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Abstract.

In analyzing the literature on the fractal nature of river networks one can

recognize several points that require clarification or additional investigations. For instance,
many interpretations, with different conclusions, have been given to the important
empirical results found in the previous literature on river geomorphology. Similarly, the
argument concerning a possible “more likely” value of the fractal dimensions of river
networks has not yet found a convincing answer. In an attempt to shed more light on the
topic, particularly on the latter point, we have reexamined the basic aspects related to self-
similarity in river networks using uniquely the fundamental concepts of fractal geometry.
This approach leads to relations for the determination of the fractal dimensions which
hold exactly for deterministic self-similar trees and are compatible with related findings
reported in literature. Results obtained from application of these relations to several river
networks in southern Italy indicate very low variability around the average values of about
1.7, 1.5, and 1.1 for the fractal dimensions of the whole river network, of its topological
equivalent, and of its individual streams, respectively. This outcome, in addition to
comparable results taken from the literature, provides new arguments to the hypothesis
that natural networks tend to have the same fractal dimensions.

1. Introduction

The use of the concepts of fractal geometry for the analysis
of river networks has proven, in the recent past, to lead to
important results on the interpretation of scaling properties
concerning several morphological indices of the basins and of
similarities recognized between apparently different networks.
River networks have been recognized to be fractal structures,
presenting self-similar properties over a significant range of
scales. The impact of these results is significant in studies on
basin evolution and on determination of the channel network
response to rainstorms.

Mandelbrot [1982] first hypothesized the fractal nature of
rivers and introduced fractal objects similar to river networks.
Much work has since been done in exploring fractal properties
of rivers and of drainage networks and in exploring relation-
ships between fractal dimensions of different structures. Pub-
lished literature related to this field may be divided into two
groups of papers. A first group of papers [e.g., Tarboton et al.,
1988, 1990; La Barbera and Rosso, 1989, 1990; Marani et al.,
1991; Beer and Borgas, 1993] deals with investigations on the
fractal behavior of river networks on the basis of Horfon’s
[1945] and Strahler’s [1952] laws, regarded as scaling laws. In
the second group of papers [e.g., Liu, 1992; Rigon et al., 1993;
Rinaldo et al., 1993; Nikora and Sapozhnikov, 1993; Nikora et
al., 1993; Peckham, 1995] fractal properties of drainage net-
works are reproduced by means of simulation models. An
approach that can be considered aside is the one documented
by Fiorentino and Claps [1992b], Claps and Fiorentino [1993],
and Claps and Oliveto [1994], in which the informational en-
tropy was used to derive a number of fractal properties of
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networks based on comparisons with purely geometric fractal
trees.

Most of the results reported in the cited literature were
obtained assuming that river network systems are self-similar,
that is, they exhibit their scaling properties over a undefined
range of scales. On the other hand, more recent literature on
river networks [Srnow, 1989; Nikora et al., 1989, 1993; Ijjasz-
Vasquez et al., 1994] has shown that individual river channels
should be considered self-affine objects, presenting self-similar
behavior only in a defined range of scales. Other work in the
literature focuses on the multifractal aspects of the configura-
tion of river networks [e.g., Marani et al., 1994]. Nevertheless,
in the hydrologic context river networks are analyzed essen-
tially to find rules and patterns common to different basins to
use in models for the estimation of the basin hydrologic re-
sponse. According to this ultimate goal, the “simplified” frame-
work of self-similar fractal systems has not yet been utilized
completely, and we believe that it has still a considerable po-
tential that is worth exploring.

In one of the few approaches in which this framework has
been employed, Claps et al. [1996] obtained an expression for
the most probable hydrological response of self-similar fractal.
trees and evaluated some criteria of maximum efficiency to
identify a possible most probable fractal dimension. In this
case, the value of the fractal dimension assumed a particular
importance. From the viewpoint of the above approach, as well
as from other viewpoints, it is evident that the evaluation of
fractal dimensions on river networks needs to be undertaken
with particular care.

The purpose of this paper is to try to unify the approaches to
the estimation of fractal dimensions in the hypothesis of self-
similar behavior of the river network structures. This is done
providing a reference framework of deterministic self-similar
fractal trees with properties easy to relate to natural networks
and sufficient to reproduce some empirical proofs of their
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Construction of a self-similar tree; m is the generation index and the generator is the structure
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~In M/In 0 = 1.585.

fractal nature. In perspective, this approach can even provide
new elements useful in the analysis of self-affinity. of the natural
structures, through the investigation of the departures of the

empirical indices from the rules that characterize the proper-

ties of deterministic self-similar trees.

In the next section the reference framework of fractal river
networks as well as the features and properties of such treelike
fractal models are introduced, with particular reference to the
combination of the self-similar behaviors in terms of branching
and sinuosity.

2. Self-Similar Deterministic Fractal Trees:
Structure, Properties, and Composition Rules

The scaling properties of an object can be characterized by
a parameter which accounts for how the euclidean measure of
the object changes after a change of scale. This parameter is
the fractal dimension [Mandelbrot, 1982] that represents the
dimension of the space in which the measure is scale-invariant.

In a river network, after a change of scale, the global euclid-
ean length changes for two mechanisms. One depends on the
increase in the length of individual streams that reveal their
paths with greater detail. The other depends on the appear-
ance of new small streams that were previously unobserved,
owing to insufficient resolution. Consequently, fractality of
river networks can be analyzed from two points of view: one
accounts for the sinuosity of rivers and is characterized by the
“sinuous” fractal dimension D,; the other, called the “topo-
logical” fractal dimension D, reflects the branching character-
istics of the network. The combination of the two previous
mechanisms produces an object with its own fractal dimension,
which is the dimension D of the whole river network.

In principle, the dimension D should be related to the other
two dimensions according to a “composition rule” which ex-
emplifies the connection between the two mechanisms of
growth. The definition of a framework of deterministic fractal
trees, as presented hereafter, allows one to practically build
some treelike and sinuous objects with the required properties
and to derive their rules of connection.

2.1. Definition and Structure of Self-Similar Fractal Trees

The self-similar trees used in this paper are obtained by a
“recursive replacement” algorithm [e.g., Feder, 1988, p. 16], in
which an initiator (usually a unit-length segment) is replaced
by a generator, which is a treelike curve composed by M seg-

ments (links) of equal length 5. After a replacement, each
segment of the generator becomes an initiator and is substi-
tuted again (see Figure 1), in a recursive way. If the initiator
has unit length, 7 also has the meaning of a partition ratio, so
that 1/n = A, with A being the topological diameter of the
generator (number of links forming the longest path in the
tree). The number of repeated replacements defines the
growth stage of this “prefractal” object (strictly speaking, the
fractal set is obtained after infinite replacements).

