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Uncertainty compliant design flood estimation
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Abstract Hydraulic infrastructures are commonly designed with reference to target values of flood peak,
estimated using probabilistic techniques, such as flood frequency analysis. The application of these techni-
ques underlies levels of uncertainty, which are sometimes quantified but normally not accounted for explic-
itly in the decision regarding design discharges. The present approach aims at defining a procedure which
enables the definition of Uncertainty Compliant Design (UNCODE) values of flood peaks. To pursue this
goal, we first demonstrate the equivalence of the Standard design based on the return period and the cost-
benefit procedure, when linear cost and damage functions are used. We then use this result to assign an
expected cost to estimation errors, thus setting a framework to obtain a design flood estimator which mini-
mizes the total expected cost. This procedure properly accounts for the uncertainty which is inherent in the
frequency curve estimation. Applications of the UNCODE procedure to real cases leads to remarkable dis-
placement of the design flood from the Standard values. UNCODE estimates are systematically larger than
the Standard ones, with substantial differences (up to 55%) when large return periods or short data samples
are considered.

1. Introduction

The practical objective of a flood frequency analysis is to obtain, for a given return period T, a design flood,
which is generally represented by the quantile of a flood frequency curve corresponding to a particular T.
The specific mathematical representation of the flood frequency curve can be obtained either using locally
available data samples, or from regional flood frequency analysis. The application of these techniques
underlies levels of uncertainty which have recently received increasing attention in the scientific literature:
for example, De Michele and Rosso [2001], Cameron and Beven [2000], Brath et al. [2006], Blazkova and Beven
[2009], Laio et al. [2011], Liang et al. [2012], and Viglione et al. [2013] have attained a convincing quantifica-
tion of the uncertainty involved in the statistical estimation of the flood frequency curve. In the United
States, the US Army Corps of Engineers (USACE) has been putting a lot of effort for more than 20 years,
since the beginning of 1990s, in developing uncertainty compliant comprehensive design flood procedure
as reported in US Army Corps of Engineers [1996]. There, the uncertainty implied in each step of the design
flood procedure is accounted for. However, as highlighted in Davis et al. [2008], the USACE procedure does
not provide decisional criteria to follow in uncertainty conditions: uncertainty has to be taken into account
but no rules are provided to converge to final design values. Uncertainty can be quantified in terms of
quantile standard deviation, or in terms of the full probability distribution of the quantile. In the case of
flood frequency analysis, this means that, for a given return period T, a probability distribution function of
the (single) design flood estimator can be provided. In most cases, results of the uncertainty analysis are
provided in terms of a ‘‘reference’’ frequency curve associated with its confidence bands (see Figure 1).

Whatever the approach used to define a flood quantile estimator, the statistical inference will be affected
by uncertainty that have both epistemic and aleatory nature [e.g., Bodo and Unny, 1976; Merz and Thieken,
2005]. While the latter cannot be tackled, because it refers to the natural variability of the events under
study, the former depends on the amount of available data and on capacity of the inference procedure to
reproduce the underlying hydrological processes. The most relevant sources of epistemic uncertainties are
data availability and model selection. In a regional statistical analysis, uneven data sets produce effects that
have been studied [e.g., Stedinger and Tasker, 1985; Reis et al., 2005] in terms of performance of the statisti-
cal procedure when a regional statistical analysis is performed. Accuracy and robustness of the regional esti-
mates can be assumed and inference procedures can be adapted by properly weighting the initial data.
Model selection is also a limiting factor, mainly concerned with: (i) the choice of the probability distribution
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function and (ii) the choice of the parameters estimation technique. Regarding point (i), different families of
probability distribution functions are available and there is a great amount of subjectivity in the selection of
the best distribution to be adopted. This subjectivity is critical, because, using the same data, different prob-
ability distribution functions can produce quite different design values for large return periods [see, e.g.,
Laio et al., 2011], even though, for low return periods, the obtained fitting is good for all distribution func-
tions[Laio et al., 2009]. With regard to point (ii), the uncertainty deriving from the specific parameter estima-
tion technique is generally dependent on the bias and variance of the estimators (for a more detailed
analysis see Tung and Yen [2005] and references therein).

