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ABSTRACT

A conceptual-stochastic approach to shwome runoff data modelling is poposed,
according to thaim ofreproducing théwydrological aspects dhe streamflow process and of
preserving as much as possiblee dynamics ofthe processtself. This lattertask impies
preservation of streamflow characteristics at higher scales of aggregatiorwidnd, a
conceptual frameworknvolves compatibility with models pposed for theunoff process at
thosescales. At alaily timescalethe watershed response to #ffective rainfall isconsidered
as deriving fronthe response of threaéarreservoirs, respectively representing contributions
to streamflows of large deep aquifers, with over-year response lag, of agthfelngun dry
by the end of thedry season and of subsurface runoff. The surface runoff component is
regarded as an uncorrelated point proc€smsideringthe occurrences dfffective rainfall
events as generated by an independent Poisson processjtpie of the linearsystem
represents a conceptually-based Itiple shot noise process. Modelidentification and
parameter estimatioare supported byformation related téhe aggregatedunoff process, in
agreement to the conceptual framework proposed! this allows parametgrarsimony,
efficient estimationand effectiveness athe streamflow reproductiorGood performances
emerged fronthe model application and testing made with reference to sdewlg runoff

series from Italian basins.

Key words: Conceptual-stochastic modelShot Noise; Streamflow simulationTime

aggregation.

1. Introduction

Many hydrologic applications, frorthe water resourcamanagement tohe modelling of
water quality, require synthetic time series of streamflowsthase generated by stochastic
models. Depending othe particulaproblem at hand:eproduction of the streamflow process
is desired at different resolution. the pastthirty years, several classes of stochastalels

were proposed, which generally looked at each time scale of aggregation individually.



This paper focuses on the reproduction of short-tnoneoff data (say, daily to weekly)
according totwo main requirements: 1. a physically-consistent mostelicture,which has
significantadvantages when dealing with inadequiddéa; 2. themodel capability to coexist
with corresponding models suited for more aggregated scale, in a homogeneous framework for
streamflow modelling.

Shorttime streamflowsre characterised by the presence of the intermittent pattesun of
events and by the skewed nature of the hydrographs, with sudden disobeegses and slow
recessions. These features prevent the use of ARMA-typmaéls Box and Jenkinsl976],
which are successfully applied to monthly and anndata that- as required in theanonical
ARMA framework— can be somewhat reduced to stationary continuous processes.

Models which explicitly consider the intermittent pattern of rain evéatsback toBernier
[1970], who introduced irstreamflow modellinghe filtered Poisson procesge.g. Parzen
1962] The structure othis process,usually referred to ashot noise consists of a point
process, that reproduces the occurrence of effe@intall eventswhich acts as the input of a
system that is representative thie transformations operated by the watershechofRus
obtained by filtering the input through the system response function.

The first comprehensiweork on shonhoise models of runoff idue toWeiss[1973, 1977],
who introduced anodel in which effective rainfakvents are reproduced through a Poisson
process of occurrences coupled égponentially-distributed intensities. Response of the
watershed consists blvo components, one representing the bkse andthe other the direct
runoff. Both areassumed to have an exponential response to precipitatitmmo-8omponent
shot noise process resulfsom this scheme, anthe method ofmoments is proposed for
parameter estimation.

A bivariate version of Weiss' mod&as proposed byoch [1985], with more strict
correspondence between parameters ofpthysical systenand model parameters. Another,
more recent, improved variant Weiss' model iglue toCowpertwaitand O'Connell[1992],
who proposed the Neyman-Scott model to reproduce the effective rainfall process.

BetweenWeiss[1973] andCowpertwaitand O'Connell[1992], severalother approaches,

often based on th&hotnoise formulation, were pposed for short-time runofitodelling. In a



roughclassification othe literature on the subject one castidguish:a. models in which the
response function derives, as Weiss[1973], from a linear conceptual scheme of the
watershedd.g.Pegram 1980;Hino and Hasebel981;Vandewiele and Don1,989];b. non-
linear or non-parametric model$rgiber and Plate 1977; Yakowitz 1979]. Some of these
models uséviarkov processes as inpuirgiber and Plate1977;Yakowitz 1979;Vandewiele
and Dom,1989] and often the input process is reconstructemhu@rse estimationT[reiber
and Plate,1977;Hino and Hasebel981; 1984Battaglia,1986;Kron et al, 1990;Wang and
Vandewiele,1994] as opposed MVeiss'approach, irwhich parameters of the inpmodel are
directly estimated from runoff through the moments method.

