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1. INTRODUCTION

The reproduction of the hydrologic process of runoff is a fundamental part of the planning and

management of water resources. The level of detail required in the simulation of the process

depends on the objectives of the project. In the planning or management of reservoirs for irrigation

or drinking water supply it is sufficient to deal with monthly runoff data. On the other hand,

monthly data are inadequate for multipurpose reservoir (water supply and flood peak reduction)

since at that scale information on the characteristics of runoff peaks is not significant. In this case,

reproduction of data at resolution finer than monthly is needed.

Models for runoff characterisation can be synthetically subdivided in "essentially stochastic",

generally univariate, and "essentially deterministic", generally bivariate. This classification leaves

room for deterministic, physically-based, issues in stochastic models as well as for random error

terms in the deterministic models.

In this paper univariate stochastic models will be discussed, with emphasis on possible

physically-based issues in the identification and estimation of these models.

In the last three decades, univariate modelling of runoff series has been performed, to a great

extent, using empirical approaches, looking for models that essentially can reproduce the stochastic

structure of the time series under investigation. Models of the ARMA class (Box and Jenkins, 1970)

have played a key role in this kind of approach, with variants depending on the existence of

periodicity in runoff data. PARMA (periodic ARMA) models (Tao and Delleur, 1974) are the most

notable variant of ARMA models for seasonal data. An early approach to seasonal data modelling

by means of stationary ARMA models requires series deseasonalisation, while transformation of

data is widely used to normalise the series. According to the Box-Jenkins approach, the objective in

time series modelling is the best fit of the particular series analysed. Model type and order

determination are only conditioned to the achievement of this objective (see e.g. Rao et al., 1982).

Compared with this kind of approach, stochastic models based on physical considerations induce

inherent reduction on the number of their possible types and orders. Reduction of the number of

possible models to use are due to constraints caused by the conceptual hypotheses on which models

themselves are based. This is not a limitation, indeed, for a number of reasons:

� conceptual model structure is founded on the information content of the observed series. 

Therefore, conceptually-based models are inherently parsimonious, since they are as

complex as is allowed by discrimination of different characters in the series observed;

� procedures of parameter estimation can be supported by conceptual hypotheses, provided the

model structure is not too complex. On the other hand, objective statistical methods for 

parameter validation can be used when the model form is that of widely used stochastic 

models (e.g. ARMA models);
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� in case of scarcity or lack of data, only conceptually-based models permit the transfer of 

information from similar basins in the context of the regional analysis;

1.1.Literature review of empirical stochastic models of runoff

Most of the work done in the last three decades in the field of the synthesis of streamflow

sequences can be classified as part of a discipline named "Stochastic Hydrology", which was

defined by the ASCE Committee on Surface-Water Hydrology (1965) as "the manipulation of

statistical characteristics of hydrologic variables to solve hydrologic problems on the basis of

stochastic properties of the variables". This definition is in substantial agreement with the main

subdivision made by Amorocho and Hart (1964) of the hydrologic studies in physical hydrology

(physical science research) and stochastic hydrology (system investigations).

Therefore, the latter field of investigation is characterised by an empirical approach to the

problem, which ignores that "statistical and stochastic properties of hydrologic processes have

definite physical causes and are amenable to explanation" (Klemeš, 1978). It must be recognised,

however, that researches made in the field of the so-called "operational" (Fiering, 1966) or

"utilitarian" (Yevjevich, 1991) hydrology contributed to the introduction into hydrology of the

concept of stochastic process and of the basic methods of time series analysis (see Kisiel, 1969;

Lawrance and Kottegoda, 1977; Salas et al., 1980; Bras and Rodriguez-Iturbe, 1985, as examples

of the achievements in the last decades).

Extensive reviews of the several classes of stochastic models proposed for operational hydrology

can be found in Lawrance and Kottegoda (1977), Franchini and Todini (1981) and Bras and

Rodriguez-Iturbe (1985). A closer look is devoted here to Autoregressive (AR) and mixed

Autoregressive and Moving Average (ARMA) models (Box and Jenkins, 1970), that constitute the

basic tool in today's time series modelling (see Salas et al., 1980).

Autoregressive (or Markovian) processes are considered by Kisiel (1969) as one of the three

classes (namely that of transition-type processes) of interest in hydrology, along with counting-type

processes and with the processes based on first and second moment functions. Early applications of

Autoregressive and Moving Average processes to hydrology are cited by Kisiel (1969, p.27-28).

Particularly, it is striking that one of the most widely used models for monthly streamflow synthesis,

the Lag-1 Multiseasonal Markovian model, was proposed by Thomas and Fiering in 1962. This

model corresponds to an Autoregressive model of order 1 with periodic parameters, PAR(1), and,

with limited improvements, still constitutes an high-level standard (Noakes et al., 1984) among

models built according to the "best fitting" principle. In the great number of applications of this

model it is worth mentioning Bacchi and Maione (1983) who used it in the context of regional

analysis of monthly streamflows.

Notable variants, mostly reviewed by Lawrance and Kottegoda (1977), were introduced over the

simple lag-1 Autoregressive model (used, for instance by Torelli and Tomasi, 1976), mainly to try

to account for the long memory effects displayed by streamflow time series, namely the Hurst effect
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(see e.g. Klemeš, 1974; Lloyd, 1967). In one of these variants (Todini et al., 1979) correlation in the

residuals was explicitly considered and modelled, while the Hurst coefficient was taken as a model

parameter in the ARMA-Markov model proposed by Lettenmaier and Burges (1977).

The methodological approach proposed by Box and Jenkins (1970), based on the introduction of

mixed Autoregressive and Moving Average (ARMA) processes, has given rise to a great number of

applications (see e.g. McKerchar and Delleur, 1974, Ubertini, 1978, Rao et al., 1982) and of

theoretical studies (see e.g. Salas et al., 1980 and Bras and Rodriguez-Iturbe, 1985, for an

hydrological viewpoint, and Piccolo, 1990, for purely statistical aspects). Almost equivalent efforts

were spent in "operational" hydrology on multivariate (intended as multisite) AR and ARMA

models (see, e.g., Finzi et al., 1975, Salas et al., 1980, Salas et al., 1985, Bartolini et al., 1988)

mostly focused on the monthly scale. Other particular applications were made on daily runoff data

with nonlinear autoregressive models (Yakowitz, 1973) or discrete ARMA (DARMA) models for

precipitation associated to a linear model to produce runoff (Chang et al., 1987).

Using a univariate "operational" approach, efficient reproduction of annual and monthly runoff

can be achieved through models of the ARMA class. Particularly, the ARMA(1,1) model was

shown (O' Connell, 1971) to be able of reproducing both short-term and long-term persistence

effects observed on annual runoff series. Best performances in forecasting monthly runoff were

shown by PAR(p) models, Periodic Autoregressive model with seasonally varying order (Noakes et

al., 1985) that compete with periodic ARMA (PARMA) models (Tao and Delleur, 1974) on the

"operational" field, even if both classes are recently given conceptual-stochastic interpretation

(Salas and Obeysekera, 1992). On the other hand, literature on daily runoff modelling reflects more

closely the physical aspects characterising runoff at this scale, probably due to the fact that the

intermittence and the patterns of floods are dominating aspects in the phenomenon and lead to a

particular class of stochastic models.

Main criticisms that can be addressed to models lacking any connection with a physical

interpretation of the phenomenon are: (a) The "best fitting" approach suggest to select the best

model for each particular time series. This contrasts with the notion that the process does not

depend on the location at which data are collected, at least within a homogeneous region; (b) when

adopting model with periodic parameters for different series and a parameter is found not

statistically significant, no hydrological validation can be undertaken to support the estimate; (c) If

the length of the data set is insufficient, parameter estimation cannot be supported by any kind of

additional consideration.

A most important point to focus is that if scientific literature somewhat reflects human needs, it

is to remark that the "operational" approach to hydrological time series modelling seems to have

reached more or less a level of satisfaction in "utilitarian" terms: more emphasis is thus needed in

researches addressing the "physical bases" of hydrological processes as well as in the evaluation of

quality of hydrologic data (Yevjevich, 1991). The topics which will be introduced in the sections

below concern the "structural analysis" (in the sense intended by Yevjevich, 1991), of the runoff
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process over different scales of aggregation, consisting in the formulation of models of the process

based on the recognition of its "structural" components.

1.2. Literature review of conceptually-based models

A common approach to description of the physical aspects related to runoff is conceptualisation,

to be intended as the attempt to provide element of causal explanation in the choice of models. A

conceptual approach to stochastic modelling of runoff, as opposed to the empirical approach,

signifies "to relate variables based on the consideration of the physical processes acting upon the

input variable(s) to produce the output variable(s)" (definition by Clarke, 1973). What qualifies

conceptually-based models with respect to physically-based models is that the former are based on

the observation of the runoff series, from which essential (in the sense of a lumped approach)

characters of the process are highlighted. Physically-based models, on the other hand, are based on

the analysis of all specific processes acting in the rainfall-runoff transformation (e.g. Bathurst,

1986). Therefore, observation of output (runoff) series is not needed for physically-based model

building.

 As widely commented on by Klemeš (1978), the greatest attention within the class of linear

conceptual models has been paid to schemes in which the transformations operated by the

watershed are reproduced by conceptual-deterministic schemes while the input is treated as a

stochastic process. The conceptual representation of the watershed is essentially made up of a

combination of (generally) linear reservoirs and linear channels.

Conceptual systems, built as combinations of linear reservoirs and linear channels subject to

stochastic input, are equivalent to stochastic models. In particular, linear conceptual systems with

stochastic input are equivalent to linear stochastic models, namely Autoregressive and Moving

Average kind of models (ARMA). This point was dealt with in several papers, with different

degrees of details, starting from the early papers by Spolia and Chander (1974) and Moss and

Bryson (1974).