This recursive algorithm produces an object with fractal
dimension @ defined as [Feder, 1988]

In M

@=—mn €Y

The tree depicted in Figure 1 has straight links connected
with right angles. In self-similar trees like this the main stream
of a generic subbasin does not change its length after the
recursive replacements. These trees can be used to reproduce
the topological structure of river networks and reproduce the
growth of their total length (with the change of scale) owing to
only the branching mechanism.

To build self-similar trees with self-similar (nonstraight)
channels, as those found in nature, the branching structure
must be combined with fractal objects aiming to reproduce the
sinuosity properties of individual river channels (see, e.g., Fig-
ure 2). With reference to these latter, relation (1) applies
without modifications, because the definitions of M and 7 for
the sinuous objects are the same as stated above. The fractal

n=1/3
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Figure 2. Construction of a fractal “sinuous” curve; M = 4,
n = 1/3. Fractal dimension is & = —In M/In n = 1.262.
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Figure 3. Fractal model by Nikora and Sapozhnikov [1993].
Subscript ¢ indicates that the generator (Figure 3a) simulates
the network topology; subscript s indicates that the generator
(Figure 3b) simulates the sinuosity of individual rivers. Accord-
ing to the definition (1), fractal dimension of the compound
structure (Figure 3c)isD = —InM/lnmp=In7/In3 =In 7/n
4-In4/m3=D,-D
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curve shown in Figure 2 is of the family of Koch curves [Man-
delbrot, 1982].

Among the procedures proposed in the literature for com-
position of branching and sinuosity, discussed in Appendix 1,
only a model proposed by Nikora and Sapozhnikov [1993], with
some additional specifications, is compatible with a framework

" of deterministic fractals obtained by recursive replacement.
Nikora and Sapozhnikov [1993, Figure 1] presented a network
fractal model in which the generator is obtained combining a
Koch curve and a treelike curve, as shown in Figure 3. As can
be recognized from the figure, the sinuosity structure in Figure
3b substitutes the mainstream in the geometric tree determin-
ing a new length n = 1/3 for all of the segments of the tree in
Figure 3c. As a consequence of this way of obtaining the
combined structure in Figure 3c, its fractal dimension is equal
to the product of the fractal dimensions of the two initial
structures in Figures 3a and 3b:

D =D.D, (2)

As shown in Appendix 1, for unconditional validity of this
rule with reference to deterministic self-similar trees the con-
straint (A3) is needed. This constraint, which is implicitly as-
sumed in the treelike models used in this paper, minimizes the

possible alternatives in the construction of the compound .

structure but does not affect the possibility of building models
of river networks with whatever fractal dimension (1 = D =
2). In Appendix 2 it is shown that relation (2) is also asymp-
totically compatible with the hortonian ordering scheme.

2.2. Basic Properties of Deterministic Fractal Trees
Being fractal objects, recursive replacement trees obey the
rule [Mandelbrot, 1982, pp. 30, 36]

% =M,mn" 3)

where % is the fractal measure of the whole tree, (i.e., a length
in the space of dimension D independent of the measurement
scale), M, is the number of rulers needed to cover the tree, 7
is the ruler length, and D is the fractal dimension. The defini-
tion of the fractal dimension D of the tree as a whole accounts
both for branching and sinuosity. In an analogous way, the
fractal measure & of the main stream is defined as

% =N,n™ 4)
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with an intuitive meaning of the symbols.

If the length L, of the initiator is 1, the fractal measure of
the self-similar set is also 1. Based on inductive arguments, if
L, # 1 the following relations hold [see, e.g., Nikora, 1991,
relation 3].

% =LP (5a)

% =L> (5b)

For the class of fractal trees considered here it is particularly
convenient to consider the case in which the link length equals
7. This condition does not affect structural relations such as (3)
and allows one to set up some properties connected to the
branching characteristics of the trees. The basic property aris-
ing from this assumption attains their topological structure and
is a relation between the total number M of links and the
topological diameter A:

M = A” (6)

This relation can be obtained considering that if A; and M, are
the quantities related to the topological generator structure,
then after m recursive replacements one obtains A, = AT
and M,, = M7. By the elimination of m between these two
relations and considering that v, = 1/A,, (for unit-length
initiator), using (1) one obtains (6). According to the notation
just used, relation (6) should be written as

M, =AY (7

which underlines the fact that this result holds exactly for
complete prefractals. In different contexts, relation (6) was also
derived by Fiorentino and. Claps [1992a, equation 38] through
relations between the Horton ratios and the informational
entropy of the network, by Agnese et al. [1993] as a property of
single-scaling infinite topologically random channel networks,
and by Peckham [1995] in a revised hortonian framework.

With regard to compound fractal trees, if n is included as the
link length in relation (6), one obtains Mn = (An)Pqy! P
and therefore

Z = LPmD (8)

with Z and L as the euclidean lengths of the whole network
and of the main stream, respectively.

Application of the concepts expounded above to natural
networks leads to relations adopted for the estimation of the
different fractal dimensions, as shown in the next section.

3. Estimation of Fractal Dimensions of River
Networks

3.1. Topological Fractal Dimension

The first investigations regarding scaling properties of river
networks were focused on the fractal dimension related to the
branching [Tarboton et al., 1988, 1990; La Barbera and Rosso,
1989, 1990]. Since then, this issue has received very little at-
tention, probably because the validation of the estimates of D,
could not take full advantage of the previous literature on
fluvial geomorphology [e.g., Hack, 1957; Gray, 1961; Leopold et
al., 1964; Gregory and Walling, 1973]. As a matter of fact,
relation

In (Rp)

= (Ry) ©)



3126

by La Barbera and Rosso [1989], insofar as it refers explicitly to
the branching after the clarification by Tarboton et al. [1990],
has represented for long time the only way to estimate D,.

Only recently, Peckham [1995], revising the hortonian ap-
proach based on the analysis of Tokunaga’s tree graphs, ex-
pressed D, as

In (Rp)
"~ R (10)

where R, is a “number-of-links ratio” certainly more mean-
ingfully connected to the branching mechanism of networks
than R, . This author has brought into the hortonian frame-
work the notion that estimation of D, must be related uniquely
to the topology of the networks (no role of stream lengths).
Moving from different premises, Claps and Fiorentino [1993]
and Agnese et al. [1993] had expressed the same concept.