Under this prospective, the definition of ‘‘The’’ design flood probability distribution function for a given
return period appears to be the result of several ‘‘averaging’’ procedures, not necessarily producing the
most meaningful result. From this consideration, the main question and motivation behind this paper arises:
can a reasonable design flood estimator be devised for a probability distribution function associated with
its measurable uncertainty?

To address this question, a model in which standard probabilistic methods for flood frequency analysis are
casted in a cost-benefit analysis decision framework is proposed. In this sense, the present paper shares a
similar scientific background with a recent paper by Su and Tung [2013]. However, Su and Tung [2013] con-
centrate their attention on the verification rather than design of hydraulic infrastructures; moreover, they
extend their analysis to different risk-based decision-making criteria, which is not necessary here due to the
relation between cost-benefit analysis and standard flood frequency analysis established in section 2.2.

The conceptual bases of the cost-benefit approach procedure in its traditional form (without uncertainty)
are presented in section 2.1, and relations between standard flood frequency analysis and cost-benefit anal-
ysis are defined in section 2.2. The application of cost-benefit approach to flood frequency analysis in uncer-
tain conditions is then described in section 3. The whole model is hence applied in section 5 to an
extensive data set of annual flow peaks from north-western Italy basins; and the results are finally discussed
in section 6.

2. The Least Total Expected Cost approach to Design (Without Uncertainty)

2.1. Main Features of a Cost-Benefit Analysis
The cost-benefit approach is not frequently used in practice for the design of hydraulic infrastructures, even
though some applications are available in the literature [Tung and Mays, 1981; Ganoulis, 2003; Jonkman,
2004]. In general, given a decision variable x*, the purpose of a cost-benefit analysis is to obtain the optimal
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Figure 1. Uncertainty evaluation and definition of the confidence bands. Suppose to fix a return period T 5 500 years (a) in the case uncertainties are accounted for, it is possible to
obtain a probability distribution function of design flood estimator q* (b) instead of a single value for the specific T.
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value of the decision variable, x�opt , comparing costs and benefits each choice of x* implies. In the case of
hydraulic infrastructures, the decision variable x* is usually the design flood q*. The optimal design flood
estimator q�opt can be obtained by quantifying and comparing costs and damages related to different
design floods. The above mentioned comparison can be performed using the least total expected cost
approach (LTEC) to design [Bao et al., 1987]. LTEC application requires the definition of the cost function,
CF q�jCCCCCð Þ, which measures costs related to different design flood values q*, e.g., referred to the initial con-
struction and to the maintenance phases. The relationship between cost and q* is parameterized according
to the type of function considered (e.g., linear, parabolic, etc.) and to a vector of parameters C. For instance,
a general linear cost function is given by

CF q�jCCCCCð Þ5c01c � q�; (1)

where c0 (the y-intercept) and c (the slope) are parameters. Costs are assumed to increase proportionally to
the design flood q* and are equal to 0 when q�50. Figure 2b depicts an example of a linear cost function
(linear, solid line) with intercept equal to 0.

The damage function DFðq�; qjDDDÞ measures the expenses needed to recover from a flooding when a dis-
charge q greater than the design value q* occurs. Stedinger [1997] encourages the use of the expected dam-
age function for hydraulic design purposes [see also Goldman, 1997], but so far no clear consensus exists
[see Davis et al., 1972; Beard, 1990, 1997, 1998] about the efficiency of the expected damage probability to
obtain flood estimators.

However, models for flood damage evaluation have recently benefited from a great effort of research [e.g.,
Merz and Thieken, 2009; Merz et al., 2010; Vogel et al., 2012; Merz et al., 2013; Vogel et al., 2013]. In very gen-
eral terms, damage functions can be related to the discharge q by means of a function with a threshold:

DFðq�; qjDDDÞ5
D q�; qjDDDð Þ if q > q�

0 if q � q�
:

(
(2)

In equation (2), the function D depends on the design flood q*, on the discharge q of the flooding event,
and on a vector of parameters DDD associated to the type of the function D (e.g., linear, parabolic, etc.). To
exemplify, Figure 2a depicts a piecewise linear damage function,