The above first approaches contain much of the variants one can introduce in conceptually-based

modelling of runoff series, since Spolia and Chander (1974) consider linear reservoirs in series with

stochastic or deterministic (bivariate case) input, while Moss and Bryson (1974) consider linear

reservoirs and (implicitly) linear channels in parallel. From there, two important distinction are

needed: the vast majority of the work done in the field of synthesis of the continuous runoff process

has considered reservoirs in parallel, with or without linear channels while approaches considering

linear reservoirs in series (e.g. Klemeš and Boruvka, 1975; O'Connor, 1976; and, as a particular

case, Pegram, 1980) are mostly referred to flood forecasting models. The other consideration attains

the nature of the input and requires further comments.

Both Spolia and Chander (1974) and Moss and Bryson (1974) move from the knowledge of the

precipitation process. This gives the approach a bivariate character, regardless of the use of rainfall
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data as an observed (exogenous) input series or as a stochastic process of known properties. Indeed,

this differentiation is substantial, producing ARX (AutoRegressive with eXogenous variable)

models in the first case and ARMA models in the second case.

The conceptually-based stochastic analysis that will be discussed in this paper is related to

univariate models, in which only the runoff data series is available for model building. This

approach is adopted, in general, in the  paper by Pegram (1980) and, more specifically, in the papers

by  Salas and Smith (1981) and Salas et al. (1981), who proved that a linear reservoir in parallel

with a diversion, fed by a white noise input, is equivalent to an ARMA(1,1) stochastic model. Salas

and Obeysekera (1992) later generalised the approach by Salas et al. (1981) showing that

considering periodic-independent input the resulting class of stochastic models is that of PARMA

models.

ARMA models require the input process to be continuous. In the case of intermittent input, as for

time scales shorter than monthly, different stochastic models need to be selected as equivalent to the

conceptual schemes. On these scales the key approach is based on Shot Noise processes (e.g.

Parzen, 1962; Bernier, 1970) whose formulation is strictly referred to a conceptual scheme (see e.g.

Weiss, 1977;  Koch, 1985). A Shot Noise model not strictly based on a conceptual description of the

net rainfall-runoff transformation was developed by  Treiber and Plate (1975).

Interesting examples of alternative conceptually-based stochastic formulations are the ones by

Hino and Hasebe (1981) and Vandewiele and Dom (1989), who started from the popular conceptual

scheme with two parallel linear reservoirs (one accounting for a "fast" and the other for a "slow"

response to effective precipitation) and followed more different ways to stochastic model

identification and parameter estimation.

The number and the quality of the approaches for a conceptually-based stochastic analysis of

streamflows indicate the interest for the conceptualisation of the runoff process. However, what

really makes a difference among the approaches is not the originality of the proposed conceptual

scheme but systematic balance between the physical considerations underlying a certain (more or

less complex) conceptualisation and the information contained in the runoff data.

Conceptually-based stochastic model building is presented in this paper with the aim of setting

up a framework that emulates the Box-Jenkins model building methodology, where the

identification, estimation and validation steps are reformulated based on the use of the a-priori

information on the physical process.
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2. A RATIONALE FOR CONCEPTUALLY-BASED MODEL IDENTIFICATION ON

DIFFERENT TIME SCALES

Univariate modelling of runoff based on physical considerations requires the innovation variable

entering the model to produce the runoff process to have the meaning of effective (or net) rainfall

(i.e. rainfall minus evapotranspiration) so that the model reproduces the net rainfall - runoff

transformation.

In the alternative, bivariate, approach precipitation is introduced as a known process,so that the

amount of available information increases but at the price of increasing model complexity, because

the rainfall-net rainfall transformation must also be reproduced by the model. It is important, then,

to assess the impact of the augmented model complexity on the number of parameters and on the

model "identifiability" (see Sorooshian and Gupta, 1985; Duan et al., 1992, among others).

The framework illustrated in this paper essentially relates stochastic models to linear conceptual

models accounting for the transformation of the effective rainfall into runoff. A stochastic model for

runoff at a given scale can be built according to the following hypotheses: (a) The input to the

watershed system is a stochastic process, representing effective precipitation.  Considerations on the

nature of the input process determines the stochastic model type. (b) The conceptual model form at

the scale of interest is obtained through a selection of linear conceptual elements producing

substantial transformations on the input. This determines the stochastic model order, as will be

discussed later.

Therefore, models with stochastic input and with deterministic response, identified based on

physical considerations, are presented here in a framework of multicomponent univariate linear

models. The formal structure of these stochastic models can be either that of ARMA or that of Shot

Noise class of models depending on the structure of the net rainfall process which, in turn, is tied to

the scale of aggregation.

2.1. Deterministic response modelling

2.1.1. PHENOMENOLOGICAL BASES OF STREAMFLOW PATTERNS

Observation of the runoff process patterns at different time scales allows one to recognise the

effect of a number of distinct response components on the effective precipitation process,

considered with reference to very different time spans. These runoff components are differentiated

based on the different patterns that induce in the data series with the increase in the time scale

considered.

To this end a first, general, distinction can be made between direct runoff, the fraction of runoff

not reaching the groundwater table, and baseflow, or groundwater runoff, resulting from the decay

of the groundwater storage in the subsoil. In the direct runoff, a distinction is usually made (see e.g.

Martinec, 1985) between surface runoff, representing the amount of precipitation that does not
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infiltrates and covers only surface paths toward the outlet, and subsurface runoff (or interflow),

produced by water paths that proceed partly into the soil layer. Surface runoff has the faster

response to precipitation, varying with the basin size between a fraction of hour and a few days.

Subsurface runoff becomes evident right after floods, with the typical change in the exponential

decay of the flood hydrograph tail. Qualitatively, this component can have a response time ranging

between several hours and several days.

Similarly, baseflow is better qualified by making distinction between components with different

average response time, which depends on the hydrogeologic characteristics of the aquifers. This

distinction is often evident when observing daily runoff data in the dry season, where a fast and a

slow recession curve can usually be recognised in absence of precipitation.

Consider, for instance, basins of Central-Southern Italy, analysed by Rossi and Silvagni (1980),

Claps (1990), Murrone et al. (1992a), Claps et al. (1993). It can be recognised that these basins are

dominated by the geology of the Apennine mountains, presenting sometimes large fractured

carbonate massifs with major aquifers at their base. Runoff deriving by the depletion of these deep

aquifers can have lag time of a few years and induces long-term persistence effects in runoff series.

The related runoff component will be designated as the over-year groundwater component.

Runoff from aquifers within geological non-carbonate formations and from overflow springs,

which usually run dry by the end of the dry season, represents a distinct groundwater runoff term,

with lag time of a few months (over-month groundwater component). At a given time, the discharge

deriving from each of these components depends on the amount of the past effective precipitation

relative to time interval of the same order of magnitude of the lag time of the component. Also

important, as shown in the Appendix, is the variability of the net rainfall rate within the aggregation

interval considered (e.g. periodic patterns within the annual span).

2.1.2. CHARACTERISTICS OF THE BASIN RESPONSE ON DIFFERENT TIME SCALES

The distinction of patterns observable in the runoff process tends to highlight as much as possible

the origin of complexity in the net rainfall-runoff transformation, in view of the building of a simple

yet efficient framework for stochastic model building. Consequently, model identification gives a

considerable weight to a-priori considerations on the active components of the runoff process.

Conceptual and stochastic model structures arising from the considerations made previously on the

different aggregation scales will be discussed hereafter.

Let us select a sufficiently small time scale, say hourly, where all runoff components discussed

before can be recognised from data. At this scale, groundwater and subsurface components can be

regarded as the outlet of three linear reservoirs, implying an exponential-type response to the input.

The same consideration would not apply to surface runoff, which is produced by the basin channel

network response. Results from the geomorphologic IUH theory (Rodriguez-Iturbe and Valdés,

1979) assign a Gamma or Weibull function (Troutman and Karlinger, 1985) to the basin surface

response to the effective rainfall.
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By increasing the scale of aggregation of streamflow data (which decreases data resolution)

surface runoff response can be approximated with an exponential function, which is the aggregated

form of both functions cited above. With the same criterion, further increase of the scale reduces the

detail with which the same exponential response of the surface runoff can be recognised. The same

applies, with additional aggregation, to exponential forms of the subsurface runoff response.

This loss in detail of part of the response with the increase in the scale produces corresponding

simplifications of the related conceptual and stochastic model structure. In other words, complexity

of stochastic model structure must be minimised according to the detail in the information available.

This rather basic concept, that has been often ignored (see e.g. Sorooshian, 1991), has been applied

in the framework presented here according to the following rule: a runoff component is considered

as the outlet of a linear reservoir if its characteristic time lag is of the same order of magnitude of

the time scale unit considered;  otherwise, if the lag is much smaller than the aggregation interval, it

is considered as a simple diversion of the net rainfall.

2.2. Stochastic input modelling

2.2.1. INPUT SCHEMATIZATION IN THE CONCEPTUAL MODEL

The conceptual scheme considered for identification of stochastic model type and order is fed by

a stochastic input that reaches the outlet through different paths. The issue now is: how precipitation

subdivides into the four terms representing individual responses? The way we are going to approach

the problem takes into account that individual responses derive from a lumped model, so that some

approximations must obviously be assumed in the discussion.

In a first degree of schematization of the rainfall-soil interaction we assume that the mechanism

of the direct runoff production is mainly of the Hortonian type, with saturation starting from the top

soil layer. Moreover, due to the spatial variability of the infiltration capacity, the infiltration volume

can be assumed proportional to precipitation.

Indicating with fP the infiltration in unsaturated soil layers, excess-rainfall (1�f)P is only partly

transformed in overland flow, to be conveyed downstream by the channel network as surface runoff.