In a series of papers [Fiorentino and Claps 1992b; Claps and
Fiorentino, 1993] the branching properties of river networks
were investigated using the informational entropy of river net-
works, defined [Fiorentino and Claps, 1992a; Fiorentino et al.,
1993] with respect to their topological structure. New proofs of
the self-similar character of river networks with respect to
branching and a new method for evaluation of the branching
fractal dimension were derived [Claps and Fiorentino, 1993] by
comparison of some features displayed by the network entropy
in deterministic fractal trees and in natural networks.

In particular, in defining the informational entropy of river
networks as § = —3X5_, ps In ps, with ps as the relative
number of links at topological distance 8 from the outlet, if S,
is the entropy of a tree of Horton order ) and S is the entropy
of the generator of a fractal tree, Claps and Fiorentino [1993]
showed that the relation S, = (2 — 1)S, holds theoretically
for fractal trees and matches exactly an empirical relation
between S and () found to hold [e.g., Fiorentino et al., 1993,
Figure 8] in natural networks. The same striking analogy was
found with respect to the dependence of entropy on the topo-
logical diameter. Consequently, the coefficient equivalent to S,
estimated on natural networks was used to evaluate the
branching fractal dimension through an empirical equation
relating S, and D, for a set of deterministic fractal trees. The
trees adopted have the same characteristics of the one shown
in Figure 1.

Application of this method to eight rivers in southern Italy
showed a very small variability (=0.029) of the estimated D,
around a mean value of 1.5. The same mean value arose with
the classical estimation of D, made through (9), even though
with a much larger variability (+0.169).

A problem that arises in using the Horton-Strahler frame-
work for the estimate of D, concerns the determination of the
ratios Rz and R, (or R.) because consideration of the whole
basin as a “mature” watershed of order () is often misleading.
What often happens is that the basin outlet is little downstream
of a junction of two subbasins of order () — 1. In these cases
the basin is not really representative of a fully developed net-
work of order ), and this affects the estimates of Horton ratios.
Moreover, Beer and Borgas [1993] and Claps and Oliveto [1994]
showed that application of (9) to pure hortonian networks and
to deterministic fractal trees, respectively, provides reliable
estimations of the theoretical dimension only asymptotically,
that is, far enough from the average configurations of the
natural basins analyzed in literature, which seldom have Hor-
ton orders greater than 5.

Given all this, to make the determination of D, completely
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independent of the Horton ratios and to verify results obtained
by Claps and Fiorentino [1993], it is proposed here to use
relation (6) for estimation of D, in the form

b= [ 241 o

The principle, which will be also applied to estimation of the
other fractal dimensions, is to fix the ruler (as the average link
length) and the scale and to compute the dimension by aver-
aging the values of the ratio In M/In A obtained for all of the
subbasins in the network. If one has a simple method to isolate
all subbasins, intended as the basins draining into every link
within the network, this technique is simple to automate and
does not leave room for subjective choices (e.g., the range of
rulers). This method gives a more complete picture of D, with
respect to the relation D, = In M/In A, proposed by Agnese et
al. [1993], which is relative to parameters M and A of the whole
basin only. Differences in the results of estimation are dis-
cussed below.

Estimation of D, was made on 23 river basins in southern
Italy (see Figure 4 and Table 1 for their main characteristics).
Some of them are subbasins and are dealt with independently,
owing to the presence of a runoff gauging station at the basin
outlet. It was judged useful to determine results of the analysis
for subbasins of a larger basin, as they constitute fixed points of
an analysis performed throughout all possible subbasins. The
channel networks were digitized as midchannel traces of
streams (blue lines) from 1:25000 scale topographic maps, at
data point spacing of approximately 25 m true scale, or 1 mm
map distance.

To verify also the dispersion of values of D, within the
network, the dimension was computed by regression between
the couples of A and M available for all subbasins. Results
obtained in the estimation of D, are reported in Table 2, while
Figure 5 shows an example of the regression between A and M
performed on one of the basins considered. For the basin to
which Figure 5 is related, over 6000 subnetworks were consid-
ered, that is, every link’s subnetwork except for first-order
links.

As emerges from the results in Table 2, the average value
estimated for D, is very close to 1.5, with very low standard
deviation. In Table 2 are also reported the R? of regression and
the estimate of the intercept, which is very close to 1 in all of
the basins, ensuring that M = 1 when A = 1. Given the value
1 of the intercept, the estimates of D, obtained through (11)
are practically the same as those reported in Table 2 (the
average value over all of the subbasins is 1.508 + 0.021).

The estimates obtained for D, confirm the outcome by Claps
and Fiorentino [1993] and compare well with average estimates
obtained by other authors who used relation (9). For instance,
Nikora et al. [1989] obtained D, = 1.50 = 0.27 while Liu
[1992] obtained D, = 1.55 *+ 0.28, with standard deviations
comparable with the one obtained using (9) on the basins
considered here (Table 2). The range of variation of the mean
between these analyses is compatible with the high values at-
tained by the standard deviation. Significantly different esti-
mates, particularly if compared to the standard deviation,
emerge by using the method proposed by Agnese et al. [1993].

Another meaningful comparison can be established with the
results obtained by Moussa and Bocquillon [1993]. These au-
thors estimate the branching fractal dimension on data ex-
tracted by a digital elevation model (DEM) by plotting the log
of the sources arising with changes in the support area 4 versus
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Figure 4. Map of the basins considered in southern Italy.
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somewhat consistent with the one proposed here and produced
values of D, of 1.54, 1.54, and 1.42 for the three basins con-
sidered.

In conclusion, application of four classes of methods for
estimation of D, (the one presented here, the one by Claps and
Fiorentino [1993], the classical one used by Nikora et al. [1989]
and by Liu [1992), and the one used by Moussa and Bocquillon
[1993]), applied either to digitized data or to DEM-extracted
networks, produced results compatible with an average value
of D, = 1.5. These findings indicate that this value could
represent a property of all networks, perhaps as a result of
criteria of most efficient configuration.