As emerges fromanalysis ofthe literature,much work was made inthe attempt to
reproduce thepeculiar statistical features of short-time streamflowastMof the models
proposed, however, alm|sed on the assumption that enodgta isavailablefor the process
under study. Thereforepuchwork is still neededoward theachievement of sufficient model
performances in condition of scarcity or lack déta, aswell as in combination with
corresponding models to be uded generation of data at more aggregatedles. The latter
point becomes important whesimulation of runoffdata in a water resourcesystem is
required at different scaleslue to different characteristics afhe system elements or to
different goals of the planning.

When both short-time and aggregatddta are required, one pgactically forced to use
different models, because models for, s#aily runoff pay little or noattention to statistics
referred to higher scales.

As an attempt tgive an answer tthe above-mentioned points, theilding of ashotnoise
model was conceived in thaper under the framework ofodels with stochastic input and
deterministic conceptual watershed response. The subststefalforwardwith respect to
previoussimilar models is irthe consideratiothat, tocomply withthe processlynamics at all
of the scales of interest, the distinction in the watershed respoosly bivo components (one
fast and one slow) is inadequate. To provide modegail in the watershed response,
information is transferred froraggregated data both model identification and in parameter

estimation, according to the approacbpwsed byClaps et al.[1993]. This scheme provides



parsimonious ancefficient models, withparameters that can be validated and related to
physical variables in view of their determination in ungauged stations.

The main features of the structure of the proposed model are presented below.

2. Model Structure

2.1. Stochastic model of the effective rainfall

The task ofselecting a stochastjgrocess representative of th#fective rainfallpresents
seriouddifficulties, particularly ifshort aggregatiomtervalare considered, due to the fact that
the natural process is unobserved. At the stage of the selection of eclassadf stochastic
models, it can be sufficient to assume that effeatamefall retains most of the stochastic
characters of total rainfall. This assumption, however, needs to be substantiated properly at the
applicationstage, andhis at least requires th#he series ofthe effective rainfallmust be
inversely estimated. This point will be discussed in the next section.

In ourapproach tanodel buildingthe choicenas gondgoward theclass of poinprocesses,
which are physically-basedind can be expressed in functional form. The alternative class of
Markovian processes %ot as attractivebecause thewre discrete processesiich do not
preserve their structure in the aggregation.

Among point processes we have considetiesl classical markedPoisson white noise
processes [e.gT,odorovic and Yevjevi¢ii969;Eagleson 1978] and the ones reproducing the
rainfall events as a sequence of storms made of clusters of rain cells, tueiNagman-Scott
or the Bartlett-Lewis processes [e.avvas and Delleyr1981; Rodriguez-lturbe et al
1984; 1987]. The occurrence ddinfall eventsor, in cluster processes, the occurrence of
storms, areisually modelled by oisson point process. The choice of the particulzdel to
use ismainly driven by the scale of aggregation considered, becasegal correlation
decreases with the aggregation.

For aggregatiorscales up tal-2 days, rainfall data presensignificant autocorrelation,
which is generallyreproduced correctly by cluster-tymeodels(see, e.g.Bo et al, 1994).

However, it is notguaranteed that theamedegree of correlation exists dhe effective



rainfall, which is an estimated process with a structure that depends in part by the configuration
of the watershed response model. As a matter ofdpptication of cluster-type models to the
effective rainfall turneaut to beunsatisfactory even aaaily data. In particularCowpertwait
and O'Connell[1992] attempted tdlirectly estimatehe four parameters of a Neyman-Scott
model with exponential instantaneous pulses withshat-noise model oflaily streamflows
and we appliedhe same model directly tour dataobtained by inverse estimation. lrth
cases it wagot possible tadetect thé'within storm” cellular structure of theeffective rainfall,
which represents the peculiar feature of this kind of models.