A portion of the excess-rainfall is transformed in subsurface flow, which follows, at least partly,

paths within the saturated layers of the soil. Therefore, direct runoff components are both assumed

proportional to total precipitation according to the relations:

Id1= �0(1�f)P rainfall to be transformed in surface runoff

Id2= �1(1�f)P rainfall to be transformed in subsurface runoff

where, neglecting variations in the volume stored in the soil in the interval considered, it can be
written: �0+�1 = 1
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Precipitation that infiltrates into the soil is partly subject to percolate toward the water table and

partly to return to atmosphere as evapotranspiration E. Therefore, groundwater runoff components,

are assumed proportional to the volume fP�E according to relations:

Ig1= �2(fP�E) effective rainfall to be transformed in over-month groundwater runoff

Ig2= �3(fP�E) effective rainfall to be transformed in over-year groundwater runoff

where, again, �2+�3 = 1.

Linearity of the scheme just described is achieved only considering E proportional to P, which is

a quite reasonable hypothesis in not very humid climates. The hypothesis of proportionality between
E and P (E = �

�
P) allows us to use a univariate framework for evaluation of effective rainfall I=P�

E by elimination of the evapotranspiration term from the water balance. The input I=P(1��
�
P) is

subdivided in surface and groundwater subsystems by means of recharge coefficients ci:

I0=c0 P(1��
�
P);       I1=c1 P(1��

�
P);       I3=c2 P(1��

�
P);       I3=c3 P(1��

�
P)

which presupposes c0+c1+c2+c3 = 1 and the following relations with the former �i parameters:

  =   
( )

P(1 )
 c

P 1 f
0 0

E

ζ −
− ∆

;                 =   
( )

P(1 )
 c

P 1 f
1 1

E

ζ −
− ∆

  =   
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c

P f
2 2

E

E

ζ −
−

∆
∆

 ;                c  =   
( )

P(1 )3 3
E

E

P f
ζ

−
−

∆
∆

 As should be clear by the above relations, subsystems in the conceptual model are arranged in

parallel (see Fig. 1A) so that, due to linearity, the watershed system response turns out to be the sum

of their individual responses. Main positive implication of this configuration is that model

identification for aggregated time series becomes a straightforward task, as will be shown below.

Really, rainfall-net rainfall transformation is nonlinear, due to the effect of the threshold

mechanism on the infiltration and the evapotranspiration processes, as well as for the effects of

variability in the soil water content. On the other hand,  linearity in the models allows one to take

advantage of a great part of the literature in stochastic modelling, because many results of the

autocorrelation analysis are based on hypotheses of stationarity and linearity. Moreover,

multicomponent linear models allows apparent non linearity in the basin response to be reproduced

through a piecewise linear schematization, which is efficient in terms of manageability and

parsimony.

A linear conceptual scheme of watershed is a major or minor simplification of reality depending

upon the time scale considered. This issue will be discussed with in mind the target of providing an

efficient reproduction of the runoff process with respect to its use in water resources engineering.

This is the reason why conceptually-based rather than physically-based frameworks are being

discussed here.
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Based on considerations made by Moss and Bryson (1974),  Salas and Obeysekera (1992), Claps

et al. (1993), among others, nonlinearities in the net rainfall-runoff transformation are essentially to

be ascribed to the characteristics of the infiltration process. In this regard, it is worth remarking that
recharge coefficients ci indicate percentages of the net rainfall transformed in each of the runoff

components.

Looking at the global net rainfall - runoff transformation, of great impact on the system

nonlinearity is the variability of the ratio between direct and groundwater runoff, due to the

influence of the soil moisture state and of the intensity of rainfall on the infiltration capacity. This

influence increases with the decrease in the scale, due to the variability of conditions that can occur

on soil saturation even between consecutive days.

Accordingly, relevance of variability in the recharge coefficients reduces increasing the scale. In

particular, on the monthly scale this effect can be considered correlated with climatic seasons. On

the annual scale, infiltration could be correlated to the amount of precipitation but essentially its

variability is of minor significance.

In univariate streamflow simulation nonlinear models are seldom proposed, because of the

computational burden involved and on the uncertainties related to the determination of the link

between precipitation and infiltration in absence of the rainfall information. However, a way to set

up this relationship could be get using the runoff level as an indicator of the rainfall amount, as

considered by Treiber and Plate (1977) on the daily scale. These authors relate (linearly) parameters

of the impulse response function to the runoff amount, even though the impulse response function

adopted makes no use of a priori knowledge on the process.

2.2.2.CHARACTERISTICS OF THE PRECIPITATION PROCESS ON DIFFERENT TIME SCALES

A priori information on the input stochastic structure is needed for the selection of the runoff

model type. To this end, stochastic models proposed for total precipitation are considered, to be

used with reference to effective precipitation even though effective rainfall can have a quite

different stochastic structure than that of total rainfall.

Considering that the rainfall stochastic structure simplifies with aggregation, the central limit

theorem could be invoked in recognising that aggregation of precipitation from daily to annual basis

produces processes approaching normality. The intermittent process becomes continuous, zero

rainfall disappears and skewness decreases drastically. This will be discussed in detail hereafter.

 On a hourly basis, precipitation shows a correlation structure that depends on the nature of the

storm (see e.g. Sirangelo and Versace, 1990) and is an intermittent process. Correlation in the

precipitation process is quite difficult to handle in univariate models (see comments by Pegram,

1980) even though it was considered, for instance, in the models proposed by Treiber and Plate

(1977), Pegram (1980) and Vandewiele and Dom (1989) on scales ranging from hourly to weekly.

Cowpertwait and O'Connell (1992) used, on data aggregated on a daily basis, a precipitation model

based on the arrival of clusters of cells, namely the Neyman-Scott instantaneous pulse model.
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Rainfall characteristics on daily or T-day scales are satisfactorily represented by uncorrelated

processes, with Poisson-distributed occurrence of events (see e.g. Eagleson, 1978) and with either

exponential or Gamma-distributed marks. Seasonality is incorporated in the occurrence rate of the

Poisson process while intensity is generally deemed unaffected by the season. Seasonality in the

Poisson model is generally achieved either by considering  parameters that vary month by month or

by using Fourier-type functions for continuous parameter variability within the year.

On the monthly scale, rainfall process is an independent periodic process. Lack of dependence in

this process was shown by Yevjevich and Karplus (1973) among others. Depending on the

underlying climate, the process may be continuous or of compound type, depending on the existence

of a finite probability P(0) of zero rainfall. This last factor has been accounted for using a Bessel

compound-type distribution (e.g. Öztürk, 1981) or considering P(0) as an additional parameter

modifying the Box Cox transformation of the Normal distribution (Legates, 1991). Both

distributions are able to reproduce the skewness displayed by monthly precipitation (see e.g. Claps,

1992). Either 12 parameter couples (both distributions are two-parameters) or a Fourier function

allow consideration of seasonality in the probabilistic model.

On greater time scales, such as annual, where periodicity disappears along with wet and dry

seasons, stationary and continuous probabilistic models (such as the Box-Cox transformation of the

Normal distribution) can be used to reproduce the precipitation process.

2.3. Stochastic model structure

2.3.1. CONCEPTUAL AND STOCHASTIC MODELS FOR DIFFERENT SCALES

In the framework under discussion, elements of the conceptual model will be considered as linear

reservoirs or zero-lag linear channels (diversions). Therefore, the most "complex" conceptual model

that can be considered consists of four linear reservoirs in parallel, accounting for a slow and a fast

component of groundwater runoff and a slow and a fast component of direct runoff.

The conceptual model structure is characterised by eight parameters (see Fig. 1A), the four

storage coefficients, kj, and the four recharge coefficients, cj, of which only 7 are to be estimated

given the volume continuity condition, �cj=1.

The cj coefficients represent the share of runoff produced, in average, by each component, and

are determined by the net rainfall partition.

As introduced earlier, the stochastic nature of the univariate runoff models results from the

structure of the input to the deterministic conceptual system. Due to the features of the precipitation

and effective precipitation process discussed previously with reference to the hourly scale, a suitable

stochastic model should be selected within the class of filtered Poisson processes (Parzen, 1962),

best known as Shot Noise processes (Bernier, 1970). In particular, multicomponent Shot-Noise

processes result from the particular conceptual model structure, with response function of the type:
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h( s )  =   c ( 0 )+  c / k e +  c / k e +  c / k e0 1 1
s

2 2 
s

3 3 
s1 2 3δ − / − / − /k k k

where the meaning of parameters will be clarified later.

Depending on the characteristic response time of the surface network, this model could be

representative even for daily data. A simplification in the form of the surface runoff response arises,

depending on the basin size, when data are aggregated on T days, with T considerably greater (say
2-3 times) than the mean lag time TL of the surface runoff component. If T��TL, the surface runoff

response can be considered impulsive (as a Dirac delta function) and the conceptual model can be

rearranged as in Fig. 1B. With the scale T of the order of a few days, intermittence in the net rainfall

process still produces a Shot-Noise stochastic model for runoff. In this case, the conceptual models
has seven parameters and in any time interval the surface runoff is nothing but a fraction c0 of the

effective rainfall.

Further reduction in the complexity of the basin response structure occurs when data are

considered at a scale sufficiently larger than the time lag of the interflow component. Aggregation

may or may not determine an appreciable change in the net rainfall structure. However, to be short,

one can consider monthly data and assume that at the monthly scale interflow can be incorporated in

the direct runoff, proportional to effective precipitation (Fig. 2C). At the monthly scale, input is a

quasi continuous process and drives to the selection of ARMA-type stochastic models (e.g. Moss

and Bryson, 1974; Salas and Smith, 1981). In particular, monthly net rainfall is a periodic

independent (quasi-continuous) stochastic process.