3.2. Fractal Dimension of River Networks

A combination of the two definitions (3) and (5a) of the
fractal dimension D of the network can be used for its actual
estimation. Eliminating & between the two cited relations one
obtains

InM

=@y (12)

in which L, represents the straight-line distance between the
two endpoints of the subnetwork mainstream (minimum-path
length). Based on the assumption that n = Z/M, the “char-
acteristic” value of D for a river basin can actually be estimated
as the average value within the network:

Application of (13) to the set of basins under study led to the
results shown in Table 3, while Figure 6, relative to one of the
basins considered, shows the dispersion associated with the
estimation of D. Few negative values obtained for the quantity
in parentheses were not considered to compute the mean
within the basin.

The following comments arise from observation of the re-
sults obtained: (1) For the set of networks considered, the
average value obtained for D is about 1.7; (2) if one gives
confidence to the estimate obtained through (13), the estimate
obtained using Z, L, and M of the whole network (relation
(12)) is again a little biased, even though the difference is less
than one standard deviation; and (3) it is also worth adding
that Moussa and Bocquillon [1993] estimated a value D = 1.74
on the first of the three basins they analyzed (the results on the
others were not reported). This result, obtained from DTM-
extracted data, contrasts with the values obtained by Tarboton
et al. [1988] through the box-counting method that led them
[Tarboton et al., 1990] to state that D should tend to 2.

The ensemble of our and Moussa and Bocquillon’s [1993]
findings allow us to comment that (1) a value of D ~ 1.7 of the
fractal dimension D of river networks could be a property of all
networks, even though the elements supporting this conjecture
are less than those available with respect to the dimension D,;
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Table 1. Maln Characteristics of the Southern Italy River Networks Analyzed

Code Drainage Basln Area, km? Z, km L, km M A Q Ry R,
1.0 Ofanto a S.Samuele 2702.8 5841.9 1527 13385 264 8 3.69 2.18
1.1 Ofanto a Cairano 266.4 840.2 37.1 2383 94 6 4.00 2.14
13 Ofanto a Monteverde 1017.5 2755.7 62.4 6627 145 7 4.06 2.25
1.4 Ofanto a Rocchetta 1111.0 2995.3 715 7143 189 7 4.13 225
12 Atella 175.9 510.6 21.3 1165 80 6 3.78 2.18
15 Arcidiaconata 1239 271.7 234 507 50 ] 4.12 2.39
1.6 Lapilloso 28.5 66.7 12.0 143 36 4 4.34 2.28
1.7 Venosa a p.te ferroviario 204.0 496.5 29.5 1089 86 5 4.78 2.62
1.8 Venosa a p.te S.Angelo 263.0 640.3 40.4 1415 109 5 5.09 2.87
1.9 Locone a p.te Brandi 219.4 566.2 30.6 1577 110 7 3.10 1.81
1.10 Locone a p.te Canosa-Lavello 278.6 668.2 414 1789 132 7 3.19 1.81
2.0 Carapelle 714.9 1134.5 85.2 2149 105 6 3.94 2.39
3.0 Cervaro 539.3 1022.6 875 1837 131 6 4.14 2.48
4.0 Candelaro a p.te 13 luci 1777.9 2748.5 723 5029 123 7 372 2.25
41 Celone a p.te S.Vincenzo 925 191.5 28.3 361 42 5 3.83 2.73
42 Celone a p.te Foggia-Lucera 222.2 355.1 46.3 577 50 5 4.10 2.74
4.3 Celone a p.te Foggia-S.Severo 2335 361.8 49.9 583 53 5 4.09 2.75
4.4 Vulgano 94.1 195.4 24.9 385 37 5 3.79 226
4.5 Salsola a Casanova 44.1 99.1 14.8 199 31 5 3.28 2.30
4.6 Casanova a p.te Lucera-Motta 573 126.1 16.8 245 26 3 3.44 2.55
4.7 Salsola a p.te Foggia-S.Severo 455.4 764.3 50.1 1349 59 6 3.63 2.28
4.8 Triolo 559 140.7 219 381 57 5 3.72 2.31
4.9 Canale S.Maria 58.1 131.0 15.9 317 48 5 2.56 257

Z, total lcngth; L, main stream length; M, total number of links; A, topological diameter; {3, Horton 6rder; Rp, stream number ratio; R,
stream length ratio.

(2) the box-counting method applied to the whole network values reported for D (=~ 1.14), because D, =1.71.5 =

does not give an estimate of D, (as assumed by Tarboton et al.
[1988]), but of D; (3) according to the outcome by Moussa and
Bocquillon [1993], which provides D # 2, one could think that
the box-counting method could be responsible for often pro-
ducing D = 2 in DEM-based networks [see La Barbera and
Rosso, 1989]; and (4) with reference to the composition rule
(2), the average value of about 1.7 found on our 23 basins is
consistent with D, being about 1.5 and with the literature

1.13.

A final comment on the methods formerly proposed in the
literature for the estimation of D is in order. Owing to the
great deal of existing data reporting relations between main
stream length or network total length and basin area and to
hypotheses based on the hortonian framework, most of the
relations proposed in the past for estimation of D contain
area-related parameters, particularly the stream area ratio R 4.

Table 2. Estimation of D, as Exponent of the Linear Regression Between In M and In A, According to Relation M =
aAD :, and Results of Two Other Estimation Methpds

Code Drainage Basin a D, R? In Rg/ln R, In M/In A
1.0 Ofanto a S.Samuele 0.909 1.566 0.977 1.675 1.704
1.1 Ofanto a Caifano 0.870 1.608 0.971 1.822 1,712
13 Ofanto a Montgverde 0.942 1.544 0.973 1.728 1.768
1.4 Ofanto a Rocchetta 0.910 1.570 0.974 1,749 1.693
12 . Atella 0.994 1.519 0.977 1.706 1.611
1.5 Arcidiaconata 0.981 1.521 0.984 1.625 1.592
1.6 Lapilloso 1172 1.380 0.992 1.781 1.385
1.7 Venosa a p.te ferroviario 0.927 1.546 0.968 1.624 1.570
1.8 Venosa a p.te S.Angelo 0.956 1.522 0.974 1.543 1.546
1.9 Locone a p.te Brandi 0.997 1.515 0.989 1,907 1.566
1.10 Locone a p.te Canosa-Lavello 0.990 1.518 0.990 1.955 1.534
2.0 Carapelle 0.958 1.512 0.979 1.574 1.649
3.0 Cervaro 1.026 1.484 0.991 1.564 1.542
4.0 Candelaro a p.te 13 luci 0.901 1.557 0.972 1.620 1.771
4.1 Celone a p.te S.Vincenzo 0.991 1.470 0.981 1.337 1.576
42 Celone a p.te Foggia-Lucera 1.024 1.430 0.970 1.395 1.625
4.3 Celone a p.te Foggia-S.Severo 1.046 1.414 0.970 1.397 1.604
4.4 Vulgano 0.909 1.577 0.979 1.634 1.649
4.5 . Salsola a Casanova 0.975 1.558 0.983 1.426 1.541
4.6 Casanova a p.te Lucera-Motta 0.999 1.469 0.966 1.320 1.688
4.7 Salsola a p.te Foggla -S.Severo 0.946 1.538 0.976 1.564 1.768
4.8 Triolo 1.045 1.494 0.992 1.591 1.470
49 Canale S.Maria 1.080 1.426 0. 991 1.392 1.488
Mean e 1.510 1.606 1.611
0.057 0.175 0.100

