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ABSTRACT

A conceptual-stochastic approach to short time runoff data modelling is proposed,

according to the aim of reproducing the hydrological aspects of the streamflow process and of

preserving as much as possible the dynamics of the process itself. This latter task implies

preservation of streamflow characteristics at higher scales of aggregation and, within a

conceptual framework, involves compatibility with models proposed for the runoff process at

those scales. At a daily time scale the watershed response to the effective rainfall is considered

as deriving from the response of three linear reservoirs, respectively representing contributions

to streamflows of large deep aquifers, with over-year response lag, of aquifers which run dry

by the end of the dry season and of subsurface runoff. The surface runoff component is

regarded as an uncorrelated point process. Considering the occurrences of effective rainfall

events as generated by an independent Poisson process, the output of the linear system

represents a conceptually-based multiple shot noise process. Model identification and

parameter estimation are supported by information related to the aggregated runoff process, in

agreement to the conceptual framework proposed, and this allows parameter parsimony,

efficient estimation and effectiveness of the streamflow reproduction. Good performances

emerged from the model application and testing made with reference to some daily runoff

series from Italian basins.

Key words: Conceptual-stochastic models; Shot Noise; Streamflow simulation; Time

aggregation.

1.   Introduction

Many hydrologic applications, from the water resources management to the modelling of

water quality, require synthetic time series of streamflows, as those generated by stochastic

models. Depending on the particular problem at hand, reproduction of the streamflow process

is desired at different resolution. In the past thirty years, several classes of stochastic models

were proposed, which generally looked at each time scale of aggregation individually.
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This paper focuses on the reproduction of short-time runoff data (say, daily to weekly)

according to two main requirements: 1. a physically-consistent model structure, which has

significant advantages when dealing with inadequate data; 2. the model capability to coexist

with corresponding models suited for more aggregated scale, in a homogeneous framework for

streamflow modelling.

Short time streamflows are characterised by the presence of the intermittent pattern of rain

events and by the skewed nature of the hydrographs, with sudden discharge increases and slow

recessions. These features prevent the use of ARMA-type of models [Box and Jenkins, 1976],

which are successfully applied to monthly and annual data that − as required in the canonical

ARMA framework − can be somewhat reduced to stationary continuous processes.

Models which explicitly consider the intermittent pattern of rain events date back to Bernier

[1970], who introduced in streamflow modelling the filtered Poisson process [e.g. Parzen,

1962]. The structure of this process, usually referred to as shot noise, consists of a point

process, that reproduces the occurrence of effective rainfall events, which acts as the input of a

system that is representative of the transformations operated by the watershed. Runoff is

obtained by filtering the input through the system response function.

The first comprehensive work on shot noise models of runoff is due to Weiss [1973, 1977],

who introduced a model in which effective rainfall events are reproduced through a Poisson

process of occurrences coupled to exponentially-distributed intensities. Response of the

watershed consists of two components, one representing the base flow and the other the direct

runoff. Both are assumed to have an exponential response to precipitation. A two-component

shot noise process results from this scheme, and the method of moments is proposed for

parameter estimation.

A bivariate version of Weiss' model was proposed by Koch [1985], with more strict

correspondence between parameters of the physical system and model parameters. Another,

more recent, improved variant of Weiss' model is due to Cowpertwait and O'Connell [1992],

who proposed the Neyman-Scott model to reproduce the effective rainfall process.

Between Weiss [1973] and Cowpertwait and O'Connell [1992], several other approaches,

often based on the shot noise formulation, were proposed for short-time runoff modelling. In a
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rough classification of the literature on the subject one can distinguish: a. models in which the

response function derives, as in Weiss [1973], from a linear conceptual scheme of the

watershed [e.g. Pegram, 1980; Hino and Hasebe, 1981; Vandewiele and Dom, 1989]; b. non-

linear or non-parametric models [Treiber and Plate, 1977; Yakowitz, 1979]. Some of these

models use Markov processes as input [Treiber and Plate, 1977; Yakowitz, 1979; Vandewiele

and Dom, 1989] and often the input process is reconstructed by inverse estimation [Treiber

and Plate, 1977; Hino and Hasebe, 1981; 1984; Battaglia, 1986; Kron et al., 1990; Wang and

Vandewiele, 1994] as opposed to Weiss' approach, in which parameters of the input model are

directly estimated from runoff through the moments method.

As emerges from analysis of the literature, much work was made in the attempt to

reproduce the peculiar statistical features of short-time streamflows. Most of the models

proposed, however, are based on the assumption that enough data is available for the process

under study. Therefore, much work is still needed toward the achievement of sufficient model

performances in condition of scarcity or lack of data, as well as in combination with

corresponding models to be used for generation of data at more aggregated scales. The latter

point becomes important when simulation of runoff data in a water resources system is

required at different scales, due to different characteristics of the system elements or to

different goals of the planning.

When both short-time and aggregated data are required, one is practically forced to use

different models, because models for, say, daily runoff pay little or no attention to statistics

referred to higher scales.

As an attempt to give an answer to the above-mentioned points, the building of a shot noise

model was conceived in this paper under the framework of models with stochastic input and

deterministic conceptual watershed response. The substantial step forward with respect to

previous similar models is in the consideration that, to comply with the process dynamics at all

of the scales of interest, the distinction in the watershed response of only two components (one

fast and one slow) is inadequate. To provide more detail in the watershed response,

information is transferred from aggregated data both in model identification and in parameter

estimation, according to the approach proposed by Claps et al. [1993]. This scheme provides
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parsimonious and efficient models, with parameters that can be validated and related to

physical variables in view of their determination in ungauged stations.

The main features of the structure of the proposed model are presented below.

2.   Model Structure

2.1.   Stochastic model of the effective rainfall

The task of selecting a stochastic process representative of the effective rainfall presents

serious difficulties, particularly if short aggregation interval are considered, due to the fact that

the natural process is unobserved. At the stage of the selection of a broad class of stochastic

models, it can be sufficient to assume that effective rainfall retains most of the stochastic

characters of total rainfall. This assumption, however, needs to be substantiated properly at the

application stage, and this at least requires that the series of the effective rainfall must be

inversely estimated. This point will be discussed in the next section.

In our approach to model building, the choice has gone toward the class of point processes,

which are physically-based and can be expressed in functional form. The alternative class of

Markovian processes is not as attractive, because they are discrete processes which do not

preserve their structure in the aggregation.