Since in the framework discussed here basin response is independent on the net rainfall

characteristics, constant-parameter ARMA models with periodic independent residual or

PIR-ARMA (Claps et al., 1993) are selected for the monthly scale. Given the conceptual structure

of the model in Fig. 2C, a PIR-ARMA(2,2) model is identified:

dt � �1 dt�1 � �2 dt�2 = �t � �1 �t�� � �2 �t�2 

with two AR and two MA parameters related, as will be clarified later, to the parameters of the

conceptual model.
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Figure 1. Conceptual schemes underlying the transformation of effective rainfall I into runoff D at

different aggregation scales.

The usual aggregation step beyond monthly scale leads to the annual scale, where seasonal

effects disappear and where the over-month groundwater component does not produce any effect.

This is true particularly if data are considered aggregated on the hydrologic year, which starts at the

end of the dry season (if two clearly distinct seasons can be identified). The reason is that at the end

of a dry season all contribution by geological non-carbonate formations and from overflow springs

can be considered to vanish. Therefore, water transfer between consecutive hydrologic years can be

ascribed only to the deep groundwater runoff.

According to this scheme, at the annual scale, the only active transformation on effective rainfall

is due to the deep groundwater linear reservoir, underlying the conceptual scheme of Fig. 1D. This

conceptual model, subject to stationary input is equivalent to an ARMA(1,1) stochastic model

(Salas and Smith, 1981):

dt � �1 dt�1 = �t � �1 �t��
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2.3.2. SELECTION OF MODEL TYPE AND ORDER

The rules for conceptual model identification given in previous sections are strictly connected

with the scale of aggregation, since the relative weight of the active components of runoff are

related to the level of aggregation of the basic processes. Similar distinctions were made with

reference to the structure of the input process. In this section, combination of conceptual model and

input characteristics will be shown to lead, almost univocally, to identification of type and order of

stochastic models.

Models for the annual time scale

Rossi and Silvagni (1980) first studied in detail the runoff process on the annual scale based on

physical and climatic considerations, showing the utility of aggregating data on the hydrologic year

and discussing two alternative stochastic models for the process reproduction.

The simplest model suggested by Rossi and Silvagni (1980) is a non-Gaussian independent

model, to be used when annual runoff data are uncorrelated. This situation occurs for ephemeral

streams, where the over-year groundwater component is missing and dry season runoff is almost

negligible. With reference to data from rivers of Central and Southern Italy the probability

distribution that better represent  independent annual runoff was the cubic root Box-Cox

transformation of the Normal distribution.

When noticeable autocorrelation is found in annual data, Rossi and Silvagni (1980) assumed it to

be ascribed to an over-year groundwater component and substantiated with this consideration the

validity of the ARMA(1,1) stochastic model (first proposed by O'Connell, 1971). Salas and Smith

(1981) and Salas et al. (1981) formally derived the expression of the ARMA(1,1) model from a

conceptual model of the basin response fed by uncorrelated Gaussian input. The expression of the

ARMA(1,1) model is:

dt � �1 dt�1 = �t � �1 �t�� (1)

with dt as the zero-mean runoff value at time t and �t as the zero-mean residual at time t. When

derived from a conceptual model like this represented in Fig. 1D the ARMA(1,1) process presents a

restricted parameter space, shown by Salas et al. (1981), which limits the range of values that

stochastic parameters � and � can assume. This is due to the relations existing between conceptual

and stochastic parameters, and provide an explanation to the range of parameter values that

O'Connell (1971) found to allow ARMA(1,1) model to reproduce the Hurst effect.

 It is worth mentioning that Salas and Smith, (1981) and Salas et al. (1981) consider the total

precipitation (including evapotranspiration) as input to the conceptual system. Therefore, relations

between stochastic and conceptual parameters as reported in Claps and Rossi (1991) for the strictly



16

univariate case (with the effective rainfall representing the residual) are different, even though

determine the same restricted parameter space.

 Formal relations between conceptual and stochastic parameters were improved by Claps and

Rossi (1992) and Claps and Murrone (1993) considering that effective rainfall does not enter the

system as an impulse concentrated at the beginning of the time interval, as assumed by Salas and

Smith (1981). This scheme is unrealistic for one-year interval due to the presence of within-year

periodicity, and even for smaller intervals a rectangular input function is more appropriate.

The decision of the input function form has a considerable impact on the values of conceptual

parameters resulting from stochastic parameter estimates and is further clarified in the Appendix.

The conceptual framework depicted in Fig. 1 is built in the hypothesis of presence of the over-

year groundwater component. For ephemeral streams, the number of linear reservoirs for each

scheme is reduced of 1 and the resulting model orders reduce accordingly (see Tab. 1).

Models for the monthly time scale

In the statistical approach to seasonal time series modelling, the presence of periodicity is usually

the first problem to tackle. Stationarity is generally desired in order to use statistical tools developed

for stationary stochastic variables or that provide more efficient results with stationary data.

Periodic processes are essentially dealt with using models with periodic parameters (Tao and

Delleur, 1974) or deseasonalizing the series, for instance by monthly mean subtraction or by

standardisation (e.g. Delleur et al., 1976, Salas et al., 1980).  For similar reasons, a transformation

is usually applied to data to achieve Normality.

In our viewpoint, both the above approach are inefficient. Deseasonalisation is a too strong

transformation of the series: For instance, effects of the seasonal groundwater, having sub-annual

evolution, are completely altered by the deseasonalisation. Moreover, deseasonalisation does not

even eliminate periodicity in the autocorrelation function (Tao and Delleur, 1974). On the other

hand, using models with periodic parameters generally involve overparametrisation, as will be

discussed later.

In a physically-consistent approach to runoff modelling, the basic point to stress in this regard is

that periodicity in runoff is ascribed essentially to periodicity in the input, which is also responsible

for periodic patterns in the autocorrelation function. This consideration addresses to models with

constant parameter and periodic input, which somewhat reflect a scheme proposed by Pegram

(1980). The above discussion clarifies that the class of stochastic models considered for the monthly

scale is that of the previously-introduced PIR-ARMA models.

Only for ephemeral streams, the simplest model for the monthly scale is a PIR-ARMA(1,1)

(Claps et al., 1993), formally identical to the ARMA(1,1) model introduced for the annual scale

except for the nature of the residual. Therefore, the same restrictions as above apply to the

parameter space.

The full model of monthly runoff resulting from the proposed framework is a PIR-ARMA(2,2)
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dt � �1 dt�1 � �2 dt�2 = �t � �1 �t�� � �2 �t�2 (2)

where dt = Dt � E[Dt] is the zero-mean runoff, �t is the zero-mean residual and �1 ,�2  and  �1 ,�2

are autoregressive and moving average parameters, respectively. Stochastic parameters are explicitly
connected with conceptual parameters c3, c2, k3, k2 (see relations A.30-A.37). The parameter space

of this model (see Appendix) is restricted according to the constraints due to the conceptual

meaning of parameters. The same restricted parameter space was found by Spolia and Chander

(1974) with reference to a conceptual system with two linear reservoirs arranged in series.

To reproduce for a periodic variability in the recharge coefficients, stochastic models with

periodic parameters can be used. Conceptually-based models with periodic parameters were recently

recognised (Salas and Obeysekera, 1992) to be of the PARMA class (Tao and Delleur, 1974). In

these models, all parameters are usually made seasonal, resulting in substantial overparametrisation

(see e.g. Kottegoda, 1980, p.141), meaning excess of parameters compared to the available

information.

In some cases (Moss and Bryson, 1974; Hirsch, 1979; Salas and Obeysekera, 1992) it has been

suggested that the AR coefficients of PARMA models could be kept non-seasonal, recognising that

the variability of the storage coefficient of the groundwater systems (which, in itself, should not be

disregarded) is much less significant than the variability of the recharge coefficient in the different

time intervals considered.

Even keeping constant the AR coefficients, however, the trade-off between difficulties and

uncertainties in parameter estimation and accuracy in the conceptually-based transformation scheme

gives, in our opinion, more credit to constant parameters models. In other words, a PARMA(2,2)

model (as the periodic parameters equivalent to the PIR-ARMA(2,2) model of monthly runoff)

where only periodic MA parameters are to be estimated still seems a too complex model compared

to the refinement that introduces in the process simulation. This consideration is based also on the

complexity of the estimation of MA parameters in PARMA models (e.g. Jimenez et al., 1989).

Models for daily and T-day scale

The building of conceptually-based models of daily runoff requires some additional preliminary

evaluations before deciding the model order, assuming, as said before, the model type as a Shot-

Noise. Preliminary evaluations tend to determine if the characteristics of the surface runoff response

can be recognised on the daily scale. For small basins (a few hundreds of km2), daily aggregation

generally does not allow to understand much of the transformation of the net rainfall in surface

runoff. To disregard the effects of this transformation, for instance by considering the surface runoff

transformation as a simple diversion operated by the basin on the net rainfall, one must be sure that

this component does not produce any (even spurious) correlation effect, which can affect a correct

estimation of parameters of the remaining components.
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Murrone et al. (1992a) recognised that further aggregation of data on a scale unit of T days (with

T�1) minimises the effect of the (aggregated) surface runoff on estimation of parameters of the

interflow subsystem. The reason is that for data aggregated on T days the drainage network can be

assumed to exercise no transformation on the net rainfall.

To apply this criterion, Murrone et al. (1992b) proposed to select the correct T-scale as the

minimum one that allows the estimate of the interflow component parameters to stabilise. The range

of T obtained for basins between 100 and 16000 km� is 1-7 days.