Standard deviation
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Y =0.9095 * X*1.566 R-squared = 0.9772
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Figure 5. Regression between the total number of links M
and the topological diameter A for all subbasins, with A > 1, of
the Ofanto river at S.Samuele. The estimated value of D, is
1.566.

However, when relations based on R, are used, results turn
out to be unreliable, as can be recognized by the estimates
provided by Rosso et al. [1991].

In particular, Rosso et al. [1991] compared twa relations for
estimation of D. The first is

In (RB)
‘In (RY)

(14)

Table 3. Estimates of the Fractal Dimension D of the
River Network

Code Drainage Basin D* Dt
1.0 Ofanto a S.Samuele 1.746  1.777
1.1 Ofanto a Cairano 1.798  1.887
13 Ofanto a Monteverde 1.809  1.931
1.4 Ofanto @ Rocchetta 1.802  1.910
12 Atella 1.740  2.077
15 Arcidiaconata 1705 1.859
1.6 Lapilloso 1.742  1.673
1.7 Venosa a p.te ferroviario 1.729  1.893
1.8 Venosa a p.te S.Angelo 1727 1.829
1.9 Locone a p.te Brandi 1.779  1.909
1.10 Locone a p.te Canosa-Lavello 1769 1.791
2.0 Carapelle 1.778  1.646
3.0 Cervaro 1737 1734
4.0 Candelaro a p.te 13 luci 1.837 1.923
4.1 Celone a p.te S.Vincenzo 1.629  1.592
42 Celone a p.te Foggia-Lucera 1.642  1.553
4.3 Celone a p.te Foggia-S.Severo 1.643  1.581
4.4 Vulgano : 1.639  1.638
4.5 Salsola a Casanova 1.694 1.640
4.6 Casanova a p.te Lucera-Motta  1.630  1.688
47 Salsola a p.te Foggia-S.Severo 1713  1.744
4.8 Triolo - 1.606 1515
4.9 Canale S.Maria 1.607  1.625
Mean 1717 1757
Standard 0.070  0.149
deviation

*Obtained throhgh (13) averaged on all subnetworks in the basin.
tObtained using (12) considering the three parameters related to
the whole network.
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Figure 6. Fractal dimension D of the river network evalu-
ated through (13) for all subbasins of Ofanto river at S.Sam-
uele. Average value of D is 1.746.

which was obtained also by Nikora [1988] and Nikora et al.
[1989]. Relation (14) is obtained combining

. In (R;) 15
In (R,) (15)

with the composition rule D = D, In Rgz/ln R, . With (14),
Rosso et al. [1991] obtained results in a very wide range (1.44 +
1.91). The second relation arises from the interpretation given
by the above authors of the relation

D;=2

Z o« Ab (16)

found in empirical studies based on large samples [e.g., Gregory
and Walling, 1973, Figure 5.12]. Rosso et al. [1991] suggested

that the total network length should depend on the square root
of the area according to

Z « (AP (17)
which is an expression equivalent to
LY oc 412 (18)

proposed by Mandelbrot [1982] to relate fractality of individual
streams to the empirical relation found by Hack [1957] be-
tween area and mainstream length. Incidentally, Mandelbrot
[1982] assumed Z « A, according to the postulate that net-
works were plane filling. It is worth remarking that relations
(17) and (18) implicitly assume A/* as equivalent to L, so
that they recall the definition formula:

Z =i oLp (19)

obtained combining (3) and (5a) and substituting M, with
Z /7. Using relation (17), Rosso et al. [1991] obtained again a
significantly wide range of estimated D(1.67 + 1.90) even
though the value 1.67 has a particular relevance since derives
from the average of exponents found on a large sample by
Gregory and Walling [1973]. '

On the basis of only these results and even adding the result
of the application of (17) to our sample of 23 basins (D =
1.93, with R? = 0.97) it is very difficult to-rate the efficiency
of (17) as a method to estimate D, even because the theoretical

formula (19) does not correspond exactly to (17) since '~ © is
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Table 4. Estimates of the Sinuosity Fractal Dimension D,

CLAPS AND OLIVETO: FRACTAL DIMENSION OF RIVER NETWORKS

Code Drainage Basin D:* D, Dt D3
1.0 Ofanto a S.Samuele 1.115 1.135 1.124 1.101
1.1 Ofanto a Cairano 1.118 1.174 1.118 1.134
13 " Ofanto a Monteverde 1.172 1.251 1.125 1.101
1.4 Ofanto a Rocchetta 1.148 1.217 1.126 1.123
12 Atella 1.145 1.367 1.100 1.123
1.5 . Arcidiaconata 1.121 1.222 1.109 1.115
1.6 . Lapilloso 1.262 1.212 1.101 1.086
1.7 : Venosa a p.te ferroviario 1.118 1.224 1.109 1.119
1.8 Venosa a p.te S.Angelo 1.135 1.202 1.112 1.126
1.9 Locone a p.te Brandi 1.174 1.260 1.148 1.142
1.10 Locone a p.te Canosa-Lavello 1.165 1.180 1.145 1.121
2.0 Carapelle 1.176 1.089 1.138 1.100
3,0 Cervaro 1.170 1.168 1.161 1.174
4.0 Candelaro a p.te 13 luci 1.180 1.235 1.259 1.056
4.1 Celone a p.te S.Vincenzo 1.108 1.083 1.158 1.080
42 Celone a p.te Foggia-Lucera 1.148 1.086 1.156 1.078
4.3 Celone a p.te Foggia-S.Severp - 1.162 1.118 1.157 1.083
44 Vulgano ' 1.039 1.039 1.093 1.078
45 Salsola a Casanova 1.087 1.053 1.122 1.050
4.6 Casanova a p.te Lucera-Motta 1.110 1.149 1.112 1.075
4.7 Salsoia a p.te Foggia-S.Severo 1.114 1.134 1.155 1.063
4.8 Triolo 1.075 1.014 1.113 1.041
49 Canale S.Maria 1.127 1.140 1.106 1.029

Mean 1.138 1.163 1.132 1.096

Standard deviation 0.045 0.083 0.035 0.035

*Obtained from D* of Table 3 using the composition rule D = D,D, with values of D, taken from Table 2.
tObtained from D7 of Table 3 using the composition rule D = D,D_ with values of D, taken from Table 2.