D q�; qjDDDð Þ5d01d � q2q�ð Þ; (3)
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Figure 2. (a) Construction of the expected damage function: suppose to fix the value of the design flood estimator q�5500 m3=s, by doing this, the damage function is defined according
to equation (2); the integral of the product of the damage function and the flood probability distribution function is equal to the single value of the expected damage function, ED corre-
sponding to q�5500 m3=s, as presented in equation (4). (b) The total expected cost function, CTOT is built as the sum of the cost function, CF, and the expected damage function, ED.
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where d0 and d are parameters. If q > q� , the damage increases proportionally to the amount of the dis-
charge excess q2q� . Both the design flood estimator q* and the actual discharge q are random variables. In
order to calculate the expected damage (ED) corresponding to a design flood, it is necessary to apply the
expected value operator, e.g., the integral over the whole domain of the random variable q of the damage
function D q�; qjDDDð Þ multiplied by the flood probability distribution function p qjHð Þ (where H is the set of
parameters of the probability distribution function). The relation is:

ED q�jDDD;Hð Þ5
ð1

q�
D q�; qjDDDð Þ � p qjHð Þdq: (4)

Note that the domain of integration starts at the value q* because the damage function is equal to 0 for val-
ues lower than q*. The expected damage function ED q�jDDD;Hð Þ, as depicted in Figure 2b, is therefore a func-
tion of q* and allows one to define the optimal design discharge q�opt . The latter comes from summing up
construction costs CF and expected damage (which of course decreases with the increasing of the security
level related to q*) and searching for a minimum of the total expected cost (CTOT, Figure 2b). Therefore, the
total expected cost function can be defined as:

CTOT q�jCCCCC;DDD;Hð Þ5CF q�jCCCCCð Þ1
ð1

q�
D q�; qjDDDð Þ � p qjHð Þdq: (5)

Searching for the minimum of CTOT allows one to select the optimal design flood estimator as

q�opt5 arg min
q�

½CTOT q�jCCCCC;DDD;Hð Þ�: (6)

We are assuming here and in the paper that the flood series are stationary in time, i.e., p qjHð Þ does not
depend on time. Nonstationarity could be considered within a cost-benefit framework by referring to an
average total expected cost over the service life of the designed infrastructure. Moreover, consideration of
these reasons would lead us out of the focus of the paper.

2.2. Relations Between Flood Frequency Analysis and Cost-Benefit Analysis
Once q�opt is obtained, it is interesting to compare this value with the design flood value qT

obtained from standard flood frequency analysis. When a return period T is set, this is equivalent
to setting a nonexceedance probability 12 1

T for the design flood and calculating the corresponding
quantile,

qT 5P21
q

�
12

1
T

����H
�
; (7)

where Pq is the cumulative distribution function and P21
q is its inverse, i.e., the quantile function.

On the other hand, q�opt derived from LTEC depends on DFðq�; qjDDDÞ and CF q�jCCCCCð Þ. If linear functions are
used for both terms, as in equations (3) and (1), q�opt from the LTEC procedure comes to be equal to qT based
only on the condition d

c 5T , where d and c are defined in equations (3) and (1). This equivalence can be ana-
lytically demonstrated by rewriting equation (5) using piecewise linear cost and damage functions as
follows:

CTOT q�jc; d;Hð Þ5c � q�1
ð1

q�
d � q2q�ð Þ � p qjHð Þdq: (8)

Taking the derivative of the total expected cost function with respect to q* and setting it to 0, one obtains

d
c

5
1

12Pqðq�jHÞ
5T : (9)
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In other words, designing an hydraulic infrastructure with a return period T is analytically equivalent to
applying a cost-benefit approach with linear cost and damage functions and with d5c � T . Validity of equa-
tions (8) and (9) can be recognized considering that the linear functions (3) and (1) can be seen as the result
of expanding more complicated cost and damage functions in a Taylor series, and truncating these expan-
sions to the first order. Suppose to fix the value of T: once the return period is set, the slope of the damage
function is implicitly assumed to be T-times larger than the slope of the cost function, d5c � T , because d

c 5

T acts as a magnifying factor of damage versus cost. This implies that: (i) this condition can be applied even
if the actual costs of the infrastructure are unknown; (ii) the global number of parameters of equation (8) is
exactly the same as that of the traditional flood frequency analysis. This means that the application of the
linear cost-benefit model does not introduce further sources of uncertainty to the traditional inference
procedure.

Once this simplified, yet complete, LTEC procedure to obtain q�opt is set, we can take into account the effects
of parametric uncertainty on an LTEC procedure. This is described in the following section.