In a Shot Noise model, runoff D can be expressed, in continuous time, as

D( )  =   Y  h( )i i
N( - )

N( )

τ τ τ
τ

−
∞

∑ (3)

where N(�) is the counting function of the Poisson process of occurrences. The response function

h(s), with s = ���i, is a linear combination of the response of all the conceptual elements

(multicomponent response). For data aggregated at a suitable scale of T days, the surface impulse
response is c0 �(0),with �(·) as the Dirac delta function. Therefore, h(s) can be written as:

h( s )  =   c ( 0 )+  c / k e +  c / k e +  c / k e0 1 1
s

2 2 
s

3 3 
s1 2 3δ − / − / − /k k k (4)

and with ci, ki as parameters of the subsurface and the two groundwater conceptual elements. In case

of lack of over-year groundwater, the response function becomes

h( s )  =   c ( 0 )+  c / k e +  c / k e0 1 1
s

2 2 
s1 2δ − / − /k k (5)

If the resolution of data is such that the surface runoff response can be correctly recognised, an

immediate extension of the above scheme can be used, with  a four-component impulse response

function:

h(s)  =   c / k e +  c / k e +  c / k e +  c / k e0 0
s

1 1
s

2 2 
s

3 3 
s0 1 2 3− / − / − / − /k k k k (6)

Tab. 1 summarises all the alternatives discussed above in terms of presence/absence of deep

groundwater component and of possible refinements of models. As can be noted, the discussion has

been limited to linear models.
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Table 1. Summary of possible alternative models identified on different time scales according to

the conceptual framework represented in Fig. 1.

scale most complex model constant parameter model least complex model

annual ARMA(1,1) ARMA(1,1) independent, non-Gaussian

monthly PARMA(2,2) PIR-ARMA(2,2) PIR-ARMA(1,1)

T-day 3-comp. Shot Noise 2-comp. Shot Noise

hourly 4-comp. Shot Noise 3-comp. Shot Noise

3. CONCEPTUAL-STOCHASTIC MODEL BUILDING ON DIFFERENT TIME SCALES

When building a stochastic model, hydrological time series are generally regarded under the level

of aggregation chosen for the purpose of simulation or forecasting. According to the usual practice,

models aim to reproduce statistics that are strictly peculiar of the scale of interest. However, in a

correct approach to streamflow analysis, models proposed and used for different time scales should

be compatible in their structure.

Compatibility among scales comes by definition with conceptually-based models, because formal

correspondences that can be established between conceptual and stochastic parameters allows one to

use at whatever smaller scale the information related to conceptual parameters, but this issue was

also addressed within the classical empirical stochastic analysis. For instance, Kavvas et al. (1977)

analysed the runoff process on different scales under the time and the frequency domain. Based on

this work, Vecchia et al. (1983), Obeysekera and Salas (1986) and Bartolini and Salas (1993)

focused on the aggregation of periodic ARMA models, starting with pre-determined seasonal model

and determining the autocovariance structure and the theoretical model of aggregated data. These

authors obtained models consistent to each other, allowing one to use parameter estimates on a time

scale to provide estimates for an aggregated time scale.

When building (conceptually-based) models in which the basic principle is that runoff is the sum

of processes with different time response to precipitation, aggregation is given a more important

role. Taken for granted that a conceptual parameter, e.g. a storage coefficient, does not change its

value with the change of scale, the issue is whether there is a particular scale in which this

parameter can be estimated most efficiently. In other words, does always the use of the maximum of

information available (on the smallest scale) ensure the best knowledge of the process?

As an attempt to answer this question, Claps et al. (1993) first questioned the usual practice of

estimating all parameters of a stochastic model on the data at the resolution for which the model is

proposed, and suggested that parameter estimation on different time scales can give more efficient

outcomes. In particular, based on the results obtained by Claps et al. (1993) using monthly data and



20

confirmed by Murrone (1994) using daily data, parameters of the over-year groundwater can be

accurately estimated only on data aggregated annually (possibly on the hydrologic year).

Based on what stated above, the first step in parameter estimation for whatever scale is to

consider data aggregated on the hydrologic year. For the purpose of generality we assume that an

over-year groundwater component is always present in the process, which determines the presence

of correlation in the hydrologic-year series.  Therefore, on these series stochastic parameters of the

ARMA(1,1) model and parameters of the conceptual model, required to transfer information

downward, are to be estimated.

3.1. Estimation and validation of model parameters

Conceptually-based stochastic models are not only characterised by the particular identification

framework described above. Parameter estimation also takes advantage (or requires, in some cases)

of the links with the conceptual model. Moreover, these links allow some hydrological parameter

validations, that can be far more useful that statistical tests when the amount of data or its quality is

limited. These arguments will be discusses in detail below.

3.1.1. ANNUAL SCALE

The simple structure of the stochastic model selected for annual runoff, based on the scheme of

Fig. 1D, allows us to discuss some conditions in which the conceptual meaning of parameters is

useful as a support to the model building steps.

The key problem is usually the limited length of the runoff series, that induces low sample

autocorrelation and low significance of parameter estimates.

If observation of the series and a priori information reveal the presence of an over-year

groundwater component, Claps et al. (1993) have suggested to legitimate the adoption of the

ARMA(1,1) model even in presence of low serial lag-1 correlation or high standard error of

stochastic parameters. This is supported by meaningful (and possibly validated) conceptual

parameter values resulting from the ARMA parameter estimates

When data at higher resolution are available, it is also possible to further substantiate the

adoption of the model by verifying the validity of corresponding models built on lower scales, since

the conceptual information is preserved in the change of scale.

Equivalence between stochastic model and conceptual model plus stochastic input is not

preserved in case of data transformation, usually adopted to ensure Normality and homoscedasticity

in the model residual. For this reason, the modelling framework discussed here does not consider

any data transformation and skewed residuals will be used for runoff generation. Linear stochastic

models with Gamma marginal distribution, namely GAR and GARMA models, were actually

proposed both for stationary and periodic processes to avoid transformation (Fernandez and Salas,
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1986, 1990; Sim, 1987). However, this class of models lacks all the literature concerning classical

ARMA model estimation and testing.

Because of the non-Normality in the model residual, the use of the Least Squares procedure was

suggested (Claps et al., 1993) to estimate parameters of the ARMA(1,1) model.

To validate conceptual parameter estimates obtained through parameters of the ARMA(1,1)

model, data on lower scales are required. In particular, Claps et al. (1993) proposed the use of an

hydrological index, called DFI (Deep Flow Index) and computed with monthly data, to validate the
recharge coefficient c3. This index is nothing but the average of the ratio of the annual minima of

monthly runoff over the global runoff average.

If daily data are available, an additional index, related to what can be referred to as the spring

runoff, can be used (Claps, 1990), which represents the relative weight of the annual minimum of

daily runoff. Both these index were found (Claps, 1990; Claps et al., 1993) strictly related to the

values of the coefficient a estimated through the ARMA(1,1) model on the annual scale (see Tab.

2).

Table 2. Conceptual model parameters estimated on annual runoff data for three stations in

Southern Italy. Estimates are made in the hypothesis of uniform within-year input, which is
reflected in the value of  rk (see Appendix). SFI indicates "spring" flow index.

station k3 rk c3 DFI SFI

Giovenco at Pescina 2.94 0.85 0.59 0.62 0.55

Tiber at Rome 3.38 0.87 0.52 0.53 0.46

Nera at Torre Orsina 4.2 0.89 0.71 0.77 0.70

This kind of validation has a special value considering that statistical estimation of the
coefficient c3 is dependent on the estimate of the MA parameter, which is much more variable than

the estimate of the other (autoregressive) parameter. Variability of the MA estimates are indicated

by the high values of the related standard errors compared to these of the AR parameters (see Claps

et al., 1993).

3.1.2. MONTHLY SCALE

Estimation of parameters of monthly and daily runoff models requires, as said above, a

preliminary estimation, on annual data, of parameters related to the over-year groundwater. This

requirement is mainly due to the presence of the periodic noise represented by seasonality of the

input process, that hides the structure of long-term persistence on sub-annual time series.



22

After that, depending on the scale of interest and on the related stochastic model, the remaining

parameters are to be estimated by constraining conceptual parameters of the over-year groundwater.

The estimation scheme is hierarchical, involving estimation of selected parameters step by step

while increasing the data resolution.

The nature of the multiple-scale parameter estimation method is different if considering ARMA

or Shot Noise models: Shot Noise parameters, in the case of response of pre-determined form (as is

the sum of exponential functions) are exactly these used to define the conceptual model. Then, the

procedure coincides with a constrained estimation. On the other hand, parameters of the ARMA

models are  stochastic and they are related to conceptual parameters in a quite complex way,

particularly MA parameters. If preservation of information among scales is obtained by using

conceptual parameters (as for the proposed framework), constrained estimation becomes practically
impossible. For instance, suppose that parameters c3 and k3 of the over-year groundwater must be

kept constant on the monthly scale. The stochastic model identified for monthly runoff data is a
PIR-ARMA(2,2), with parameters �1, �2, �1, �2, related to conceptual parameters by means of

relations (A.30-A.33). Given that, to constrain c3 and k3 one should relate all stochastic parameters

each other in a complex way, so that it would be very difficult to determine their final values

through usual methods of constrained ARMA parameter estimation.

Claps et al. (1993) suggested a way to overcome the problem related to ARMA models by means

of an iterative estimation method which makes use of all the available conceptual information. The

iterative method is based on the separation, in the conceptual scheme, of the over-year groundwater

runoff from the total runoff. In this way, runoff is schematized as the sum of outlets of two sub-

systems, one carrying the deep groundwater runoff and the other accounting for the remaining sub-

annual components. Of these, only the over-year subsystem is known in his parameter values.

If one knew the input, the over-year groundwater component could be computed and separated

from the rest of runoff but the input is not known in advance. To estimate the input, the PIR-

ARMA(1,1) model is applied on the runoff part not coming from the over-year groundwater (see

Claps et al., 1993). Therefore, the iterative procedure (trial input, runoff separation, model

estimation, input extraction) will converge when the estimated input is such that it produces the

output of both subsystems consistently with separation of the observed runoff.