Among point processes we have considered the classical marked Poisson white noise

processes [e.g., Todorovic and Yevjevich, 1969; Eagleson, 1978] and the ones reproducing the

rainfall events as a sequence of storms made of clusters of rain cells, such as the Neyman-Scott

or the Bartlett-Lewis processes [e.g., Kavvas and Delleur, 1981; Rodriguez-Iturbe et al.,

1984; 1987]. The occurrence of rainfall events or, in cluster processes, the occurrence of

storms, are usually modelled by a Poisson point process. The choice of the particular model to

use is mainly driven by the scale of aggregation considered, because serial correlation

decreases with the aggregation.

For aggregation scales up to 1-2 days, rainfall data present significant autocorrelation,

which is generally reproduced correctly by cluster-type models (see, e.g., Bo et al., 1994).

However, it is not guaranteed that the same degree of correlation exists on the effective
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rainfall, which is an estimated process with a structure that depends in part by the configuration

of the watershed response model. As a matter of fact, application of cluster-type models to the

effective rainfall turned out to be unsatisfactory even on daily data. In particular, Cowpertwait

and O'Connell [1992] attempted to directly estimate the four parameters of a Neyman-Scott

model with exponential instantaneous pulses within a shot-noise model of daily streamflows

and we applied the same model directly to our data obtained by inverse estimation. In both

cases it was not possible to detect the "within storm" cellular structure of the effective rainfall,

which represents the peculiar feature of this kind of models.

Given this outcome, it was judged that the two-parameter Poisson white noise model with

exponential pulses (PWNE) represents a reasonable choice for scales of aggregation greater

than one day, even because the effective rainfall process is only the input to a complex system

that induces significant transformations on it, so that it is not guaranteed that disregarding

some autocorrelation in the input will have a significant impact on the features of the generated

streamflow series.

In conclusion, considering also that the method of selection of the aggregation scale

proposed in this paper, discussed in the next section, does not necessarily require the analysis

of data at the daily scale, it appears that the use of models more complex than the PWNE can

only be proposed in a more refined framework, that allows efficient parameter estimation and

justifies adequately the reduction in parsimony due to the greater number of parameters.

2.2.   Components of the watershed response

Effective rainfall reaches the basin outlet through three main runoff components: baseflow

(return flow from groundwater), subsurface flow (i.e. interflow, representing rapid flow

through pipes, macropores and seepage zones in the soil) and saturated overland flow (surface

flow). The two latter components form the direct runoff (or quickflow).

Separation of the effective rainfall into the above components is non-linear, because the

relative weight between direct and groundwater runoff depends on the infiltration capacity,

that is function of the soil moisture state and of the intensity of rainfall. This non linearity is not

considered here, essentially because it is thought that for the aims of the analysis undertaken it
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is more important to test how well the proposed framework is able to reproduce main runoff

process features at different frequencies.

Regarding the baseflow, Claps et al. [1993] showed that two different types of

groundwater components can be clearly identified from analysis of runoff series. In particular,

Claps et al. [1993] clarified that even in small basins annual data can be autocorrelated due to

the presence of a groundwater contribution with very slow response time. In large basins, the

hydrogeologic scheme could be more complex, but it is convenient, following the logic of

conceptualisation, to assume in all cases that when annual time series are autocorrelated that is

due to the presence of one large, deep, aquifer.

In monthly data autocorrelation is present, regardless of seasonality, even when annual

runoff is uncorrelated. Thus, there exist an independent groundwater element which introduces

memory in runoff data with a delay time of the order of few months. This over-month

groundwater component is due to the presence of aquifers which run dry within the dry season,

such as, for instance, overflow springs.

As regards direct runoff, if the basin is sufficiently large, even on daily data one can

recognise the presence of both the subsurface and the surface runoff components.

Therefore, from this analysis it follows that one cannot exclude that all four of the above

components can be identified from the streamflow dynamics on a short time scale.

Consequently, the most general watershed scheme proposed includes four conceptual elements

in parallel, which reduce to three if the over-year groundwater is absent.

The basin response function h(t) is assumed linear and its form derives from the linear

combination of the individual responses of its components:
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In (1) the impulse responses u t c k ei i i
t kia f = −/ /  of linear reservoirs represent the individual

IUH of the groundwater and subsurface components, where the subscript i increases with the

component lag time. So, k3 is the storage coefficient of the over-year groundwater component.
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Coefficients ci, which are considered constant, distribute the input volume among system

elements, according to the continuity condition cii∑ = 1.

The response function of the surface component is indicated in (1) as u0(t) because, depending

on the basin size and the time scale considered, it can be taken as a more or less complex

function, becoming a Dirac delta function if basin surface response lag is enough smaller than

the time interval of data aggregation.

Being the output of a linear system, runoff X(t) is derived from the convolution integral

 X t h dI ta f a f a f  = −
+∞

z τ τ
0

(2)

where dI(τ) is the input process. Considering the effective rainfall as a process of instantaneous

pulses following a compound (or marked) Poisson process [e.g. Snyder, 1975] and assuming

that pulses are uncorrelated and the distribution of their intensities is independent from the

process of occurrences, the runoff process (2) represents a filtered Poisson process.

Convolution integral (2) gives the representation of a continuous shot noise process, while a

discretized form is needed in the applications. The scheme adopted for discretizing  the

proposed model is shown in the Appendix.

3.   Model Building

3.1.   Identification of the basin response

Based on the above considerations, identification of model structure only consists in

evaluating the presence of an over-year groundwater component. One may also want to assess

if the daily resolution is sufficient to reproduce the surface runoff with some delay using, say,

an exponential IUH.

The identification procedure should start with a check on the presence of autocorrelation in

annual data, which is a statistical information to preserve. However, in the series we have

analysed, autocorrelation has seldom a clear statistical significance, mainly due to the limited

amount of data available. Claps et al. [1993] discussed this aspect with regard to identification
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of the stochastic model of annual flows, and suggested that the definitive test for the existence

of the over-year groundwater component is represented by the comparison of estimates of

parameters k3 and c3 with two hydrological indexes, called DFI and SFI, which have the same

meaning.

The DFI (deep flow index) was defined as the ratio between the mean of annual minima of

the mean monthly discharge and the average total discharge. The spring flow index (SFI)

represents the ratio between the average of annual minima of the mean daily discharge and the

average total discharge. Since the SFI is more sensitive to measurement errors, it is suggested

to use it only as a check index.

If the above evaluations exclude the presence of an over-year component, the conceptual

model of watershed will include only three linear elements, accounting for the over-month

groundwater, the subsurface and the surface runoff.