3. The Least Total Expected Cost Approach to Design With Uncertainty

Probability distribution functions pðqjHÞ of flood peaks describe the quantiles of a random variable q based
on a set of parameters H that are estimated according to a best fit criterion which adapts the cumulative
probability function to the sample cumulative frequencies. Parameter estimates are themselves random var-
iables: therefore, the estimated values are uncertain and this uncertainty propagates to the whole flood fre-
quency curve.

When considering parameters H as random variables, a framework is needed to account for uncertainty in
the definition of the flood quantile qT. One of the techniques aiming at accounting for this uncertainty is
the Bayesian approach, first introduced in statistical hydrology by Wood and Rodriguez-Iturbe [1975] and Ste-
dinger [1983]. In the Bayesian approach, the pdf pðqjHÞ is multiplied by the parameters pdf hðHÞ and inte-
grated in the parameter space, according to the total probability theorem [Kuczera, 1999], as follows:

~pðqÞ5
ð

H
p qjHð Þ � h Hð ÞdH: (10)

Stedinger [1983] called ~pðqÞ the design flood distribution or design flood expected probability [see also Kuc-
zera, 1999 and references therein]. The parameter distribution function hðHÞ describes how precisely the
estimates of parameters are known [Kuczera, 1999]. As the number of parameter of the set H is usually
more than 1, the distribution hðHÞ is generally a multivariate function.

As this paper is focused on recasting a standard flood frequency analysis in a cost-benefit framework, the a
prior contribution in the definition of the Bayes’ rule is neglected. However, there is no restriction in taking
into account this contribution, which is highly recommended when available [see Stedinger, 1997; Kuczera,
1999], in equation (10).

Substituting in equation (8), p qjHð Þ with the design flood distribution of equation (10), one obtains

~C TOT q�jc; dð Þ5c � q�1
ð1

q�
d � ðq2q�Þ � ~pðqÞdq

5c � q�1
ð1

q�
d � ðq2q�Þ �

ð
H

p qjHð Þ � h Hð ÞdHdq;

(11)

where ~C TOT q�jc; dð Þ is the total linear expected cost function in uncertain conditions.

The estimator corresponding to the minimum of ~C TOT q�jc; dð Þ is the Unertainty Compliant Design
(UNCODE) flood estimator which will be called q�unc in the following:

q�unc5 arg min
q�

~C TOT q�jc; dð Þ: (12)
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It is important to remark that, when
introducing parameter uncertainty into
the linear model, the relationship of
equation (9) still holds. This implies
that the global number of parameters
of equation (11) remains the same as
that of equation (8) (LTEC without
uncertainty, see section 2.2). By making
the derivative in q* of equation (11)
and imposing it equal to zero, one rec-
ognizes that q�unc converges to the
expected probability estimator.

In fact, c acts as a scaling factor for the
total cost and does not affect the posi-
tion of the minimum. Therefore, differ-
ences between the design flood
estimators q�unc and qT 5q�opt can be
fully ascribed to consideration related
to parametric uncertainty.

4. Model Implementation

4.1. Numerical Instances
This section is devoted to describe

how the symbolic model of equation (11) can be implemented in practice to obtain optimal design flood
estimators q�unc under uncertainty. First of all, the integral of the design flood distribution in equation (10)
must be solved. An analytical solution of the expected probability model of equation (10) exists only if p

qjHð Þ is a two-parameter lognormal distribution [Wood and Rodriguez-Iturbe, 1975; Stedinger, 1983]. For
other probability distributions, numerical techniques must be used. A numerical Monte-Carlo simulation
technique is adopted here, as described in Kuczera [1999]. In particular, considering that the cost and the
damage functions are independent on the set of parameters H, the order of integration can be changed
and equation (11) can be rewritten as:

~C TOT q�jc; dð Þ5
ð

H
c � q�1

ð1
q�

d � ðq2q�Þ � pðqjHÞdq

� �
� h Hð ÞdH

5

ð
H

CTOT ðq�jc; d;HÞ � hðHÞdH:

(13)

Using equation (13), the numerical integration procedure is implemented according to the following main
steps:

1. The vector H of parameters is randomly sampled k times from the corresponding multivariate parameter
pdf h Hð Þ, obtaining the parameters set Hk ; k51; . . . ;Mf g.

2. Once the parameter sets are sampled, equation (8) is applied to each of them. A set of total expected
cost functions is then obtained, one for each set of parameters (see Figure 3, dotted gray lines).