 The outcome of the iterative procedure is not exactly what one expects from an ARMA

parameter estimation method, since essentially what is recognised is the response of the sub-annual

subsystem as an individual entity with respect to the over-year groundwater subsystem. However,

conceptual meaning of stochastic parameters of the PIR-ARMA(2,2) model allows us to obtain all

four stochastic parameters and the residual variance (see Appendix).

Fig. 2 shows what is achieved, in terms of runoff reconstruction, after estimation of conceptual

parameters.
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Figure 2. River Nera. Period: October 1946 - September 1969. Observed monthly streamflow

series (solid line), reconstructed over-year groundwater runoff (dotted line) and reconstructed total

groundwater runoff  (dash-dot line).

The stochastic model proposed by Claps et al. (1993) allows estimation of the effective

precipitation series as an hydrologic inverse problem. A compound probabilistic model is adopted

for the net rainfall distribution. Effective rainfall evaluation and modelling will be later discussed in

detail.

Conceptually-based stochastic models efficiency relies heavily in the concept of parsimony in the

number of parameters, because they somewhat represent prior knowledge on the process, which is

of limited complexity. What will be briefly discussed below on parameter validation will further

substantiate the advantages of using constant parameters over periodic parameters models, because

parsimony of conceptually-based parameters also means that there should be some possibilities of

verifying the reliability of their estimates through hydrological methods.

Validation of estimates through hydrological arguments supports the usual statistical evaluation

of efficiency of estimates and goes even further. In cases of lack or scarcity of data, hydrological

validation methods can succeed  where statistical methods fail. On the other hand, even with simple,

constant parameter, models, reliable hydrological parameter validation can be performed only in

limited cases, namely when the effect due to the conceptual parameter is not subject to interference
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by other processes. This requirement is respected in the case of the recharge coefficient of the over-

year groundwater, discussed earlier, while is not respected by parameters of the sub-annual

subsystem. For these latter parameters, validations can be done only indirectly, for instance looking

at the appearance of the sub-annual component when plotted in the reconstructed series (Fig. 2).

3.1.3. DAILY AND T-DAY SCALE

The particular form of the Shot Noise model, where parameters of the basin response coincide

with model parameters, permits immediate application of the constrained estimation, in view of the

application of the scheme of parameter estimation on different scales described above. In particular,

by extension of the scheme described with respect to the model of monthly runoff, parameters of the

over-year and over-month groundwater components are estimated on the annual and monthly scale,

respectively, and only parameters related to the interflow components are estimated with the Shot-

Noise model. Examining the scheme of Fig. 1B, related to data aggregated to a suitable scale of T

days, the remaining parameter c0 results by the volume continuity condition:  �ci =1.

Actual application of the Shot Noise model (Murrone et al., 1992a) showed that better results (in

terms of reproduction of data) can be obtained re-estimating on the T-day scale the recharge
coefficient c2 of the over-month groundwater. This finding confirms the statistically less reliable

evaluations of the c2 recharge coefficient (with respect to the evaluations of the k2 storage

coefficient) already experienced in the application of the ARMA models to the monthly and annual

series (Claps et al., 1993). The issue has been further expounded by Murrone (1994).

Estimation of Shot Noise parameters is carried out with an iterating Least Squares procedure

(Murrone et al., 1992a). This procedure identifies the occurrence times of the input impulses and

evaluates their initial values following a technique based on a threshold runoff level (Battaglia,

1986), in which the threshold is set to zero. The series of inputs is forced to assume only positive

values. Then, an optimisation method is carried out,  based on the Nelder-Mead simplex algorithm,

which minimises the sum of square deviations alternatively with respect to the series of impulses

and to the set of parameters of the response. It was also possible to make an objective evaluation of

the stability of parameter estimates (Murrone et al., 1992b) using a procedure suggested by Duan et

al. (1992), which allows to reconstruct the surface of the objective function in the subspaces defined

by pairs of parameters.

Advantages of the use of a priori information on the model structure and parameters, gathered on

larger scales, are evident under many points of view, starting from the convenience of limiting

numerical problems associated to the contemporary estimation of all 6 parameters of  expression

(4).

A typical situation in which this estimation scheme is particularly efficient is the evaluation and

modelling of baseflow in the analysis of daily or hourly runoff data.

Estimation of all parameters on the "local" scale does not allow one to discriminate between

interflow and groundwater runoff. Consequently, models for daily data are usually unable to
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reproduce long periods of low flows (see e.g. Treiber and Plate, 1977). Moreover, even procedures

for objective identification of the number of distinct components on the daily scale (Jakeman and

Hornberger, 1993) indicate the presence of only two "active" components. This confirms that too

slow components, that can actually be observed in the dry season, cannot be identified unless data

are aggregated properly.

Long-term runoff must be essentially removed when quick response phenomena are considered

and needs to be estimated when it represents the only contribution in the dry season. Therefore, at

small scales is particularly important to correctly estimate the percentage of net rainfall entering the

over-year groundwater subsystem, in order to accurately predict, for instance, runoff volumes

flowing in the dry season.

Efficiency of parameter estimates, which applies essentially to the interflow subsystem, is

recognised comparing observed and reproduced runoff data (Fig. 3), looking particularly at

recession periods and flood peaks. Reproduction of runoff data is obtained by feeding the

conceptual system with the net rainfall series identified within the estimation procedure.

3.2. Direct and inverse relationships between net rainfall and runoff

3.2.1. EFFECTIVE RAINFALL ESTIMATION AS AN HYDROLOGIC INVERSE PROBLEM

Considering runoff as the effect of the basin transformation on the effective rainfall gives the

possibility of determining characters of the net rainfall process back from runoff. This possibility

was exploited particularly in conceptually-based Shot-Noise models for daily runoff (see e.g.

Murrone et al., 1992b, for a recent review) but also in other kind of models (e.g. Pegram, 1980;

Hino and Hasebe, 1981; 1984; Vandewiele and Dom, 1989; Claps, 1990; Claps et al., 1993, Wang

and Vandewiele, 1994).

Pegram (1980) set up a general framework for the basin conceptualisation, using a linear system

with linear reservoirs in series and in parallel, and discussed the possibility of extracting the input

process from runoff as a function of the model residual. Hino and Hasebe (1981) consider the daily

runoff as the sum of the outlet of two or three linear systems accounting for baseflow, interflow and

surface runoff. Separation of these components is obtained by low-pass digital filtering of the total

runoff series, with cut-off frequencies obtained by analysis of high-order AR models applied to the

total runoff. Unit hydrographs of runoff components derive from the identification of AR stochastic

models on the data resulting after the separation. The net rainfall series, considered as a white noise

process, is then estimated by deconvolution of the runoff components.
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Fig. 3. Giovenco at Pescina, year 1962. Reconstructed vs. observed daily runoff (a), series of

estimated inputs (b) and separation of components on the reconstructed series (c).

Based on these two early approach and to evaluation of the related literature one can say that

characters of the net rainfall extraction from runoff depend on the kind of model hypothesised for

the basin transformations, and on the model identification and estimation techniques. If a correlation

structure is hypothesised in the net rainfall, it will concur to the evaluation of the process itself. The

importance of the features of runoff model building in net rainfall evaluation are evident if
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considering that approximations and uncertainties related to the different steps of model building

concur in producing errors in the estimated input. Todini (1989, p. 127) expressed in general terms

the dependence of errors from the approximations related to the model formulation and from all the

uncertainties related to the stochastic nature of parameters.

When stochastic parameters are strictly related to a conceptual interpretation, which reduces their

admissible space and guides stochastic model identification, the error term to consider when

estimating net rainfall is due mainly to approximations and lack of knowledge inherent to model

formulation.

Claps et al. (1993) expressed the net rainfall process as a function of the residual of the PIR-

ARMA(2,2) process which contains a stochastic error term. Expressing the PIR-ARMA form as

dt � �1 dt�1 � �2 dt�2 = �'t � �1 �'t�1 � �2 �'t�2 (7)

with residual �'t = �t + �t. �t is the component having conceptual meaning and �t represents a

Gaussian error term, with zero mean and variance �
�

2. These components are considered

uncorrelated and the following hold:

E[�'t] = E[�t];          �
�'
� = �

�

� + �
�

� (8)

In this way, one can have an "estimate with error" of the net rainfall:

I'    =  
'

ct I'
t− µ ε

(9)

where �I' equals E[Dt] and c = (1 � c3 rk � c2 rq), and to the "conceptual estimate" of the net rainfall

I    =  
c

   t I
t− µ ε

(10)

which, given (8), are related by

�I' = �I ;              σ
σ σ

σ
σ

ε ξ ξ
I I'

2
2

2

2

2

2

2

2
  =   

c
 +  

c
  =    +  

c
(11)

Because of its meaning, the variable It should assume only positive values and present finite

probability at zero. The probabilistic representation chosen for It considers the variable as the sum

of a Poissonian number of events with exponentially distributed intensity (e.g. Benjamin and

Cornell, 1970; Öztürk, 1981), producing the probability density function:

P[I=0] = e�� for I=0

(12)

fI(I)  = e��I�� 	
/I  I1[2 
I	] for I � 0
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where 	 is the exponential parameter, 	 is the Poisson parameter and I1(x) is the modified Bessel

function of order 1. Moment estimators of parameters of this Bessel distribution are:

�I = 	�
           σ νβI
2 =  2 2            γ

νI  =  
3

2
(13)

with � = 1/

as the exponential parameter, which can be expressed in mm, and �I as the skewness

coefficient.
Relations in (13) refers to the conceptual estimate It of the net rainfall. The probabilistic model of

the net rainfall estimated with error, I't, is the sum of a Bessel and a Normal distributions, with

parameters 	, � and ��
�=��

�/c2.  Moments of this distribution are (Claps, 1992):

�I' = �
;         σ σ νβI'
2

0
2=   2 2+ ;         γ

ν

σ
β

ν
I'  =  

6

20
2

2

3 2

+










/ (14)

The above relations can be used, with some discernment (see Claps, 1992), to estimate parameters

for the probability distribution of the effective rainfall in each season.