$Obtained through (22) averaged on all subnetworks in the basin.

§Obtained using (21) considering the three parameters related to the whole network.

also a function of D. All considered, it seems that there are
quite few justifications for the use of area-based methods for
the estimation of the fractal dimension of river networks.

3.3. Estimation of the Fractal Dimension of Stream
Courses

Since the hypothesis of Mandelbrot [1982], who related
Hack’s [1957] law to the possibility that the main stream in a
network could be a fractal curve, fractal properties of water-
courses have been widely investigated. According to the em-
pirical results by Hack [1957], main stream length and basin
area are related as

L o A4® (20)

with o =~ 0.6. Later, Gray [1961] estimated on a different set of
data a value of o = 0.568, which, by means of (18), expressed
by Mandelbrot [1982), leads to D, = 2a = 1.136 ~ 1.14. This
result has been substantially confirmed by direct evaluations of
D, [e.g., Hjelmfelt, 1988] obtained generally by means of the
Richardson method [e.g., Feder, 1988]. A recent review of the
most significant papers on this subject can be found in work by
_Nikora et al. [1993].
On the other hand, Snow [1989] and Nikora et al. [1989,
-1993], as well as Ijjasz-Vasquez et al. [1994], have worked on a
more general classification of the main stream curve as a self-
affine, rather then a self-similar, object. In particular, Nikora et
al. [1989] suggested that relation (18) is not related to self-
similarity of river networks, and Nikora et al. [1993] provided
an explanation of (18) in self—aﬁine terms. At the point reached
by the research on this topic, self-similarity of watercourses
seems to be limited to relatively small scales only, while the
role of other factors, such as valley morphology, cannot be

disregarded in a general analysis of river plan forms [Nikora et
al., 1989].

Since the frame of analysis adopted here is that of self-
similar systems, it is required to verify that tools usually
adopted for estimation of the self-similar dimension of indi-
vidual streams are used with reference to scales compatible
with the self-similar behavior. To this end, it must be pointed
out that the ruler n used to measure channel lengths, corre-
sponding to the resolution of the digitizing process, is certainly
taken in the range of scales defining self-similar behavior. This
range, according to Nikora et al. [1993], is delimited by the
internal and external scales of fractality, respectively related to
the river width and the width of the river valley. With this in
mind, we have completed the analysis of river networks con-
sidering the individual streams as self-similar objects, aiming to
clarify some concepts related to this field and to possibly cor-
roborate literature data obtained according to this hypothesis.

In the spirit of the framework of deterministic fractals, the
method suggested here for estimation of D, is to use strictly
the definitions (4) and (5b), from which one obtains

_ In A
* 7 In (Ly/m)

in which the ruler n = L/A represents the average link length.
Again, the estimate of D, for the whole network is suggested as
the average of the values computed for all of the network
subbasins: '

(21)

In A ] (22)

Ds:E[ln (Lo/m)

By applying (22) over all the basins in Table 1, we obtaiﬁed
an average value of 1.13 for D, (Table 4). The dispersion
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Figure 7. Sinuosity fractal dimension D, evaluated through
(22), versus main stream length (in kilometers) of the principal
subbasins of the Ofanto river at S.Samuele (the subbasins can
be identified in Table 1 and Figure 4).

associated with the estimate in each basin is about the same
that results from the estimation of D. Figure 7 shows the
evolution of D, among the “main” subbasins within a great
basin.

Results obtained in the estimation of D can be compared
with the results of other methods reported in literature, which
consist in direct estimations [e.g., Hjelmfelt, 1988] or indirect
methods based on the use of the length-area relation (using
relation (18)) or of the Horton ratios (using relation (15)). The
comparison shows a substantial agreement between our results
and these obtained with all of the literature methods, even
though it is to emphasize that the value D, = 1.13 obtained
here is identical to the “reference” value obtained by Gray
[1961]. It is interesting to consider that our estimation of D,
accounts, through an average value, for the sinuosity of the
main streams of all of the subnetworks within each basin.

The similarity of ours and Gray’s [1961] results doesn’t end
here, since we have tested on our basins a little-cited result by
Gray [1961], who performed a regression between L and L,
(length to the center of area) and obtained L, o« L%
corresponding to L « L1.°*. Considering L, to be analogous
to Ly (both are scale-invariant) the exponent has to be the
fractal dimension D because arises from the same relation

L=noLp, (23)
equivalent to (19), on which is indirectly based the estimation
of @ = D,/2. However, the value obtained by Gray is clearly
different from 1.14, and exactly the same result (1.06 = 0.02)
arises from averaging the exponents B (not reported here) of
the relation L « L& estimated on all the basins of our sample.
An additional confirmation comes from estimations made by
Ljasz-Vasquez et al. [1993], who obtained 1.05 + 0.02. The
reasons of this discrepancy are not apparent and stimulate
further investigations.

With regard to the impact of our results on the composition
rule (2), one can notice that the mean value D, = 1.13
obtained for the whole sample is identical to the one (Table 4)
obtained by application of (2). This result would appear obvi-
ous considering that for deterministic fractals, combining re-
lations (13) and (22) on the basis of the assumption that
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Z/M = L/A = m produces relation (2). Howevér, the above
assumption does not hold for the river networks we have an-
alyzed. In our sample the ratio L/A is generally greater than
Z/M for larger basins and the contrary occurs for the smaller
ones. This inequality has some impact in the actual estima-
tions, since applying relation (22) with = Z/M on the whole
set of basins we obtained D, = 1.090 *+ 0.093, with a notable
increase of the standard deviation with respect to the results of
Table 4.