In the presentation of the basin response function, the surface runoff component was left as

a generic IUH. Considering scales of interest ranging from one to seven days, the form of the

surface IUH can result significantly smoothed by aggregation, depending on its characteristic

lag time which, in turn, depends on the basin size. Given the aims of this paper, which include

the testing of some conceptual hypotheses, it was thought that identification of the surface

response function at the maximum detail available would have reduced the attention on the role

and the effects determined by the others components.

Therefore, the minimum scale of analysis was not fixed, but determined as T such that for

the aggregation scale of T days the surface IUH is certainly reduced to a Dirac function. In

other words, T is enough greater than the surface runoff lag. On the viewpoint of technical

application, this way to proceed does not produce particular disadvantages, because the

resolution needed to reproduce the runoff dynamics decreases with the basin size.

The value of the reference scale T could be set by using an empirical relation for the

evaluation of the basin mean lag time as a function of area [e.g. Murrone et al., 1992].

However, to make objective as much as possible the selection of T we made the following

considerations: when T is small with respect to the surface time lag the surface hydrographs

spread over a number of intervals, introducing autocorrelation which could be incorrectly
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attributed to the subsurface flow component effect. Conversely, when T is large, the variance

of the component decreases, since high-frequency features of the flow are smoothed.

Therefore, the reference scale must be the one that maximises the variance σ2
s of the surface

flow component, as evaluated once model parameters are estimated. Additional comments on

this procedure are given in the application section.

3.2.   Parameter Estimation

The procedure for parameters estimation of the shot noise models depends on the approach

followed for identification and estimation of the model of effective rainfall. For the latter task

there are essentially two alternatives.

In the first one, common to most of the shot noise models in literature [Weiss, 1973, 1977;

O'Connell, 1977; O'Connell and Jones, 1979; Cowpertwait and O'Connell, 1992], the form of

the underlying input process is pre-determined and its parameters are estimated through the

method of moments applied to the streamflow statistics. This procedure does not give the

possibility of verifying the hypothesis made on the input process and does not allow one to

evaluate the influence of the effects of the watershed transformations on the estimation of the

input parameters.

The alternative approach overcomes the above problems, since the input series is entirely

reconstructed by inverse estimation. On this series, parameters of the desired stochastic model

are then estimated. This procedure was followed, with different techniques, by Treiber and

Plate [1977], Hino and Hasebe [1981, 1984], Battaglia [1986], Wang and Vandewiele,

[1994], among others.

According to this latter procedure, which is the one adopted here, estimation of parameters

of a shot noise model arise from the following steps: (a) identification of the pulse occurrences;

(b) evaluation of the pulse intensities; (c) estimation of parameters of the system response

function.

Since the correct inverse estimation of the input series requires the estimation of the vector 

θθ={c0, c1, k1, c2, k2, c3, k3} of parameters of the response function h', which, in turn, is
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conditioned by the determination of the pulse series, the estimation procedure must be

iterative. The steps required in the estimation procedure are:

(a) determination of trial occurrences and values of pulses;

(b) estimation of θθ by means of minimisation of the sum of quadratic errors:

min min ' '

θθ θθ
θθ θθ    SQ x Y ht t s s
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(3)

where xt is the data observed at time t, N is the number of observations and Y'
t is the

cumulative input in the interval t (see Appendix);

(c) inverse estimation of a new pulse series through deconvolution.

After step (c) the sum of quadratic errors SQ(θθ) resulting from the new pulse series is

evaluated. The procedure is assumed to converge when the improvement obtained in SQ(θθ)

with the new Y'
t is lower than the 5% of the previous SQ(θθ) value.

Some details regarding the actual application of the iterative Least Squares procedure are

worth adding.

In the step (a), a net rainfall occurrence is assumed in each time interval t presenting a

discharge increase. To account for errors in the discharge measurements, a threshold value L is

considered. When the condition  xt+1 ≥ xt + L  is met, a trial value of the net rainfall amount is

assumed as Y'
t = xt+1 − xt , following Battaglia [1986]. The choice of the threshold level is

critical, because as L increases the number of the detected events decreases, while its decrease

originates many events with small intensities, which can be heavily affected by errors in

streamflow data. These errors, which are found at high frequencies, produce a great number of

pulses of very low value that alter the correlation structure of the reconstructed process. Then,

the choice of L must be the result of a trade-off between the number of events detected and the

significance of their values.

In step (b), convergence of the procedure is ensured since the minimisation is applied to a

positive-definite quantity. The minimisation problem is subject to some constraints, defined by

the relations:



12

ki > 0 ;   ci > 0 ,   i = 1, 2, 3;          ci
i =
∑ =

0

3
1 (4)

determined by the conceptual meaning of parameters. Step (b) is carried out through a Nelder-

Mead simplex algorithm [Press et al., 1988], which is convenient when the objective function

is of a highly nonlinear type. The procedure starts from an initial condition θθo belonging to the

feasible region of parameters. Constraints (4) are not directly implemented in the minimisation

algorithm but are checked on each solution vector. It is also checked that in each optimisation

phase the solution vector belongs to the feasible region of the problem.

In step (c) constraints are defined by the condition of non-negativity of pulses, i.e. Y'
t ≥ 0.

This constraint cannot be easily implemented in the deconvolution algorithm and is imposed on

the series after deconvolution, by removing the negative values and their occurrences. In this

way the estimated occurrences are implicitly tested. Actually, because of the influence of

errors, a negative pulse either indicates a very low intensity summed to a great negative error,

or a negative error alone. In both cases the occurrence of a rainfall event is highly unlikely.

3.3.   Parameter Estimation on Different Time Scales

From a theoretical viewpoint the model proposed should be able to estimate all the response

parameters at the daily time scale. However, this resulted practically impossible for the storage

and the recharge coefficients of the over-year groundwater component. The main reason for

this outcome is that the high time lag represented by k3 makes this runoff component

indistinguishable, at the daily (or T-day) scale, from an additive constant. To preserve the long-

term correlation structure, a separate estimation of the parameters k3 and c3 is then needed.

The estimation scheme proposed here is the same used for the monthly scale by Claps et al.

[1993], who suggested to aggregate the data on the annual scale in order to mask the

undesired information (i.e. the seasonality) and maximise the visibility of the effect to capture

(i.e. the interannual correlation). In the cited paper, for estimation of k3 and c3 the authors

refer to the corresponding annual conceptually-based stochastic model, which is an

ARMA(1,1).
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As a support to this procedure, Claps and Murrone [1994] reported, in even simpler

systems, positive effects of data aggregation with regard to parameter estimation of ARMA

models. Aggregation was found effective when the response time of the conceptual element is

much greater than the reference scale and when the weight of the component (in this case c3) is

relatively small.

