= 0). In this case the non-parametric tests, in particular the333

AD test, and the Hosking and Wallis heterogeneity measure HW2 are (obviously) more334

powerful than HW1. This is particularly evident when the average shape parameter is335

rather large (τR
3 ≥ 0.2) since for low values of τR

3 (point A) all tests fail to detect the336

heterogeneity. As expected, the power of the tests increases with increasing heterogeneity,337

i.e. with increasing ∆τ3.338

As a second example, we show in Figure 6 the power of the tests for regions generated339

from different parent distributions, when the heterogeneity is only due to differences in340

the L-CV’s (∆τ = 0.5τR). In addition to the GEV distribution, which is considered in the341

main case study, the other adopted 3-parameter distributions are the Generalized Logistic342

distribution (GL), the three-parameter Lognormal distribution (LN), the Pearson Type343

III distribution (P3) and the Generalized Pareto distribution (GP). The reader is referred344
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to Hosking and Wallis [1997, pp. 191-208] for a description of the parametrization of345

these distributions and of the relations between their parameters and the L-moments.346

The four tests behave in a very similar manner with varying parent distribution: in point347

A (low skewness) the Hosking and Wallis heterogeneity measure HW1 outperforms the348

non-parametric tests, while in point D (high skewness) the reverse is true. Points B and C349

reflect the transition between the two cases, and are characterized by a substantial equiv-350

alence of the different testing techniques. In all cases HW2 lacks power to discriminate351

between homogeneous and heterogeneous regions.352

The effects of a variation of the other parameters are more trivial, and the correspond-353

ing diagrams are not shown for reasons of space: the power of the tests increases with354

increasing number of sites k in a region and with increasing series length n. The tests are355

much more affected by the length of the series (n values from 10 to 100 are considered)356

than by the number of sites k (values from 3 to 21 have been considered). As for an357

increase of the degree of heterogeneity in the dispersion parameter (∆τ/τR), its effect358

is obviously to increase the power of the tests. The power reaches a 100% value when359

∆τ/τR = 1 (except that for HW2). In all of the considered cases the HW1 test is more360

powerful in points A and B, while the DK and AD tests are more powerful in points C361

and D. The differences in power can be relevant, under a practical viewpoint, especially362

for intermediate degrees of heterogeneity.363

5. Discussion and conclusions

A practical problem in regional frequency analysis is the choice of a test for regional364

homogeneity assessment. In this paper, the Hosking and Wallis heterogeneity measures365

(based on L-moment ratios) are compared with the bootstrap Anderson-Darling test and366
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with the Durbin and Knott rank test. This comparison shows that the Hosking and Wallis367

heterogeneity measure HW1 (only based on L-CV) is preferable when skewness is low,368

while the bootstrap Anderson-Darling test should be used for more skewed regions. As369

for HW2, the Hosking and Wallis heterogeneity measure based on L-CV and L-CA, it is370

shown once more how much it lacks power.371

Our suggestion is to guide the choice of the test according to Figure 7, that we have372

obtained as a compromise between power and Type I error of the HW1 and AD tests.373

The L-moment space is divided into two regions: if the tR3 coefficient for the region374

under analysis is lower than 0.23, we propose to use the Hosking and Wallis heterogeneity375

measure HW1; if tR3 > 0.23, the bootstrap Anderson-Darling test is preferable. Further376

comments arise from the observation of Figure 7 that displays some (tR, tR3 ) points. Each of377

these points is representative of a homogeneous region, considered in three flood frequency378

studies: Hosking and Wallis [1997], that directly report the tR and tR3 values for several379

regions in the Apalachian area; De Michele and Rosso [2002] and Farquharson et al. [1987],380

that give the three parameters of the GEV distribution (estimated using L-moments) for381

many regions in Italy [De Michele and Rosso, 2002] and around the world [Farquharson,382