Given this aitcome, it was judged that the two-parameter Poisson wbise model with
exponential pulse@PWNE) represents a reasonable choicestmles of aggregatiogreater
than one daygven becausthe effective rainfallprocess i®nly the input to acomplex system
that induces significartransformations on it, so that it /ot guaranteed that disregarding
some autocorrelation in the input will have a significant impact on the features of the generated
streamflow series.

In conclusion, considering also thdte method of selection of the aggregatswale
proposed in thipaper, discussed in the next sectidmes nomnecessarilyequire theanalysis
of data at thelaily scale, itappears that the use mibdels more complex thahe PWNE can
only be propsed in a moreefined framework, that allowsfficient parameter estimation and

justifies adequately the reduction in parsimony due to the greater number of parameters.

2.2. Components of the watershed response

Effective rainfallreaches théasinoutlet through three ain runoff componentsbaseflow
(return flow from groundwater),subsurface flow(i.e. interflow, representing rapitlow
through pipes, macropores and seepage zones soithandsaturated overlaniow (surface
flow). The two latter components form ttieect runoff(or quickflow).

Separation of theffective rainfall intothe above components mon-linear, because the
relative weight between direct ampoundwaterrunoff depends otthe infiltration capacity,
that is function of the soil moisture state and of the intensity of rainfall. ThiBneamity is not

considered heressentiallypecause it is thought that for thens ofthe analysisundertaken it



is more important téest howwell the proposed framework &ble toreproduce rain runoff
process features at different frequencies.

Regarding thebaseflow, Claps et al. [1993] showed thattwo different types of
groundwater components can ddearly identified from analysis atinoff series. In particular,
Claps et al[1993] clarified that even irsmall basins annuaatacan be autocorrelated due to
the presence of a groundwater contribution withy slowresponse time. In large basins, the
hydrogeologic scheme could Ip@ore complexput it is convenientfollowing the logic of
conceptualisation, to assumeaihcases that when annual time sedes autocorrelated that is
due to the presence of one large, deep, aquifer.

In monthly data autocorrelation is present, regardlesseafsonality, even when annual
runoff is uncorrelated. Thus, there exist an indepergienindwateelement whichntroduces
memory in runoffdata with a delay time ofthe order offew months. This over-month
groundwater componentdiie tothe presence of aquifers which run dry within the dry season,
such as, for instance, overflow springs.

As regards direct runoff, if theasin is sufficientlylarge, even ordaily data one can
recognise the presence of both the subsurface and the surface runoff components.

Therefore, from thisnalysis it follows thabne cannoexclude thagll four of the above
components can badentified from the streamflowdynamics on ashort time scale.
Consequently, the mogeneral watershestheme pyposed include®ur conceptuaglements
in parallel, which reduce to three if the over-year groundwater is absent.

The basinresponse functiom(t) is assumed linear and its form derives frtm linear
combination of the individual responses of its components:

h(t) = q ~tk ¢, -tk LG

p+-Lte +2e =e
Ky

~t/kg
k2 k3 ’

t>0 Q)
In (1) theimpulseresponsesy(t)=¢ / ke’” K of linear reservoirs represent threlividual

IUH of the groundwater ansubsurface components, where the subsciiptreases with the

component lag time. S&g is the storage coefficient of tlwer-yeargroundwater component.



Coefficients¢j, which are considered constant, distribute the inpelume among system

elements, according to the continuity conditErllci =1.

The response function tfe surface componentirdicated in (1) asiy(t) because, depending
on thebasin sizeand thetime scale considered, it can taken as a more or lesemplex
function, becoming a Dirac delta functiorbdsinsurface response lag is enowgghaller than
the time interval of data aggregation.