The need to refer to a different class of stochastic models when data are aggregated requires

to be further commented. In the framework of streamflow models with stochastic input and

deterministic basin response, the increase in the aggregation scale modifies both the input

process and the response function. As the aggregation interval becomes significantly greater

than the time lag of a response component, the effects determined by this component are no

longer apparent in the data. In the conceptual system, that 'fast' response is then associated

with the component representing the zero-lag translation (diversion). This quite natural system

modification does not change the meaning of parameters and would not require in itself a

modification of the nature of the streamflow model. However, the structure of the input

process also changes significantly, going from a periodic - approximately independent - point

process on the daily scale, to a continuous quasi-gaussian process on the annual scale.

These drastic changes in the input process require equivalent modifications in the form of

the streamflow model. The latter goes, according to the scheme initially proposed by Claps et

al. [1993], from the ARMA(1,1) model on the annual scale, to the PIR-ARMA(2,2) (ARMA

with periodic independent residual) on the monthly scale, up to the shot noise model presented

here, for a scale of T days.

Once estimated k3 and c3 as described above, a constrained estimation is possible for the

remaining parameters, starting on the monthly scale with parameters k2 and c2  [Claps et al.,

1993]. Finally, in the shot noise framework, parameters k1 and c1 can be estimated (with c0

resulting by continuity).

The separate estimation of the parameter k3 gives the necessary support for setting the

memory horizon q of the shot noise model, which is needed to make finite the infinite memory

mixed exponential response function. Since k3 is the mean lag time of the slowest runoff
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component, q can be fixed as q = n k3, with n such that q is the base time underlying 99% of

the area of the exponential recession.

4.   Multiple Shot Noise Model Application and Testing

The multiple shot noise model proposed was applied to 8 time series of daily flows, recorded in

7 watersheds located in the Apennine region of central southern Italy (Table 1). Two sub-

series were considered for the Tiber River since the streamflow record is interrupted. For all of

the rivers no significant diversions or regulations were reported during the observation period

and the influence of the snowmelt runoff can be neglected. The basins under study are all

characterised by the climate and the geology of Apennine mountains. For the whole region it is

possible to distinguish two main climatic seasons: a wet season, during autumn and winter, and

a dry season, during spring and summer. When analysing the streamflow process on the annual

and monthly scale it was made reference to the hydrologic year, starting at the end of the dry

season, conventionally at October the 1st.

4.1.   Model Identification and Parameter Estimation

As discussed in the previous section, model identification essentially coincides with the

evaluation of the presence of an over-year groundwater component. Existence of this

component on the basins under study was preliminary checked using the DFI and SFI. Based

on the values computed for the above indexes, reported in Table 2, in the seven basins only one

"impermeable" watershed (group 1) was clearly identified, presenting very low runoff during

the dry season.

Estimation of parameters k3 and c3 through the ARMA(1,1) model (Table 3) confirmed the

indications emerged from the use of the hydrological indexes. The use of the Matlab package

for ARMA parameter estimation made it possible to slightly revise the results of the basin

classification (on the corresponding stations) obtained by Claps et al. [1993], by substantiating

the discrimination suggested by the DFI.
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TABLE 1.   Characteristics of the basins and of the daily runoff series analysed

Series # Gauging Station
  Continuous

Recording Period
Area (km2)

1 ALENTO at Casalvelino 1.1.58 - 31.12.72 284
2 CALORE IRPINO at Montella 28.12.44 - 31.12.70 123
3 TAMMARO at Pago Veiano 1.1.58 - 31.12.70 555
4 SACCO at Ceccano 1.1.59 - 31.12.70 922
5 GIOVENCO at Pescina 1.1.60 - 31.12.70 139
6a
6b

TIBER at Rome
             "

8.7.20 - 31.5.42
1.1.47 - 31.5.69

16545
          "

7 NERA at Torre Orsina 1.1.47 - 31.5.69 1445

According to the conceptual framework for estimation of parameters on different scales of

aggregation, coefficients c2 and k2 should be estimated on the monthly scale. It is worth

specifying that for all series, except series #3, coefficients c2 and k2 are to be estimated

through a PIR-ARMA(2,2) model, due to the presence of the over-year groundwater

component, while the model for the monthly data of station # 3 is a PIR-ARMA(1,1).

TABLE 2.   Watershed classification based on the flow indexes. Group1 includes impermeable

basins. Group 2 includes basins with significant over-year groundwater runoff.

Group Series # Gauging Station
Spring Flow
Index (%)

Deep Flow
Index (%)

1 3 TAMMARO at Pago Veiano 0 2.09

1 ALENTO at Casalvelino 1.0 8.8
2 CALORE IRPINO at Montella 0.4 19.7
4 SACCO at Ceccano 2.3 9.7

2 5 GIOVENCO at Pescina 34.4 55.2
6a
6b

TIBER at Rome
             "

39.6
28.9

50.4
50.1

7 NERA at Torre Orsina 40.1 74.3

However, application of the shot noise model showed that c2 and k2 can be efficiently

estimated even on the T-day scale. This last result let us suppose that parameters c3 and k3

cannot be "seen" on the daily scale because the frequency of the response of that component is
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simply too low to be evident in the frequency spectrum computed with daily data. In particular,

as discussed in the next section, estimates obtained with the shot noise proved to give a better

picture of c2 than the one obtained on monthly data. It was then decided for c2 and k2 to give

credit to the shot noise estimates (Table 3).

TABLE 3.   Final values of shot noise model parameters for analysed series and correspondent

values of standard errors (in italic)

Series # 1 2 3 4 5 6a 6b 7

T (days) 3 2 3 3 2 4 4 5

c0 0.340 0.155 0.272 0.319 0.106 0.098 0.101 0.025

c1 0.281 0.194 0.236 0.242 0.112 0.158 0.136 0.018
St. Err. 0.010 0.004 0.013 0.010 0.004 0.007 0.011 0.005

k1 (days) 3.105 2.672 2.912 2.706 3.274 4.076 5.552 5.401
St. Err. 0.241 0.098 0.337 0.257 0.194 0.357 0.631 3.190

c2 0.297 0.546 0.492 0.261 0.191 0.225 0.243 0.247
St. Err. 0.011 0.004 0.015 0.010 0.004 0.008 0.012 0.005

k2 (days) 60.4 72.2 35.6 53.9 56.3 43.7 40.2 109.3
St. Err. 5.03 1.42 1.98 4.64 2.78 2.74 2.72 6.13

c3 0.082 0.106 - 0.178 0.590 0.520 0.520 0.710
k3 (days) 551.4 228.5 - 507 1073 1233 1233 1533

Estimation of the subsurface component parameters and selection of the reference scale T

are performed in the same time, since the final c1 and k1 are selected as the estimates made on

the scale T that complies with the hypothesis u0(t) = δ(0). Reference intervals found for all of

the analysed series are reported in Table 3 together with the estimates of c1 and k1. The

coefficient c0 results from the volume continuity condition.