1987]. Note that, as expected, these empirical regions lay in the part of the parameter383

space that was considered in our simulations. Also note that the majority of the points384

belong to the upper-right region of τ − τ3 space, where the bootstrap Anderson-Darling385

test is more powerful.386

The good performances of the Hosking and Wallis heterogeneity measure HW1, largely387

used in hydrology, deserve further comments. The HW1 test is based solely on the L-CV388

coefficient (see Equations (5) and (6)), and the fact that it performs well suggests that the389
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heterogeneity among the series is mainly due to variations in the sample variance of the390

samples. In contrast, the variations in skewness and kurtosis are in many cases masked391

by the sample variability of higher order moments and L-moments. As a consequence,392

other tests of constancy of the variance in different samples can be used as alternatives to393

the HW1 test. Possible examples are the “classical” Levene and Barlett tests [Conover et394

al., 1981], that, however, resulted to be weaker than the HW1 test in a preliminary case395

study.396
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Figure 1. τ − τ3 diagram (see Section 3). Lines are : (a) numerical constraint given by Hosking and Wallis [1997]; (b) bisector

band identified using Vogel and Wilson [1996] samples; (c) the region we consider. Gray points are the τR and τR
3

values considered

in the main case study (Section 4.2); points A, B, C and D are considered in the sensitivity analysis of Section 4.3.
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Figure 2. Difference between the RMSE% of the sample mean and the RMSE% of the sample median in the τ − τ3 space

(see Section 4.1). The dashed line indicates where the sample mean and sample median have, approximately, the same RMSE%; to

the right of this line the sample median is a less distorted estimator of its population counterpart, to the left of it the sample mean

performs (slightly) better.
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Figure 3. Percentage of regions erroneously stated as non-homogeneous in the τ − τ3 space by the tests (Type I error). The

homogeneous regions are generated using the Generalized Extreme Value distribution as the parent distribution; the other parameter

values are reported in the title of each subplot.
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Figure 4. Power of the tests in the τ − τ3 space with heterogeneous regions generated using the Generalized Extreme Value

distribution as the parent distribution. Heterogeneity is due to the varying dispersion of the frequency distributions at different sites:

the range of variation of the L-CV (∆τ) in the region is 0.5 times the regional average L-CV (τR); the other parameter values are

reported in the title of each subplot.
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Figure 5. Power of the tests in points A, B, C and D (Figure 1) when the heterogeneity is due to the shape parameter τ3 (see

Section 4.3); parameter values are reported in the title of each subplot.

D R A F T September 26, 2006, 5:31pm D R A F T



X - 28 VIGLIONE ET AL.: HOMOGENEITY TESTS FOR REGIONAL FREQUENCY ANALYSIS

Parent Distribution

po
w

er

GL LN GEV P3 GP

0
20

40
60

80
10

0

(k=11, n=30, ∆τ=0.5 τR, ∆τ3=0)

A

HW1

HW2

DK
AD

Parent Distribution
po

w
er

GL LN GEV P3 GP

0
20

40
60

80
10

0

(k=11, n=30, ∆τ=0.5 τR, ∆τ3=0)

B

Parent Distribution

po
w

er

GL LN GEV P3 GP

0
20

40
60

80
10

0

(k=11, n=30, ∆τ=0.5 τR, ∆τ3=0)

C

Parent Distribution

po
w

er

GL LN GEV P3 GP

0
20

40
60

80
10

0

(k=11, n=30, ∆τ=0.5 τR, ∆τ3=0)

D

Figure 6. Power of the tests in points A, B, C and D (Figure 1) when changing the parent distribution (see Section 4.3);

parameter values are reported in the title of each subplot.
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Figure 7. Regions of the τ − τ3 space where the considered tests should be used (see Section 5); to the left of the black line

(tR
3

= 0.23) the Hosking and Wallis heterogeneity measure HW1 is the best test (considering both power and Type I error), to the

right the bootstrap Anderson-Darling test AD should be used. Some real-world regional values are reported as points: Farquharson

et al. [1987] computed these values considering many stations worldwide, De Michele and Rosso [2002] considering Italy and Hosking

and Wallis [1997] the Apalachian region.
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