3.2.2. TOTAL RAINFALL TO EFFECTIVE RAINFALL TRANSFORMATION

Processes of transformation of the total rainfall to effective rainfall need to be accounted for not

only if precipitation is known and is used as a causal input to the system (bivariate modelling). As

seen in the previous paragraphs, considering the input as a function of the effective rainfall alone

involves approximations in the evaluation of the subdivision of rainfall between direct and

groundwater runoff.

Errors associated to this approximation vary depending on the degree of soil saturation and are

strictly related to the total to effective rainfall transformation. On the other hand, dealing with

univariate models forces one to assume simplified characters of this transformation, because the

emphasis is on the estimate of the effective rainfall. Bivariate models, conversely, need to put much

more detail in the rainfall-net rainfall transformation, whose characters must be more or less

explicitly estimated to model the full rainfall-runoff transformation.

A main distinction can be made upon the way total to effective rainfall transformation is dealt

with in hydrological modelling: transformation included in the model or left out of the model. This

distinction does not necessarily coincide with that of bivariate and univariate models, since some

univariate models (e.g. Treiber and Plate, 1977; Hino and Hasebe, 1981) consider nonlinearities in

the rainfall-net rainfall transformation as a part of their univariate approach. The discharge level was

considered by Treiber and Plate (1977) as a variable controlling parameters of the response of the

Shot-Noise model while the digital filtering performed by Hino and Hasebe (1981) on runoff series

produces an inverse relationship between the percentage of net rainfall entering the groundwater

subsystem and the total net rainfall, resulting in a nonlinear separation law of rainfalls. Most
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frequently, however, univariate models are linear and cannot account for the characters of the

transformation under discussion.

Bivariate models, on the other hand, must consider (implicitly or explicitly) the balance between

rainfall, evapotranspiration and effective rainfall. However, even within bivariate modelling some

approaches consider the net rainfall evaluation off-line with respect to the net rainfall-runoff

transformation (e.g. Weeks and Boughton, 1987; Jakeman and Hornberger, 1993). It is interesting

to remark that in both cases, net rainfall is obtained by digital filtering of the rainfall series, usually

expressed as:

I  = I +
(P I )

t t 1
t t 1

−
−−

τ
(15)

with � as the time constant of the filter.

Unlike the majority of bivariate models (see e.g. Franchini and Pacciani, 1991; Chiew et al.,

1993), that are deterministic, the approaches by Weeks and Boughton (1987) and Jakeman and

Hornberger (1993), taken among others, establish a stochastic correspondence between rainfall and

runoff. In particular, the net rainfall-runoff model is linear and stochastic and is of the ARMA type.

More precisely, in the ARMA representation the net rainfall process is considered stochastic (i.e.

containing the error term) while if net rainfall is considered as a deterministic variable and the error

is an additive term representing the residual an ARMAX model (ARMA with eXogenous variable)

is obtained (Spolia and Chander, 1974).

The main problem with all traditional (deterministic and stochastic) bivariate approaches is that,

as recognised by Franchini and Pacciani (1991), the water balance within the soil is completely

unobserved. This frustrates efforts done toward a detailed global schematization of the process and

attributes empirical nature even to the separate modelling of the rainfall-net rainfall transformation.

This makes not advantageous to undertake a detailed modelling of all subprocesses acting within

the soil, unless separate evaluation of the net rainfall process is available.

3.2.3. TOWARD AN INTEGRATED SCHEME WITH NONLINEAR RAINFALL - NET RAINFALL

TRANSFORMATION MODULE

A basic distinction between bivariate and univariate models can be made with reference to the

way the rainfall-net rainfall transformation is considered. Bivariate models operate a simultaneous

reproduction of both runoff-net rainfall and net rainfall-rainfall transformation while univariate

models take only the former into account.

When facing problems of short-term forecasting and precipitation data are available, a new

approach could be used, that maximises the information represented by runoff data. Univariate,

conceptually-based stochastic models can be used to provide an estimate of the net rainfall while a

bivariate nonlinear rainfall-net rainfall model can account for the transformations occurring on total

precipitation.
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Errors related to the constancy of parameters can be explicitly accounted for in the rainfall - net

rainfall module, where most of the nonlinearities of the physical process are concentrated. However,

in the author's opinion, conceptually-based linear univariate models for net rainfall evaluations are

preferable to nonlinear models because parameter estimates can be better determined and validated.

4.  FINAL REMARKS

Conceptually-based stochastic modelling of streamflow series fills, to a large extent, the

requirements connected nowadays to the use of the streamflow synthesis. As underlined by

Yevjevich (1991), among others, it is meaningful to persist in building models only if the emphasis

is on the understanding of the physical process (structural analysis of the process). Moreover, since

the statistical tools have been built and tested, it becomes increasingly important to focus on what to

model rather than on how to model. In other terms, the quality of data must be taken into account

when building or using a model.

The importance of the above two points is the key of the interest of the conceptual approach to

runoff modelling, that can be synthesised in: physical consistency and overall efficiency. This

second characteristic means: objective criteria for model identification, simple stochastic model

structure and conceptually-related parameters for efficient parameter estimation and possibility of

their validation.

In this paper, most of the emphasis is put on the different aspects concerning the efficiency of

conceptually-based models. It is thought that this concept is the one that allow a correct evaluation

of competing physically-consistent approaches to runoff time series (e.g. linear - nonlinear,

univariate - bivariate) and that most of the work needed in the field under discussion should tend to

the selection of the most efficient model given the physical information and the amount and quality

of data.
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APPENDIX: EQUIVALENCE IN REPRESENTATION BETWEEN LINEAR SYSTEMS AND ARMA

STOCHASTIC  MODELS

1. Linear reservoir discretization

The continuous-time response of a linear reservoir to an input r(�) is (e.g. Chow et al., 1988):

Q(t) = Q  e  +   
1

 e  r( ) d0
t / k

0

t
(t )/ k− − −∫ k

τ τ τ (A.1)

where Q is the discharge, k is the reservoir storage coefficient and Q0=Q(t=0). Using an impulse-

response formulation, equation (A.1) can be written as

Q(t) =  r( ) h(t )d   
-

t

τ τ τ−
∞
∫ (A.2)

with r(�) as the input and h(t��)=1/k e�(t�	)/k as the impulse response of the linear reservoir.

Integration of (A.1) over a unit-time interval gives

D  =   Q(t) =   Q e  dt +   
1

e   e r( ) d  dt1
0

1

0
t / k

0

1

0

1
t / k / k 

0

t

∫ ∫ ∫ ∫− −
k

τ τ τ (A.3)

where D1 is the outflow volume. Given the initial volume V0=kQ0 , by definition of linear reservoir,

equation (A.3) becomes

D =  (1 e )V  +    
1

e   e r( ) d  dt1
-1/ k

0
0

1
-t / k / k 

0

t

− ∫ ∫k
τ τ τ (A.4)

To discretize the above equation, the form of the input function is needed. A generalised

discretized form can be obtained by introducing the recharge recession coefficient

r  =  1   
1

 e    
1

R
 e  r( ) d  dtk

0

1
-t / k

0

t
/ k− ∫ ∫k

τ τ τ
(A.5)

where R =   r( ) dτ τ
0

1
∫  is the recharge volume within the interval. Assuming, for the generic (t�1,t)

unit-time interval, Dt as the runoff, Vt�1 = V0 as the storage at the beginning of the interval, Rt as the

recharge in the interval and vk=e�1/k, (A.4) can be rewritten as

Dt= (1� vk) Vt�1 � (1� rk) Rt (A.6)

Calling vk the recession coefficient, from equation (A.6) emerges clearly that coefficient rk is

equivalent to vk but responsible for the recession of the within-interval recharge volume. Both rk and
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vk  can only assume values between 0 and 1. The larger rk, the smaller the amount of recharge R

produced as runoff. Analysis of (A.5) shows that rk depends on the form of the input function and

on the value of k. For instance, rk increases with increasing k and with the uniformity of the input. If

the input is not continuous rk increases as the input concentrates at the end of the interval. It is

particularly important to correctly estimate rk when a deterministic within-period variability of the

input can be recognized, as in the case of series aggregated annually, where the input displays a

seasonal pattern.
In case of uniform recharge r(�)=R/� over a sub-interval of duration ��1 and initial time Ti , the

expression of rk is

rk
/k (1 T )/k =  

k
 (1 e ) [1  (1  e )]i

∆
∆ ∆− − −− − − (A.7)

that reduces to rk = e�(1�T)/k for ���. For Ti=0 and �=1 relation (A.7) becomes

rk = k (1 � e�1/k) (A.8)

For �=0 and T=0, which corresponds to impulse recharge at the beginning of the interval, (A.7)
gives rk= e�1/k = vk. When there is no particular evidence of a within-period rainfall pattern, as in the

case of monthly data, relation (A.8) for uniform r(�) is chosen.