The procedure for selection of T through maximisation of the surface runoff variance to the

total runoff variance ratio σ2
s/σ2

t is exemplified for the station #3 in Table 4. Aggregation

scales ranged from 1 to 7 days. Observation of these results, which are common to all other

series, allows one to notice that the subsurface runoff storage coefficient k1 is quite sensitive

with respect to aggregation, while the corresponding recharge coefficient c1, as well as the

other parameters, resulted quite stable with the increase of T.
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The variability of k1 with aggregation was not unexpected, since the aggregation on

multiple days needed for the correct estimation of surface component, produces also a loss of

resolution on the subsurface component, having a delay only slightly greater than the one of

the surface component. This is perhaps the reason why the maximum of the ratio σ2
s/σ2

t is not

very evident. On the other hand, it is worth remarking that the sensitivity shown by k1 resulted

not particularly important, as compared with the stability of the parameter c1, in terms of the

reproduction of the process features.

 With respect to the selection of the reference scale, it is to mention that the presence of

residual correlation in the effective rainfall series is of great support, because it indicates that

some effects introduced by the lag of the surface runoff component are transferred to the

estimated input. This means that the surface lag is not yet enough smaller than T .

TABLE 4.   Estimation over different aggregation scales. Series # 3: Tammaro at Pago Veiano

(the values correspondent to the reference scale T are bold)

aggregation
(days)

c0 c1 k1 (days) c2 k2 (days) σ2
s/σ2

t

1 0.2175 0.2501 1.4476 0.5324 32.9918 0.2771
2 0.2406 0.2868 2.1295 0.4726 33.8132 0.2460
3 0.2721 0.2359 2.9121 0.4920 35.5948 0.2846
4 0.2564 0.2713 3.3299 0.4723 31.9288 0.2252
5 0.2049 0.2914 1.9579 0.5037 30.6993 0.1276
6 0.2948 0.1506 2.3006 0.5546 34.7493 0.2725
7 0.2462 0.2210 4.7390 0.5328 32.1816 0.1820

4.2.   Effective Rainfall Model Estimation

The Poisson white noise exponential model of precipitation (PWNE) was fitted on the input

series obtained after estimation of the shot noise parameters. In the PWNE model the number

N of rainfall events in the interval ∆t follows a Poisson distribution, with parameter λ, and an

exponential distribution, with mean 1/β, is assumed for the intensity of the instantaneous pulse,

The input intensity can also follow different continuous distributions, such as a gamma or a

mixture of two negative exponential functions.
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The probability density function of the cumulated effective rainfall Y over the duration ∆t is

given by [e.g. Eagleson, 1978]:
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where δ(.) is the Dirac delta function and I1(.) is the first order modified Bessel function.

Moment estimates of parameters are given by
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where m and s are the sample mean and standard deviation, while Maximum Likelihood (ML)

estimates are given by the following relations [Sirangelo and Versace, 1990]
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where variables yj indicate the Nj historic values of Y, rearranged such that if Nj0 is the number

of zero values, the first Nj0 values of yj are equal to zero and yj > 0 for Nj0+1 ≤  j ≤  Nj. I0(.)

is the modified Bessel function of zero order.

Parameters of the PWNE model were estimated on seasons ranging from 14 to 33 days

according to the scale of aggregation of the reconstructed input. Following the suggestions by

Yevjevich and Harmancioglu [1989], the seasonal variability of each parameter p was

described by a truncated Fourier series:
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in which coefficients Ai and Φi respectively represent the amplitudes and the phases of the

series, and A0 is the mean value of the parameter. In the case under study, based also on the

results of the application made by Sirangelo [1994] on central-southern Italy series, two

harmonics were considered sufficient.

Estimation of coefficients Ai and Φi, as well as A0, were performed both with the moments

and with the maximum likelihood methods, and are reported in Table 7.

5.   Model Testing

5.1.   Hydrological Validation of Parameters Estimates

In the procedure suggested by Claps et al. (1993) validation of parameters of the over-year

groundwater was considered as part of the identification stage and was based on the indirect

evaluation of the coefficient c3 through the DFI and the SFI. In the previous section,

effectiveness of the above hydrological indexes in the validation of the conceptual parameter c3

was shown once again.

As regards parameters of the over-month groundwater component, given that the estimates

of c2 and k2 obtained on the T-day scale with the shot noise model look quite efficient, it was

natural to compare them with the estimates obtained through the PIR-ARMA model applied to

monthly data. For this comparison, the interval T was set at the reference value, even though,

as can be seen in Table 4, the parameters under investigation are almost insensitive to

aggregation from 1 to 7 days.

Table 5 reports the estimates of parameters c2 and k2 (and c0) obtained with both models,

along with the shot noise estimates of parameters c1 and k1 of the subsurface runoff

component, reported again for reference. The results obtained require some comments.
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TABLE 5.   Comparison between PIR-ARMA and shot noise model parameters

Series # Model
c0 c1 k1 (days) c2 k2 (days)

1 SN 0.340 0.281 3.11 0.297 60.4
PIR-ARMA 0.186 0.732 58.5

2 SN 0.155 0.194 2.67 0.546 72.2
PIR-ARMA 0.155 0.740 60.7

3 SN 0.272 0.236 2.91 0.492 35.6
PIR-ARMA 0.210 0.790 55.2

4 SN 0.319 0.242 2.71 0.261 53.9
PIR-ARMA 0.145 0.677 90.1

5 SN 0.106 0.112 3.27 0.191 56.3
PIR-ARMA 0.133 0.277 66.9

6a SN 0.097 0.158 4.08 0.225 43.7
PIR-ARMA 0.117 0.363 49.8

6b SN 0.101 0.136 5.55 0.243 40.2
PIR-ARMA 0.117 0.363 49.8

7 SN 0.025 0.018 5.40 0.247 109.3
PIR-ARMA 0.034 0.256 106.8

It can be first observed that, apart form station # 4, values obtained for k2 from both models

are substantially coinciding, particularly if considering the acceptable region of parameters

shown in Table 6 and discussed in the next subsection. On the other hand, values obtained for

c2 with the PIR-ARMA models are systematically greater than those obtained from the shot

noise model. On this side, Claps et al. [1993] attributed their relatively high values to the

interference of the subsurface component on the over-month component. Results presented

here confirms that conjecture, because the sum of c1 and c2 obtained through the shot noise

model practically matches the values of c2 estimated on the monthly scale. It is also worth

remarking that c0 was estimated quite well already on the monthly scale.