Being the output of a linear system, runsft) is derived from the convolution integral

X(t) = [h(r) di(t-1) (2)
0

wheredl(7) is the input process. Considering the effective rainfall as a process of instantaneous
pulses following a copound(or marked) Poisson process.g. Snydey 1975] andassuming
that pulsesare uncorrelated and the distribution of thetensities is independent from the
process of occurrences, the runoff process (2) represéisexd Poisson process

Convolution integral (2) gives the representation of a continuous shot noise pnduless,
discretized form is needed #me applications. Theschemeadopted fordiscretizing the

proposed model is shown in the Appendix.

3. Model Building

3.1. lIdentification of the basin response

Based on the above consideratiomdgntification of modelstructure only consists in
evaluatingthe presence of an over-year groundwater componentnfapalso want to assess
if the daily resolution issufficient toreproduce the surfagenoff with some delay using, say,
an exponential ITUH.

The identificationprocedure shouldtartwith a check on the presence of autocorrelation in
annualdata, which is a statistical information tpreserve. However, in thgeries we have
analysedautocorrelation haseldom a clear statistical significanceainly due to thdimited

amount of datavailable.Claps et al[1993]discussed thiaspect with regard tolentification



of the stochastimodel of annual flows, arsliggested that theefinitive test for theexistence

of the over-year groundwater component is represented by the comparison of estimates of
parameterg&s andcs with two hydrological indexes, calledFl and SFlwhich havethe same
meaning.

The DFI (deedlow index) wasdefined aghe ratio between th@ean of annuahinima of
the mean monthly discharge arnlde average totadlischarge. The spring flomndex (SFI)
represents the ratio between the averagmonb@ialminima ofthe mean dailydischarge and the
average totatlischarge. Sincehe SFI is moresensitive to measuremegitrors, it is suggested
to use it only as a check index.

If the aboveevaluations excludéhe presence of an over-year component, the conceptual
model of watershed illv include onlythree Inear elements, accountirigr the over-month
groundwater, the subsurface and the surface runoft.

In the presentation of tHesinresponse function, the surfaasoff component was left as
a generidUH. Considering scales of interest ranging frone toseven dayshe form of the
surface IUH can resustignificantly smoothed by aggregation, depending on its characteristic
lag time which, irturn, depends on tHeasin size. Givethe aims ofthis paper,which include
the testing of some conceptual hypotheses, it was thoughid#wdification ofthe surface
response function at the maximum detail available would have reduced the attention on the role
and the effects determined by the others components.

Therefore, theminimum scale of analysisrasnot fixed, but determined a3 such that for
the aggregatioscale of T daysthe surface IUH igertainlyreduced to a Dirac function. In
other words,T is enough greater than the surfagaoff lag. Onthe viewpoint of technical
application, this way tgoroceed does not produgmarticular disadvantages, because the
resolution needed to reproduce the runoff dynamics decreases with the basin size.

The value ofthe referencescale T could be set bysing an empirical relatiofor the
evaluation ofthe basin mean lag time as a function area g.g. Murrone et aj). 1992].
However, tomake objective as much as possitile selection off we madethe following
considerations: whef is smallwith respect to the surfadene lagthe surface hydrographs

spread over amumber of intervals, introducingutocorrelationwhich could be incorrectly
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attributed to the subsurfadlew component effect. Conversely, wh&ns large, thevariance
of the component decreasesince high-frequencyfeatures of theflow are smoothed.
Therefore, the referenseale must béhe one thamaximisesthe varianceo? of the surface
flow component, as evaluatetice model parametease estimatedAdditional comments on

this procedure are given in the application section.

3.2. Parameter Estimation

The procedure for parametearstimation othe shotoise models depends tre approach
followed foridentification and estimation d¢he model of effective rainfallFor the latter task
there are essentially two alternatives.

In thefirst one,common to most athe shotnoise models in literaturd\eiss, 1973, 1977;
O'Connell,1977;0'Connell and Jone4,979;Cowpertwaitand O'Connell1992], theform of
the underlying inputprocess is pre-determined and its parameters are estimated through the
method of moments applied tbe streamflow statisticSThis procedure does ndaive the
possibility of verifyingthe hypothesis made otine input process and dosest allow one to
evaluate thenfluence ofthe effects ofthe watershed transformations on #stimation of the
input parameters.