A seasonal pattern in hydrologic data can be estimated, with good accuracy, by means of Fourier

series. In this case, one can use the generic periodic function f(t) as the dimensionless input r(t)/R:

f t A
n

T
tn n

n

N

( ) cos= + +



=

∑ A0
1

2 π
Φ (A.9)

with N = number of harmonics and A0 = mean of f(t) over the period T. For fixed N, the above

expression has 2N+1 parameters, namely A0, {A1, A2, ...AN} and {�1, �2, ...�N}, that can be

estimated, for instance, by means of a least squares method. However, given the forms assumed by

the monthly rainfall means curves, two harmonics can be considered adequate for an accurate

fitting.
Assuming A0=1, substitution of (A.9) into (A.5), with the interval T set to 1 year, produces

(Claps and Murrone, 1993):

r ke k
A ke nk

kn

A kn n kn

n kn

k
k n

k
n n

n

N

n n n

n

N

= − + − −
+

+
+

+
− + + +

+

−
−

=

=

∑

∑

1 1
2

4 1

2 2 4 1

2 4 1

1
1

2
1

2

2
1

( )
cos sin

( )

) sin( ) ( ( ) )sin

( ( ) )

/
/ Φ Φ

Φ Φ Φ

π
π

π π π π
π π

 

 cos(2 n+ n

(A.10)

or, with a different arrangement of terms,
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[ ]

( 1 +  e ) k  
1 +  4 (kn   A cos( ) +  2 A  kn sin( )  

 e  1 +  4 (kn )
 1 / k

2
n n n n

1 / k 2
n=1

N

−
) −  







∑
π π

π

Φ Φ
(A.11)

2. equivalent stochastic models of different conceptual schemes

SINGLE LINEAR RESERVOIR

The outlet Dt of a single linear reservoir in a unit-time interval (t�1,t) is expressed by (A.6) as a

function of the initial storage Vt�1 and of the input Rt (recharge) in the interval. The mass-balance

equation for the groundwater storage is

Vt = vkVt�1 + rk Rt (A.12)

Eliminating Vt�1 between (A.12) and (A.6), one obtains

V  =  
v  D

1 v
  

v (1 r R

1 v
 +  r R  t

k t

k

k k t

k
k t−

− −
−

)
(A.13)

This relation can be rewritten using Vt�1, Dt�1 and Rt�1 instead of Vt, Dt and Rt, without loss of

generality. Then, Vt�1 can be eliminated again, using (A.6), producing

 
D

1 v
  

(1 r ) R

1 v
  =   

v  D

1 v
  

v (1 r R

1 v
 +  r Rt

k

k t

k

k t 1

k

k k t 1

k
k t 1−

− −
− −

− −
−

− −
−

)
(A.14)

and, rearranging,

Dt � vk Dt�1 = (1 ��rk) Rt � (vk � rk) Rt�1 (A.15)

If Rt is an independent stochastic process, (A.15) is the expression of an ARMA(1,1)

(Autoregressive and Moving Average of order one and one) process (Box and Jenkins, 1970). In

Box-Jenkins notation, this process is represented as

dt � � dt�1 = �t � � �t�1 (A.16)

with dt=Dt�E[Dt] and �t=(1�rk)(Rt�E[Rt]) as zero-mean variables. Coefficients �=vk and

�=(vk�rk)/(1�rk) are the autoregressive and moving average parameters, respectively.

If the within-period distribution of the recharge is pre-determined, coefficients � and � of (A.16)

are not independent. As seen before, In the limit case of impulse recharge at the beginning of the
interval, rk equals vk and (A.15) simplifies in

Dt � vk Dt�1 = (1 ��vk) Rt (A.17)

which is equivalent to an AR(1) process.
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On a seasonal basis, if the storage constant is considered as varying with the seasons, (A.17)

becomes a PAR(1) process, as shown by Salas and Obeysekera (1992) with reference to a similar

conceptual scheme, that can be written as

dn,m � �m dn,m�� = �n,m (A.18)

in which n denotes the year and m denotes the season. Coefficients �m relate to the seasonal vk(m)

as (Salas and Obeysekera, 1992)

�m = vk(m��) [1�vk(m)] / [1�vk(m��)]  (A.19)

where vk(m) = e��/k(m
.

LINEAR RESERVOIR PLUS DIVERSION.

The simplest variant to the basic system just discussed arises by considering a diversion added to

the linear reservoir. In the Thomas-Fiering model of watershed (see Fiering, 1967), for instance, a

diversion in parallel to the linear reservoir accounts for the part of the input that does not recharge

the deep groundwater and reaches the basin outlet within the end of the time interval considered

(direct runoff).
With reference to Figure 1d, the groundwater recharge Rt in the interval t is the fraction c3 It of

the effective rainfall It and the direct runoff is (1�c3)It. Including the direct runoff into the mass

balance equations (A.6) and (A.1) and rearranging, an ARMA(1,1) process is obtained (Salas et al.,

1981):

dt � � dt�1 = �t � �t�1 (A.20)

Considering the effective rainfall as input allows to obtain explicit relations between conceptual

and stochastic parameters:

Φ =  v  =  ek 3
1/k3− ;     Θ =  

v  r

1  r
k3 3 k3

3 k3

−
−

c

c

 (A.21)

c  =  
r (13
k

Φ Θ
Θ

−
− )

 ;         k  =  
1

ln 3 Φ
 ;           (A.22)

and to link the zero-mean effective rainfall it = It � E[It] to the stochastic model residual �t:

�t  = (1 � c3rk)it ;     i  =  
1  rt

t

3 k

ε
− c

(A.23)

 If �
�

2 is the residual variance, the variance of the net rainfall process is

σ σε
I
2

2

k
2 =  

 (1 r )− c3

(A.24)



40

The obvious constraints 0� c3 �1 and k3 �0 restrict the parameter space of the process (A.20)

(Salas et al., 1981), with respect to that of a general ARMA(1,1) process. Hence, process (A.20)

must be considered as a restricted ARMA process.

With reference to seasonal runoff, Salas and Obeysekera (1992) showed that, considering
parameters c3 and k3 as varying with the seasons, the scheme depicted in Figure 1d leads to a

PARMA(1,1) process. If only one parameter is assumed nonseasonal, a PARMA(1,1) process with

nonseasonal AR or MA parameter is obtained. In all cases, retaining the results from the mentioned

authors, explicit relationships similar to those given in (A.21) and (A.22) can be obtained between
c3,m, k3,m and  �m , �m.

TWO PARALLEL LINEAR RESERVOIRS PLUS DIVERSION.

This case is represented in Figure 1c where, as immediate extension of the previous scheme, c2,

k2, W and rk2 have the same meaning of c3, k3, V and rk3 and, accordingly, vk2=e�1/k2.  For this

conceptual system, runoff Dt is given by

Dt = (1�vk3)Vt�1 + (1�vk2)Wt�1 + c3(1�rk3)It + c2(1�rk2)It + (1�c3�c2) It (A.25)

The volume balance equations for the groundwater storage are:

Vt = vk3 Vt�1 + c3 rk3 It  (A.26)

Wt = vk2 Wt�1 + c2 rk2 It (A.27)

Putting in (A.25) the expressions of Wt�1 and Vt�1 obtained from equations (A.26) and (A.27) and

rearranging, gives one equation in Dt, Dt�1, Dt�2, It, It�1, It�2:

Dt � (vk3 + vk2)Dt�1 + (vk3vk2)Dt�2 =

= (1 � c3 rk3 � c2 rk2)It �[vk3 + vk2 � c3 rk3(1+vk2) � c2 rk2(1+vk3)]It�1 + (A.28)

 � (c3 rk3vk2 + c2 rk2vk3 � vk3vk2) It�2

With reference to the zero-mean variables dt and it, if �t = (1 � c2rk2 � c3rk3)it is an independent

stochastic process, the above representation is equivalent to an ARMA(2,2) process

dt � �1 dt�1 � �2 dt�2 = �t � �1 �t�1 � �2 �t�2 (A.29)

Following the reasoning by Salas and Obeysekera (1992) and letting c2, c3, k2 and k3 vary with the

seasons, a PARMA(2,2) process arises.

Relations between conceptual and stochastic parameters for the ARMA(2,2) are:

�1 = vk3 + vk2 ���30�
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�2 = �vk3vk2 ���31�

Θ1
k 3 k 2 3 k3 2 2 k 2 3

2 k2 3 k3

 =  
v  +  v  -  r (1+c - r (1+c

1 -  c r  -  c r
 

c c) )
(A.32)

Θ2
3 k3 k2 2 k2 k 3 k3 k2

2 k2 3 k3

 =  
r +  r  -  

1 -  c r  -  c r

c v c v v v
(A.33)

vk3
1 1

2
2  =    

 +  (  +  4 )

2

Φ Φ Φ
(A.34)

vk2
1 2  =    
  (  +  4 )

2

Φ Φ Φ− 1
2

(A.35)

 c
c

3
2 k2 

k 3

  =   
 M  N  M r

    M r

− −
(A.36)

c
v

v v2
1 2 1 2 k 2

k3 k2 k2

  =   
  ( )N +( )M +(1+ 2 )(N M)

2 M ( )r

− − − −
−

Θ Θ Φ Φ
(A.37)

where N = (1 � �1 � �2) and M = (1 � �1 � �2). Relations (A.30)-(A.33) or (A.34)-(A.37) ensure

equivalence of the means of Dt and It (Claps, 1990). The net rainfall variance can be obtained from

the residual variance �
�

2 through the relation

σ σε
I

2
2

2 k2 3 k 3
2

 =  
(1 c r c r )− −

(A.38)

In the general ARMA(2,2) model, stationarity and invertibility conditions provide admissible
regions for the AR and MA parameters. Limiting the analysis to the autoregressive parameters �1

and �2, a triangular admissible region results (Box and Jenkins, 1970, par. 3.2.4.) from the

stationarity conditions  �1 <���2
  < 1 ;   �2 � �1 ��1 ;   �2 + �1 ���.  Given that 0 ��vk2 ��1 and

0 ��vk3 ��1, equations (A.34)-(A.35) provide conceptual constraints for �1 and �2 :

 �1
2 + ����2

  � 0 ;          �2 ��0 ;         �1 ��� ���39�

which restrict the admissible space of the two parameters to a quite small region. Again, the

conceptual representation determines a restricted ARMA process. It is interesting to remark that if
one of the storage coefficients, for instance k,  is large, vk3 approaches unity and this leads to �1 +

�2 �
1, which is close to the non-stationarity condition  �1 + �2 ��1. In other words, the outlet of a

system with a very slow response (such as a reservoir with a recession coefficient vk3 �
1) may be

confused with a trend.