5.2.   Statistical Testing of Parameters Estimates

Verification of the results of model estimation were made under different viewpoints. First,

some tests were performed to ascertain the reliability of parameter estimates. The testing
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concerns the possible presence of multiple local minima of the objective function in the feasible

region of parameters, which would not allow the numerical algorithm to find the absolute

minimum. This aspect was verified using a procedure proposed by Duan et al. [1992], who

suggest to search minima of the objective function, like the function defined by relation (3),

starting from different points of the feasible region of the parameters. Application of this

procedure on all of the series analysed confirmed the stability of the parameter estimates.

A further verification of this aspect was performed by exploring the objective function

surface on the subspaces determined by couples of parameters. Patterns of this surface are

shown in Fig. 1, with reference to four couples of parameters. In all of the plots the presence

of only one region of attraction for the minimum can be recognised, and the region is also quite

well defined.

Evaluation of efficiency of estimates can also be made by determining their variance (or

standard errors). This determination can be achieved through the knowledge of the covariance

matrix of estimates, that allows one to obtain the standard error (SE) of estimates using an

asymptotical result given by Bard [1974]. Values of the standard errors computed for all of the

parameter estimates are given in Table 3 for all series. Standard errors of k3 and c3 were not

reported since from the ARMA estimation result only the SE of the AR and MA parameters.

An additional test was performed regarding the robustness of the numerical scheme or, in

other words, to verify the capability of the estimation technique to attain the “true” parameter

values regardless of possible distortions due to small fluctuations in the data. To this end, a

non-standard jackknife resampling procedure, proposed by Künsch [1989] for ergodic

stationary time series, was used. The mean and the standard deviation of the estimated

parameters were computed, for each series, resampling 200 sub-series of 1825 observations,

corresponding to a shifting window of 5 years [Murrone, 1994]. To encompass the whole

series the shift was adapted to the series length.

For all of the series, parameter estimates fell inside the acceptable region, defined as having

the centre on the jackknife mean and with half-band width equal to twice the jackknife

standard deviation. In almost all cases estimates fell even inside the one-standard-deviation

interval (Table 6).
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5.3.   Generation of Synthetic Streamflow Series

To verify the efficiency of the model in terms of reproduction of the statistical

characteristics of observed series, extensive simulation studies are required. In general one is

interested to test if a number of significant characteristics of the observed series are correctly

reproduced.

According to the aims of runoff modelling, flow sequences are mainly needed in water

resources planning and management, so one is mainly interested in: partition of flows among

different components, cumulative frequency function of total flow, minimum and maximum

daily flows, runoff volumes over different duration, flow duration curves, run length statistics.

Among the many possible statistical characteristics of the observed series, the ones tested were

the first three moments, the flow duration curves and the maxima and minima of flows, useful

to check the model behaviour in the tails of the distribution.



23

TABLE 6.   Jackknife robust estimates of parameters (µ) and their standard deviations (σ)

compared to final values of model parameters (in italic)

Series #
c0 c1 k1 (days) c2 k2 (days)

0.340 0.281 3.11 0.297 60.4
1 µ 0.282 0.315 2.92 0.321 47.6

σ 0.074 0.076 1.15 0.046 11.5
0.155 0.194 2.67 0.546 72.2

2 µ 0.148 0.219 3.46 0.527 86.2
σ 0.038 0.061 1.99 0.064 40.2

0.272 0.236 2.91 0.492 35.6
3 µ 0.267 0.289 3.29 0.435 45.8

σ 0.047 0.068 0.88 0.089 12.9
0.319 0.242 2.71 0.261 53.9

4 µ 0.296 0.281 2.51 0.245 51.7

σ 0.041 0.070 0.59 0.050 13.4
0.106 0.112 3.27 0.191 56.3

5 µ 0.105 0.133 3.08 0.172 51.8

σ 0.012 0.015 0.50 0.013 12.1
0.097 0.158 4.08 0.225 43.7

6a µ 0.092 0.180 4.17 0.208 48.5

σ 0.040 0.025 1.61 0.034 13.9
0.101 0.136 5.55 0.243 40.2

6b µ 0.072 0.142 3.80 0.266 38.7

σ 0.038 0.033 1.86 0.030 12.4
0.025 0.018 5.40 0.247 109.3

7 µ 0.011 0.029 4.15 0.250 89.4

σ 0.015 0.023 5.85 0.029 17.9

These comparisons were performed for the station # 1 using the PWNE model for the

inputs, with ML estimates of parameters. The PWNE model was fitted on the input series

inversely estimated on 3-day data, with model parameters set at the values reported in Table 3.

Data generation was made on a daily scale using the seasonal approximation of input

parameters given in Table 7. For each calendar day t, parameter values were obtained through

relation (9). The inputs were then convoluted with the system response function, as in (15) to

obtain the streamflow series.
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Daily flows were generated with length equal to 20 times the observation period. To make

the generated series independent on the initial conditions, 20 years of data were first generated

and not considered in the subsequent analyses.

To give a general idea of the quality of the simulated runoff, a comparison of runoff patterns

of observed and generated daily data are shown in Fig. 2 for two solar years with reference to

station # 1. Table 8 shows the comparison of moments of the observed and generated flows,

averaged on the different months. It can be seen that the first three moments are quite well

preserved in simulation, both for the general and for the monthly values. Positive bias of the

generated skewness is to be noticed, even though it resulted compatible with the sample

variability, measured by the ±2σ bands, reproduced in Fig. 3 for all three moments.

Reproduction of the flow duration curves and of maxima and minima of flow over different

duration are shown in Fig. 4 and Fig. 5, respectively. Good performances of the model can be

recognised with respect to the reproduction of these characteristics. It is to notice that

preservation of the effects of the groundwater runoff component produces remarkably good

results in the simulation of runoff during long dry periods, which is one of the points where

previous shot noise models gave inadequate results [e.g. Weiss, 1977; Battaglia, 1986].