In conclusion, results obtained in this analysis cannot be
considered by themselves a proof of validity of rule (2) for
natural basins. However, the results for estimation of D, and
D, are well supported by literature data and, even though the
same support doesn’t apply to the estimates of D, these latter
share with the former the very small amount of variability
found on the set of basins considered. This homogeneity sub-
stantiates the validity of (2) with regard to the average values,
and suggests that at least at a regional scale, basins tend to the
same geomorphologic patterns.

3.4. Variants of the Estimation Method

Fractal dimensions estimated through relations (11), (13),
and (22) are the result of an average involving all of the
subbasins within the network. Therefore this estimation gives
considerable weight to the small subbasins, whose number
increases with decreasing M and A. One can avoid this effect by
grouping the subbasins according to a ranking parameter (es-
sentially the Horton order and the topological diameter), com-
puting the mean fractal dimension for each group, and using
these mean values to compute the final average. To verify if
this latter procedure gives rise to significant deviations from
the reference values shown in the previous sections, we recom-
puted correspondingly the fractal dimensions for the whole set
of basins.

By -grouping the subbasins according to the Horton order,
we obtained estimates of the three fractal dimensions that are,
in average over all the set of basins, 1.533 = 0.034, 1.683 +
0.086, and 1.111 = 0.018 for D,, D, and D,, respectively.
Further, dimensions D, and D,, whose expressions contain the
topological diameter A, were also recomputed by ranking the
subbasins based on A. The average values obtained over the
whole sample were D, = 1.540 + 0.057 and D, = 1.109 +
0.038. D, was also estimated as the slope in the linear regres-
sion between E[In M], and In A (with intercept set to zero),
which again is based on the ranking according to the topolog-
ical diameter. This last computation produced D, = 1.546 +
0.065.

From these estimates a slight increase of the regional aver-
age of D, from the value of Table 2 can be recognized. This
shift, that in all cases is smaller than one standard deviation, is
mainly due to the increase in the values estimated on the larger
basins (Ofanto and Candelaro) in which the mean D, for the
grouped subbasins displays an increase with the higher Horton
orders.

This lack of homogeneity, which certainly offers an oppor-
tunity for further investigation, does not have significant effects
on the analysis presented here, which essentially deals with
estimation of average or “characteristics” values related to the
whole basins. To this end, results of the averages obtained by
grouping the subbasins do not add substantial arguments to the
discussion on the method to use for estimating fractal dimen-
sions, and we can conclude that relations (11), (13), and (22)



3132

can be confirmed as the suggested ones for estimation of D,,
D, and D,, being the most intuitive and simple to use.

\

4. Final Remarks

In the ensemble of studies on the scaling properties of river
networks, one can seldom find proofs of fractality of rivers or
of networks associated with convincing measures of the fractal
dimensions. Similarly, the most cited composition rule D =
D,D,, between sinuous and topological fractal dimension, was
in our opinion never proven convincingly. Therefore the con-
jecture that fractal dimensions for elongation and branching of
rivers present relatively small departures from some “most
likely” values was not substantiated in a satisfying way. On the
other hand, in the analysis of river systems it is important to
recognize if some large deviations from a “rule” depend on the
low efficiency of the estimation tool or on some structural
differences between geographical regions.

Moving from these considerations, in this paper new ele-
ments are added to the discussion, through defining formulas
for the estimation of fractal dimensions obtained using the
most basic definitions in fractal geometry and on the basis of
the analogy between river networks and deterministic fractal
trees. With reference to models of deterministic fractal trees,
composition of the branching and sinuosity mechanisms has
also been reconsidered, so that the rule D = DD, is sup-
ported with arguments that also clarify some previous contri-
bution to this topic.

Relations (11), (13), and (22) are suggested for estimation of
fractal dimensions D,, D, and D, respectively, as mean values
computed throughout all subnetworks in the basin. The results
obtained on a sample of 23 basins in southern Italy, in addition
to other data arising from the literature, allow us to draw the
following conclusions.

1. “Most likely” values of D, =~ 1.5, D, ~ 1.1, and D ~
1.7 arise from this analysis and many literature data; from
these results it can be concluded that channel network struc-
tures are definitely non-plane-filling.

2. Standard deviations found in our sample related to the
estimation of the “most likely” values are below 0.1 for all of
the cases, far smaller than comparable deviations coming from
applications of previous formulas; the most likely values above,
associated with the referred homogeneity, could be taken as a
support of the validity of the rule D = D.D,.

3. Topological fractal dimension D, is related to parame-
ters of strict topological meaning; the interest in the correct
estimation of D, is related to the findings by Claps et al. [1996]
about the role of D, in a maximum-entropy form of the hy-
drologic response of fractal networks.

4. Elements supporting the use of area-based methods for
estimation of fractal dimensions involve some uncertainties
and sometimes show a considerable dispersion of results; in
our opinion there are no reasons to use areas to estimate
parameters such as D, and D, which are related to “linear”
objects, as are river streams. It seems more coherent to use
areas to evaluate properties of the “drainage basins,” as made,
for instance, by Nikora [1994].

It is worth pointing out that the investigation of fractal
properties of networks was limited here to a “fist-order” anal-
ysis, on the basis of the analogy between river networks and
deterministic fractal trees, with the goal of highlighting some
common network patterns that can be useful in the derivation
of the hydrological response. In this approach some points
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emerged that require further investigations, perhaps in a “sec-
ond-order” (multifractal or self-affine) analysis. Nevertheless,
it is thought that the results collected about the uniformity of
patterns among river networks, particularly if supported by
further study, can open new perspectives in the study of the
hydrological response of river networks.

Appendix 1: Deterministic Fractal Models
of River Networks

Construction of deterministic fractal trees is a useful tool as
a support to the analysis of self-similar (or self-affine) charac-
teristics of river networks. The visual appearance of synthetic
networks whose generation is completely controlled can allow
one to discover analogies between some features of fractal
trees and of natural networks [e.g., Claps and Fiorentino, 1993].

A number of authors have used deterministic models of
fractal trees [e.g., Mandelbrot and Vicsek, 1989; Claps and
Fiorentino, 1993; Nikora and Sapozhnikov, 1993; Peckham,
1995], usually considering limited options in their configura-
tions, The attempt here is to clarify some issues related to
models of self-similar trees resulting from composition of mod-
els for branching and for sinuosity.