3. The CTOT curves are averaged together, obtaining an average total expected cost function (see solid line
in Figure 3).

4. The value of q* corresponding to the minimum of the function is selected as the optimal design flood
estimator in uncertain conditions, q�unc .

In step 1 of the Monte-Carlo procedure, the pdf h Hð Þ of the distribution parameters is required. In general
terms, h Hð Þ depends both on the type of probability distribution function p qjHð Þ and on the parameters
estimation technique. Here the L-moments technique for parameter estimation is used [see, e.g., Stedinger
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Figure 3. Numerical implementation of the method to obtain the UNCODE flood
estimator. Each of the dotted curves represent a total expected cost function
obtained from different sets of parameters, Hk , randomly sampled from the rele-
vant distribution function. The solid curve stands for the average expected cost
function. The minimum of the curve is the UNCODE estimator, q�unc (only three
sampled total expected cost functions are reported here out of the 10,000 used).
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et al., 1993]. In uncertain conditions, the application of the L-moments estimation technique is particularly
convenient, as demonstrated by Hosking and Wallis [1997], because the pdf of the L-moments depends
only weakly on the discharge pdf p qjHð Þ: in fact, L-moments tend to be normally distributed even with
small samples [Hosking and Wallis, 1997]. Once the pdf of the L-moments is available, the multivariate distri-
bution of parameters can be obtained as a derived distribution (note that the relationship between parame-
ters and L-moments is not linear). In terms of the numerical application this means that: (i) first, the L-
moments pdfs are obtained consistently with the available sample of data; (ii) a family of k L-moment sets
is randomly sampled from their pdfs; (iii) the set of k parameter vectors H required in the step 1 of the
above described procedure is obtained from the corresponding L-moments set.

For analytical convenience, L-moments ratios are often used instead of L-moments: if �q is the mean dis-
charge, equal to the L-moment of order one, s2 (also defined as L-CV) is the ratio between the L-moment of
the second order and �q , and s3, or L-CA, is the ratio between the L-moment of the third order and the L-
moment of the second order. Here simple formulas reported in Viglione [2007] were used to obtain the pdfs
of the L-moments ratios �q; s2; and s3. More in detail, s2 and s3 are described by a bivariate normal distribu-
tion because s2 and s3 are correlated, while �q is described by a univariate normal distribution because �q is
typically independent on s2 and s3. (Further details are reported in Hosking and Wallis [1997], Elamir and
Seheult [2004], and Viglione [2010].)

4.2. Comparison Between Standard and UNCODE Flood Quantiles
The UNCODE flood estimators qunc, computed as described above, can be quite different from the values
obtained from the Standard design flood estimators qT, called here the Standard ones. The differences
between the two can be assessed in terms of deviation of their confidence probability, CP, a nonexcee-
dance probability associated to qT and qunc, computed on the confidence bands. Confidence bands are cal-
culated according to the following steps: (i) L-moments ratios are sampled from their corresponding
probability distribution functions; (ii) for each sample, parameters are estimated, imposing a distribution-
specific relation between L-moments and parameters; (iii) quantiles are computed for a given exceedance
probability (quantile extraction), so that for each exceedance probability (or return period) an empirical
probability distribution function of quantiles is obtained. Parameter estimation and quantile extraction are
both nonlinear transformations.

The meaning of CP can be explained by an example: in Figure 4a, confidence bands computed for a sample
of data are displayed. For a given return period, say T 5 500 years, the Standard design flood quantile is
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Figure 4. CP definition: given a return period T 5 500 years, and the corresponding q�unc estimator, CP is the nonexceedance probability of the UNCODE estimator, measured on the
design flood probability distribution (colored area in b). Note that the CP for qT is equal to 0.5.
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estimated (as displayed by the squared point). The
UNCODE estimate is represented by the triangle-
shaped point, and the pdf of the flood quantile is
depicted on the right (see also Figure 1). Consider-
ing the position of the Standard and of the UNCODE
design floods on the flood quantile pdf (Figure 4b),
the CP for each estimator is defined as its nonexcee-
dance probability computed on the quantile flood
probability curve. The comparison between the two
estimates can be assessed through a coefficient c
defined as c5ðCPunc2CPT Þ where CPunc and CPT are,
respectively, the confidence probability of the
UNCODE and of the Standard estimates as illus-
trated in Figures 5a–5c. Since the L-moments pdfs
are normal, the Standard design flood estimate qT

converges toward the median and its CP is thus
always equal to 0.5. Therefore, the domain of c
spans from 20.5 to 10.5, where the positive values
of c indicate UNCODE estimates larger than the
Standard ones.