Maximum of flow over fixed duration were also very well reproduced. Comparisons are

referred to the average yearly maximum (and minimum) flow of duration 1-30 days.

Observation of the series of the yearly maxima of daily flow in Gumbel probability paper

(Fig. 6), also shows the good performance and adequacy of the PWNE model for the inputs

with regard to the upper extremes.
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TABLE 7.  Fourier expansion of PWNE model parameters

Fourier Moment method Maximum Likelihood method
Series # Coefficients λ (1/days) 1/β (mm) λ (1/days) 1/β (mm)

A0 0.0627 18.4652 0.1222 9.8799
A1 0.0366 19.3238 0.0568 11.3508

1 Φ1 0.5194 0.6652 1.0510 0.5246
A2 0.0098 -3.6871 0.0146 -2.9899
Φ2 0.6329 -2.8692 2.0364 -3.1582
A0 0.0780 17.0055 0.1541 9.0492
A1 0.0482 12.2677 0.0634 9.1986

2 Φ1 0.7778 1.0153 1.5916 0.7400
A2 -0.0060 -2.9475 0.0237 -2.5246
Φ2 4.0475 -2.2568 3.5817 3.7131
A0 0.0870 8.9844 0.1135 7.0678
A1 0.0781 7.6915 0.0739 7.2112

3  Φ1 0.4628 1.0713 1.1218 0.5598
A2 0.0113 -1.9819 0.0213 -1.6621
 Φ2 6.1570 -1.0450 2.8850 -3.1367
A0 0.0713 15.9804 0.1194 9.2217
A1 -0.0410 15.0478 0.0465 11.1499

4  Φ1 3.5851 1.4098 1.2894 1.0611
A2 0.0237 -3.3802 0.0359 -3.5134
 Φ2 1.9072 -1.9942 2.8818 -2.5602
A0 0.1573 5.4907 0.2321 2.9636
A1 -0.0444 4.8171 0.0668 3.3123

5 Φ1 1.9184 1.2622 2.1649 0.8149
A2 -0.0423 -1.4042 0.0282 -0.9944
Φ2 4.0489 1.7715 3.8458 -2.9002
A0 0.0893 14.2871 0.1118 11.5891
A1 -0.0341 -8.5488 -0.0328 -9.3243

6a Φ1 0.5707 0.9060 1.7152 0.5343
A2 0.0169 4.0876 0.0225 1.7111
Φ2 3.5682 1.7722 3.4993 2.2347
A0 0.0929 12.1795 0.1307 8.5534
A1 0.0282 7.3971 0.0368 8.0486

6b Φ1 0.8619 1.0213 1.9636 0.6803
A2 -0.0130 -1.9725 0.0160 -1.6221
Φ2 4.6728 1.9306 3.3149 -3.1410
A0 0.0696 24.4386 0.0865 16.5933
A1 -0.0131 19.1208 0.0191 11.2012

7 Φ1 1.2360 0.2672 0.2020 -0.1480
A2 0.0134 -9.8283 0.0061 -1.9034
Φ2 4.0353 3.6219 0.6079 3.7185
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TABLE 8.  Statistics of historical and generated daily flows for each calendar month (averaged

over the years) and for the whole period. Series # 1

Mean (cms) Standard deviation (cms) Skewness
Month Hist. Gen. Hist. Gen. Hist. Gen.

Jan 11.9935 10.9199 16.4726 15.0339 2.2738 3.0530
Feb 9.2241 9.9710 9.8953 12.6215 2.2370 3.0152
Mar 7.3553 7.4254 7.2697 8.9105 2.4190 3.2204
Apr 5.2805 5.0500 5.5319 4.7972 2.4582 2.9815
May 2.6469 3.1805 2.0212 2.5145 1.6508 3.1770
Jun 1.5716 2.0350 1.1604 1.2588 1.2716 2.8848
Jul 1.0335 1.3792 0.3167 0.6837 1.2813 2.8224

Aug 0.6509 0.9004 0.2051 0.2093 1.1545 1.9361
Sep 0.7878 0.7798 0.9144 0.3904 2.1076 3.1654
Oct 1.7465 1.9661 3.0342 2.9991 2.0680 3.3723
Nov 5.2338 5.5723 9.0731 8.4227 3.0213 2.9807
Dec 10.2225 9.7141 16.6532 13.7824 2.8460 2.8551

whole period 4.7905 4.8832 12.1982 10.1628 7.7051 7.0382

6.   Concluding remarks

The building of a shot noise model for streamflows at short scales of aggregation is presented

here according to a conceptually-based interpretation of the basin response to precipitation, in

which linearity is assumed for the effective rainfall to runoff transformation.

Our basic aim was to build a model able to preserve the dynamics of the streamflow process

over different scales of aggregation. The respect of this requirement allowed the model to

comply with the structure of corresponding conceptually-based models proposed for the

monthly and annual scales [Claps et al., 1993]. Moreover, parameter estimation is part of this

compatibility, since coefficients responsible of the long-term autocorrelation in runoff series are

estimated, through the ARMA(1,1) model, on the annual scale. Preservation of the effects of

the groundwater runoff component with over-year lag determines a marked improvement in

the quality of the runoff series reproduced by the model, even because it allows to better

discriminate the effects due to groundwater components and direct runoff.
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To simplify the watershed response function, a reference scale of T days was indicated for

parameter estimation, such that the response of the surface runoff component could be

assumed as equivalent to a Dirac delta function. For the selection of this scale a procedure

based on the maximisation of the surface runoff variance was proposed, and its application is

simultaneous with the parameter estimation.

Model application to eight time series of central-southern Italy basins showed interesting

results, supported by hydrological validations and statistical tests involving also a simulation

analysis. This latter was performed using a Poisson white noise model with exponential pulses

(PWNE) for reproduction of the effective rainfall. PWNE model parameters were estimated on

the inverse estimate of the effective rainfall series. Comparison of observed and generated

statistics and properties of the runoff series showed satisfying agreement between the two,

with excellent reproduction of maxima of runoff for different duration.

Improvements in the model structure can be achieved, in the authors' opinion, essentially

from refinements in the effective rainfall inverse estimation and in the related stochastic model,

on which additional investigations are being carried out by the authors. Given the good overall

performances of the model, it is thought that refining the modelling of effective rainfall is more

important than introducing non linearity in the separation of effective rainfall in the

groundwater and subsurface subsystems.