The alternative approach overcomes the above probEntgthe inputseries is entirely
reconstructed binverse estimation. On this series, parametetheflesired stochastmodel
are then estimatedhis procedure was followedyith different techniques, byreiber and
Plate [1977], Hino and Hasebg1981, 1984],Battaglia [1986], Wang and Vandewigle
[1994], among others.

According to this latteprocedurewhich isthe one adopted herestimation of parameters
of a shot noise model arise from the following sté@sidentification of the pulse occurrences;
(b) evaluation ofthe pulse intensities(c) estimation of parameters tie system response
function.

Sincethe correcinverse estimation dhe inputseries requirethe estimation othe vector

0={cg, c1, ki, Cy, ko, C3, k3} Of parameters of the responfmction h, which, inturn, is
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conditioned by the determination of thpilse seriesthe estimation procedure must be
iterative. The steps required in the estimation procedure are:
(a) determination of trial occurrences and values of pulses;

(b) estimation 0B by means of minimisation of the sum of quadratic errors:

N t 2
n%in SeC)E ngin tzl{ %= ; Yoss1 @(9)} (3
where x; is the data observed &itne t, N is the number of observations and; is the
cumulative input in the interval(see Appendix);

(c) inverse estimation of a new pulse series through deconvolution.

After step(c) the sum of quadratic errors S®J resulting fromthe newpulse series is
evaluated. The procedureassumed to converge whéme improvement obtained in S
with the newy} is lower than the 5% of the previous Sf¢alue.

Some details regardintpe actualapplication ofthe iterative Least Squares procedure are
worth adding.

In the step(a), a netrainfall occurrence is assumed in edeghe intervalt presenting a
discharge increase. To account for errors in the discharge measurements, a taksHoid
considered. Wenthe conditionx..1 = X + L is met, a trialalue ofthe netrainfallamount is
assumed a¥; = x41 — % , following Battaglia [1986]. Thechoice of the thresholtvel is
critical, because ds increaseshe number ofthe detected events decreasdsle its decrease
originatesmany events withsmall intensities, which can b&eavily affected byerrors in
streamflow data. These errovghich are found ahigh frequenciegproduce a greatumber of
pulses of very low value thatter the correlation structure of the reconstructed protéss.,
the choice ot must be the result of a trade-off between the number of edetaisted and the
significance of their values.

In step(b), convergence of the procedure is enswiadethe minimisation is applied to a
positive-definite quantity. Theinimisation problem isubject to some constraintgfined by

the relations:
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k>0; ¢>0,i=1,2,3; > =1 (4)

determined by the conceptuakaning ofparameters. Ste) is carriedout through a Nelder-
Meadsimplexalgorithm [Press et al 1988],which is convenient whetine objective function

is of a highlynonlineartype. The procedure staft®m aninitial condition8° belonging to the
feasible region of parameters. Constraints (4)natalirectly implemented inhe minimisation
algorithmbut are checked on each soluti@ctor. It isalso checked that in each optimisation
phase the solution vector belongs to the feasible region of the problem.

In step ¢) constraints arelefined bythe condition ofnon-negativity of pulses, i.&/; = 0.
This constraint cannot be easily implementethendeconvolutiomlgorithm and is imposed on
the series after deconvolution, by removitigg negativevalues and theioccurrences. Iithis
way the estimated occurrences ameplicitly tested.Actually, because othe influence of
errors, anegative pulse either indicates a very low intensity summedyteanegativeerror,

or a negative error alone. In both cases the occurrence of a rainfall event is highly unlikely.

3.3. Parameter Estimation on Different Time Scales

From a theoretical viewpoint the model proposed should be able to esdlhthéresponse
parameters at thaaily time scaleHowever,this resulted practicallympossiblefor the storage
and the rechargeoefficients ofthe over-year groundwater component. Thanmeason for
this outcome is that thénigh time lagrepresented bz makes this runoff component
indistinguishable, at the daily (drday) scale, from an additive constant. To preservéotite
term correlation structure, a separate estimation of the parafgéerdcs is then needed.