5. Application to Real-World Flood Data
Sets

The procedure described in the preceding para-
graphs has been applied to a set of 10 series of
annual maxima of flood peaks from subcatchments
of the Po river located in the north-west of Italy. In
Table 1, some basic information about the consid-
ered flood records are reported. A three-parameters
lognormal probability distribution has been first
used to fit the flood records, as suggested in the
previous studies [Laio et al., 2011], but the general-
ized extreme value (GEV) pdf has also been applied
to check if the choice of the probability distribution
function plays a significant role in determining the
outcome of the procedure. Simulations are based
on the selection of five return periods fT550; 100;
200; 500; 1000 years g and k 5 10,000 sets of
sampled L-moments ratios, generated from the cor-
responding probability distribution functions (see
section 4.1).

The model is at first applied in nonuncertain condi-
tions. This is achieved by setting the standard devia-
tion of the L-moment ratios distribution to a
negligible value (i.e., meaning a value which can be

considered small if compared to the values of discharge data) so that no dispersion is obtained. This trivial
case is useful to check the correctness of the numerical procedure, which is expected to converge to the
standard qT, as analytically demonstrated by equations (8) and (9). As expected, the Standard and UNCODE
design flood estimators converge to the same value, corresponding to the median curve of the confidence
bands (dotted line in Figure 4). When uncertainty is fully taken into account, the procedure produces only
positive c values, regardless of the return period T. This indicates that the uncertainty compliant design
flood is systematically larger than the Standard value. This can be recognized from Figure 6, where the esti-
mated coefficients c for five different return periods and for each series are reported. The solid black line is

−

γ

qT

qunc

qT qunc

Figure 5. (a) Standard design flood estimators correspond to a
confidence probability (as depicted in Figure 4) equal to 0.5; (b)
UNCODE estimators present a value of CP larger than 0.5; and (c)
the difference between Standard design flood estimators and
UNCODE estimators can be appreciated using the coefficient c.
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the mean value of c obtained from the 10 series for each return period; it can be seen that c increases quite
linearly (in the semilogarithmic scale) for increasing return period T. The increment is marginal when low
return periods are considered, but becomes critical for return periods larger than 100 years.

When the GEV distribution is considered, all c values remain positive, regardless of the return period T, with
c increasing for increasing return period T (except for the case of the Dora Riparia a Oulx for T 5 50 years);
Figure 7 reports the results obtained with the GEV distribution for each series, together with the mean curve
(solid black line).

Solid black lines in Figures 6 and 7 show that, in average, coefficients c are positive both for LN3 and GEV
(with a range spanning from 0.05 to 0.24 for high return periods); the increment is almost linear with T in
semilogarithmic scale, with higher slope in the case of the LN3 distribution.

5.1. Effect of Sample Length
In evaluating the results of the above procedure, it is quite important to consider the different content
of information that resides in hydrological records of different length. To investigate the effects of sample
size in the deviation of qunc from qT, a numerical experiment has been made by using LN3 and GEV distribu-
tions on the longest available flood series, Dora Baltea at Tavagnasco (n 5 82). The effect of sample size has
been investigated by considering estimates obtained by hypothetical shorter samples. Six different lengths

n582; 70; 55; 40; 25; 10f g were considered. The samples preserve the same mean and L-moments ratios of
the original series, but the related standard deviation increases with decreasing length of the sample, fol-
lowing Viglione [2007].