Sinuesity Deriving From Fractality of Individual Segments

A first class of compound models of self-similar trees could
be obtained by following the reasoning by Tarboton et al. [1990]
and La Barbera and Rosso [1990], who considered the fractal
nature of each single Horton stream in superimposition to the
scaling due to branching. In particular, starting from the ex-
pression (9) by La Barbera and Rosso [1989] for a generic
fractal dimension D of river networks, the hypothesis that
first-order streams are themselves fractal with dimension d led
Tarboton et al. [1990] to give for the fractal dimension D,
related to the river network as a whole, the expression

In (RB)
"In (R) (AD
and led La Barbera and Rosso [1990] to obtain
1 In (R B)
b= n®) (A2)

Incidentally, application of (A1) and (A2) gives practically the
same results for d close to 1. '

Arguments against the hypothesis of fractal first-order
streams were provided by Beer and Borgas [1993], who con-
cluded that on a pure hortonian system, D should be expressed
by (9). In practical terms this hypothesis involves that at a given
resolution, represented by the length mg of the measuring
stick, the euclidean length ; g, is not proportional to mg but to
14 ¢, with d as the fractal dimension.

To build a model according to this assumption, one should
consider that the growth of the fractal object should occur
according to two independent mechanisms: the branching
growth, in which links are treated as straight initiators regard-
less of their internal structure, and the sinuous growth, in
which at each replacement the internal structure of links be-
comes more complex according to the sinuous fractal model.

The condition of independent fractal growth of the network
as a topological structure and of the links as individual fractal
objects is difficult to achieve in a deterministic fractal tree. The
attempts we made produced structures whose constructions
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weren’t compatible with the rules of growth of fractal sets.
These rules require that it is clearly stated what is the gener-
ator to replace to the euclidean distances between the points
that establish the connection rule (that reproduce the initia-
tors), with some possible additional symmetries that uniquely
determine the transformation. Even disregarding the problem
of drawing sets like these, one should consider that the fractal
dimension d of the individual links differs from the fractal
dimension D, of the main stream, which is the one that takes
advantage from the collection of empirical results existing in
literature.

In conclusion, the hypothesis of fractality of [, does not
seem suitable for construction of deterministic fractal trees
and, considering also the alternative construction discussed
below, seems not to be the right one in view of the reproduc-
tion of the fractal aspects of the river network as a whole.

As an additional subjective comment, it can be considered
that when observing the network at a greater resolution, one
should expect to see more details of a previously existing
stream, say, between the same two endpoints, and to discover
new, small, and simpler, streams. This point of view is repro-
duced by a model with a fractal main stream and nonfractal
first-order streams. On the other hand, if /, is assumed fractal,
when resolution increases, the new branches appear already as
complex as the streams that could be observed previously. In
our opinion the former configuration is realistic, while the
latter is unrealistic.

Sinuosity Deriving From Fractality of Watercourses

Unlike for individual segments, several clues exist for the
fractality of the whole watercourses (see section 3). Composi-
tion of this aspect with the self-similarity due to branching can
be made as suggested by Nikora and Sapozhnikov [1993)], who
considered a network model obtained by recursive replace-
ment of a generator in which a treelike curve with straight
main stream is combined with a Koch curve in order to obtain
a fractal mainstream. A typical construction according to this
model is shown in Figure 3, for which, according to definition
(1), composition of fractal dimensions turns out to be D =
D.D,.

However, this composition rule does not have general valid-
ity. Indeed, considering a different topological scheme (Figure
8), with the same Koch curve but a different tree, the appear-
ance of the compound generator can be obtained in different
ways, all with the same fractal dimension D, which is no longer
equal to D.D,.

Considering that the number of links of the mainstream is

(a) (b) (c) (d) (e)

Figure 8. Representation of the possible combinations of
two fractal structures. Links between dots represent the initi-
ators for subsequent growth stages. For structure (a) it is M, =
3,m, = 1/2,and D, = 1.58; for (b) itis M, = 4, n, = 1/3,
and D, = 1.26; for structures (c), (d), and (e) M = 5, n =
1/3, and D = 1.465.
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Figure 9. Two examples of construction of fractal structures.
Each example shows (a) the topological structure, (b) the sin-
uous structure, and (c) the resulting fractal structure. The

. dashed line represents the initiator of the fractal object.

represented at the same time by 1/, (for unit-length initiator)
and by M, if the condition

M, = 1/n, (A3)

is satisfied, the rule expressed by (2) is also respected without
exceptions. On the basis of this assumption, equalities M = M,
and n = =, produce, for the compound structure, D = —In
M/nyn=-InMJ/lan, =InM/lnn, -InM/lnn, = DD,.
This condition reduces the options in the drawing of the gen-
erator only to considerations of symmetry.

A clean application of the composition of branching and
sinuosity requires the initial tree to be a pure topological struc-
ture (equal links, squared angles) with unit-length initiator.
Figure 9 shows two examples of the building of symmetric
fractal trees with sinuous stream paths according to the scheme
proposed here. The initiator was also drawn in the figure to
clearly define the way these objects grow. It should be noted
that the constraint (A3) does not prevent the building of struc-
tures with whatever fractal dimensions because a sinuous struc-
ture with a given M, can assume infinite configurations, for
example, by varying the angles a between the links (see Figure 9).

Appendix 2: Obtaining D = D,D_ on Horton
Systems

The composition rule (2) can be obtained for hortonian
systems without using the hypothesis that /; is fractal. To be
fractal, a hortonian system needs its properties to be consid-
ered asymptotically, as, for instance, the one regarding the
dependence of the total network length on the length of first-
order streams, expressed by
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ZQ+1 . ll,Q+1
ZO ll,n

Ry (A4)

or the dependence of the main stream length on /,, expressed
by

LQ+1 _ ll,Q+l
LQ ZI,Q

‘R, (AS5)

Note that the latter relation is exact if the length L o of the
Qth-order stream is considered. Adopting a ruler length 7,
proportional to I, , the increase of Z and of L with the
increasing detail due to the change of scale will be governed by

Zo _ (11,n+1> =p
Zg lig

(A6)
Lo _ <11,0+1) s
Lg Lia
which involve, owing to (A4) and (A5),
Ry = (“f’“) -
1,9
A (A7)
LO+1
R, =~
L ( ll,Q >
from which one obtains
In Ry
"R, (A8)

To verify that the ratio In Rz/In R, actually represents the
topological fractal dimension, it is easy to recognize that in a
model of compound deterministic fractal tree asymptotically
results R, = M and R; = M,. If the hypothesis (A3) is
introduced, it follows also that M = M,, so that

lnRB_
InR,

In M,
In 7,

=D. (A9)
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