In addition, further investigations about the modelling of the surface runoff response are

needed, starting from refinement of the method for selection of the reference scale when

dealing with daily data. Finally, by the viewpoint of the conceptual interpretation of watershed

response, hourly runoff data could allow us to improve the distinction of the subsurface and

surface response, giving, in the meantime, the possibility to estimate the latter as an

exponential or gamma function.
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Appendix.   Discretized representation of the shot noise model

In a linear system fed by a point process, if the input pulse at the instant τi has intensity Yi,

the system output, for t > τi, is equal to Yi h(t−τi). Given the linearity of the transformations

operated by the watershed, the discharge at time t will be the sum of the outputs to the

previous individual inputs [Parzen, 1962], whose number is given by the counting function of

the arrival process, N(t):

X t Y h ti i
N

N t

a f b g
a f

a f

= −
−∞
∑ τ (10)

Relation (10) has theoretically infinite memory. The problem to overcome with regard to

this formulation concerns the correct classification of the initial condition (t=0) and the

possibility of actually reproducing the numerical scheme. To avoid the carry-over of "infinite"

events influencing the output at any time, it is sufficient to limit the "active" history of events

to a finite IUH base time q (the memory horizon, underlying 99% of the IUH area). Even then,

the setting of the initial conditions with the usual method of the "warm up length" (e.g.

removing the first n data influenced by the initial conditions) can be impracticable if the IUH

base time is particularly large. Reasonable initial conditions can be set if long dry periods exist,

since at their end the over-month and the subsurface components can be neglected compared

to the over-year runoff component. In this case, the model expression becomes

X t X e Y h tt k
i i

N

N t

a f b g
a f

a f

= + −− ∑0
0

3  / τ (11)

where X0 is X(t=0) and is entirely represented by the over-year component.

Process (11) is the representation of the continuous streamflow process, while time series

are usually available in discretized form, such as the mean daily discharge analysed here. To

represent process (11) integrated on a time interval ∆t, with ∆t equal to T days (T = 1, 2, ...), a

time distribution of the rainfall intensity within the aggregation interval ∆t must be assumed.
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The rainfall volume Y'
t in each interval is computed as the integration of the instantaneous

pulses Yi occurred within ∆t. The discretized output Xt will be then obtained through

convolution between the input volume and the discretized response function h∆t.

Considering a time scale ∆t greater than the lag of the surface flow component, this latter

can be considered as a random process with intensity proportional to the effective rainfall at

any time. In this hypothesis, the surface runoff response u0(t) can be represented by a pure

translation element, with zero lag. Its IUH is then represented by a Dirac delta function, δ(0).

The system unit hydrograph h∆t(τ) is the response to a unit volume of effective rainfall of

duration ∆t and intensity 1/∆t. From the expression (1) of the system IUH, where u0(t) is

replaced by δ(0), if the within-interval time distribution of the input is assumed as uniform, the

unit hydrograph is expressed as:

h t
t
u t d

t
c

c

k
e dt

i

i

t k
tt

i∆ ∆ ∆
a f a f= − = +

L

N
M
M

O

Q
P
P

=− −∑zz
1 1

00
00

( )    ( )

i=1

3
τ τ δ ττ /

          = + −
L

N
M
M

O

Q
P
P

−

=
∑1

0 10
0

3

∆t
c c ei

t k

i

i ( )δa f / ,                                       t ≤ ∆t (12)

The discharge is maximum when t = ∆t and then decreases following an exponential recession:

h t
t

c e et i
t k t t k

i

i i∆
∆ ∆

∆
a f = − − − −

=
∑1

1
1

3
 ( ) ( )/ / ,                        t > ∆t (13)

Runoff at the end of the intervals 1∆t, 2∆t, ..., s∆t, is the integral of the two above

expressions. From the former, the outflow volume h'
1 at the end of the first interval is obtained:

h c
t

c e d

c
t

c k e t

i
k

i

t

i i
t k

i

i

i

1 0
1

3

0

0
1

3

0
1

1

0
1

1

' /

/

= + − =

= + − +

−

=

−

=

∑z

∑

δ τ

δ

τa f e j

a f e j

∆

∆
∆

∆

∆

   

 

              s = 1 (14)



33

The latter expression gives the volumes h'
s in the subsequent intervals due to the rainfall in the

first interval:

h
t

c e e ds i
t k t k

is t

s t
i i' / /= − =− − −

=−
∑z

1
1

1

3

1
∆

∆ ∆

∆

∆
  e j a f

a f

τ τ

    = + −− − −

=
∑    c

k

t
e e ei

i t k t k t s k

i

i i i

∆
∆ ∆ ∆/ / /2 1

1

3
a f ,       s > 1 (15)

By aggregation of the input pulses Yi one obtains a new intermittent process, {Y't}, defined as

the total volume of pulses occurring in the generic interval [(t−1)∆t, t∆t], denoted as interval t:

Y Yt i
N t t

N t t
' =

−
∑      

 

1a fb g

a f

∆

∆
(16)

Streamflow in the interval t due to an input occurred s intervals before is given by the

product Y't− s+1h's. Then, the discretized form of the model (11) is given by

X X d k e e X Y ht
t t

t t
t t k t k

t s s
s

t
= = − +

−

−
− +

=
z ∑τ τa f e j

a f1
3 0 1

1

3 3 1
∆

∆
∆ ∆           / / ' ' (17)

If the process {Y'
t} and the response function h' are mutually independent and {Y'

t} is

serially uncorrelated, moments of the process (17) can be expressed as [Murrone 1994] :

E(Xt) = p E(Y') hs
s

t
'

=
∑

1

;

VAR(Xt) = {p E(Y'2) − p2 E2(Y')} hs
s

t
' 2

1=
∑ (18)

COV(Xt, Xt+k) = {p E(Y'2) − p2 E2(Y')} h hs s+k
'

s

t
'  

=
∑

1

where p represents the marginal probability P(Y' > 0).
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Figure 1.   Series # 1: contour plot of the objective function of the model for four couples of

parameters
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Figure 3.   Series # 1: comparison of mean statistics of daily flows for each calendar month;

(�) historical flows;(-�-�) generated flows; (.....) 2-std. bands
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Figure 4.   Series # 1: Comparison of flow duration curves:

 (�) historical flows, (-�-�) generated flows
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Figure 5.   Series # 1: comparison of mean annual maximum (a) and minimum (b) flows over

fixed durations; (�) historical flows, (-�-�) generated flows, (.....) 2-std. bands
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Figure 6.   Series # 1: Gumbel probability plot of annual maximum daily flows; (o) historical

flows, (---) generated flows