The UNCODE and Standard design
flood estimates for five return periods T
were then computed based on each
subsample characteristics. Analysis of
results shows that the increased var-
iance from short samples determines an
increment in the value of the c coeffi-
cient for any return period T. As an
example, for the return period T 5 100
years, the coefficient c is 0.1 for the full-
length series and increases to 0.145 for
the subsample with n 5 25. These
results are displayed in Figure 8. The
fact that c increases with decreasing n
implies that the UNCODE estimator is
very far apart from the Standard one
when small samples are considered: in
fact, the distance between qT and qunc

increases both because the UNCODE
estimator moves away from the median
value (in fact, c increases) and because

Table 1. Summary of the 10 Series Used in the Case Study

Station Number Name Acronym Record Length (n) A (km2) Hm (m)

1 Dora Baltea a Tavagnasco DBATA 82 3320.85 2087
2 Tanaro a Farigliano TANFA 69 1502.15 945
3 Stura di Lanzo a Lanzo SLALA 64 578.31 1780
4 Bormida a Spigno a Valla BSPVA 52 68.46 468
5 Dora Riparia a Oulx DRIOU 43 260.04 2164
6 Rutor a Promise RUTPR 33 45.76 2525
7 Corsaglia a Presa Molline CORPM 25 89.31 1525
8 Po a Carignano POCA 16 3955.59 1101
9 Belbo a Castelnuovo Belbo BELCA 13 420.75 372
10 Malone a Brandizzo MALBR 10 333.37 439
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Figure 6. Coefficient c calculated on the 10 series for the LN3 pdf. The black solid
line is obtained by averaging the 10 series.
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the distribution of design values spans
a larger range, due to the greater
uncertainty (i.e., even when c is fixed,
qunc2qT will be larger in smaller sam-
ples). This is apparent in Figure 9,
where the confidence bands of two dif-
ferent subsampled series, n 5 82 and
n 5 25, are depicted, to provide a
clearer context in which the difference
between qT and qunc is obtained. Note
that the design flood increases of a 1.5
factor for T 5 100 years when n 5 25.
Results are consistent to what adva-
cated by Stedinger [1983] and Kuczera
[1999], who reported that for n conver-
gent to1, the quantile distribution
converges toward a symmetric normal
distribution. Here for decreasing n,
there is increasing asymmetry of the
quantile distribution.

6. Discussion and Conclusions

The present work considers the effect of the parametric uncertainties in the estimation of design flood
quantile. A ‘‘design’’ model has been developed in which parametric uncertainties and cost-benefit analysis
are integrated in the standard flood frequency analysis. It has been demonstrated that the standard flood
frequency analysis estimator and the design flood estimator provided by the cost-benefit analysis (without
uncertainty) with linear damage and cost functions are equal when the ratio between the slope of the dam-
age and the cost function is equal to T. This analytical result is a key concept in the whole subsequent infer-
ence procedure: it demonstrates that these two techniques, the standard flood frequency analysis and the
cost-benefit analysis, are totally equivalent when uncertainty is neglected; moreover, the cost-benefit analy-

sis does not introduce any further
uncertainty in the flood frequency
analysis. In the presence of uncertainty,
the economic-driven approach is then
used to obtain a design flood estimator
which corresponds to the minimum of
the total cost (where the total cost is
the sum of the costs to build the
hydraulic infrastructure and the dam-
ages which might occur in case of
overflow). The devised procedure leads
to the Uncertainty Copliant Design
value that can be quite different from
the Standard one. To assess the dis-
placement in the design values
induced by uncertainty, practical appli-
cations have been implemented for 10
time series of Italian catchments.
Results show that the UNCODE design
flood estimates are systematically
larger than the Standard ones, with the
difference becoming more and more
substantial for high return periods
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Figure 8. Dora Baltea at Tavagnasco confidence coefficient in case of subsam-
pling. Subsample lengths are n 5 10, 25, 40, 55, 70, 82. Each point represents the
value of the confidence coefficient of a specific subsample for a return period
T 5 100 years.
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Figure 7. Coefficients c calculated on the 10 series for the GEV pdf. The black
solid line is obtained by averaging the 10 series.
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(T> 100 years). This suggests that the standard flood frequency procedures may lead to underestimated
design floods. Results are negligibly influenced by the type of probability distribution functions considered,
while sample length plays a role: short sample length moves the UNCODE flood estimator to even larger
values, recasting under a new light the role of data availability in flood frequency analysis. Indeed, a scarce
data availability does not only increase the amplitude of the confidence bands, but also moves to larger val-
ues the design value minimizing the expected cost, i.e., the UNCODE estimator.
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Figure 9. Influence of the sample length on the confidence bands: the figure depicts the different dispersion around the median of the confidence bands in the case of full sample, (a)
n 5 82 and (b) n 5 25 for the Dora Baltea at Tavagnasco record.
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