The estimation schemeqposed here is theame usetbr themonthly scale byClaps et al
[1993], who suggested to aggregate the data onatimeial scale irorder to mask the
undesired informationi.g. the seasonality) anchaximisethe visibility of the effect tocapture
(i.e. theinterannual correlation). Ithe cited paper, foestimation ofkg andcg the authors
refer to the correspondingnnual conceptually-basedtochastic model,which is an

ARMA(L,1).
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As a support tathis procedure,Claps and Murrone[1994] reported, ineven simpler
systems, positive effects dbta aggregatiowith regard to parametastimation ofARMA
models. Aggregation was found effective wiika responséme ofthe conceptuatlement is
much greater than the reference scale and when the weight of the component (in th)ssase
relatively small.

The need to refer to a different class of stochastic models when data are aggregated requires
to be further commented. In the framework of streamfioadels with stochastic input and
deterministic basirresponse, théncrease inthe aggregatiorscale modifiesboth theinput
process and the response function. As the aggregatemal becomesignificantly greater
than thetime lag of aresponse component, tieéfects determined by this componemé no
longer apparent in thdata. In the conceptualystem, that 'fast' response is then associated
with the component representing the zero-lag translation (diver3iois)quite naturagystem
modification does notchange themeaning ofparameters and wouldot require initself a
modification of the nature of the streamflow model. However, geicture of theinput
process also changsgnificantly, going from a periodic - approximately independent - point
process on the daily scale, to a continuous quasi-gaussian process on the annual scale.

These drastic changes in the input process regguesalent modifications ithe form of
the streamflow model. The lattgoes, according to trechemanitially proposed byClaps et
al. [1993], from the ARMA(1,1)model onthe annual scale, tthe PIR-ARMA(2,2)(ARMA
with periodic independent residual) tire monthly scale, up tthe shotoise model presented
here, for a scale af days.

Once estimate#tz andcs as described above, a constrained estimation is pos$sibllee
remainingparameters, starting on theonthly scale witlparametersk, andc, [Claps et al,
1993]. Finally, inthe shotnoise framework, parameteks andc; can be estimated (witty
resulting by continuity).

The separate estimation tfe parameteks givesthe necessarysupport for setting the
memory horizorg of the shohoise model, which iseeded to makgnite the infinite memory

mixed exponentialesponse function. Sinde; is the mean lag time othe slowestrunoff
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componentg can befixed asq = n k3, with n such thaq is the baséime underlyingd9% of

the area of the exponential recession.

4. Multiple Shot Noise Model Application and Testing

The multiple shot noise model proposed was applied to 8 time series of daily flows, recorded in
7 watersheds located in tiAg@ennineregion of central southern Italy (Table Two sub-

series were considered for the Tiber River stheestreamflowecord is interrupted. Fall of
therivers no significant diversions oegulations wereeportedduring the observation period

and theinfluence ofthe snowmeltrunoff can be neglected. THmsinsunder study are all
characterised by the climate and the geologip®Ennine mountaing:or thewhole region it is
possible to distinguish two main climatic seasongeaiseasonjuring autumn and winter, and

a dry season, during spring and summenelVanalysinghe streamflow process on thenual

and monthly scale ivas made reference tbe hydrologic year, starting dhe end of the dry

season, conventionally at October the 1st.

4.1. Model Identification and Parameter Estimation

As discussed in the previous sectionpdel identification essentially coincides with the
evaluation ofthe presence of an over-year groundwater component. Existenteis of
component on theasinsunder study wagreliminary checked usinghe DFI and SFI. Based
on the values computed for the above indexes, reported in Table 2, in the seven basins only one
"impermeable'watershed (group 1) wadearly identified, presenting vetgw runoff during
the dry season.

Estimation of parameteks andcs through the ARMA(1,1)nodel (Table 3) confirmed the
indications emerged from the use of the hydrological indexes. The use of thelMp#dakage
for ARMA parameter estimation madepossible to slightly reviséhe results of thdvasin
classification (orthe corresponding stations) obtaineddigps et al[1993], bysubstantiating

the discrimination suggested by the DFI.
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TABLE 1. Characteristics of the basins and of the daily runoff series analysed

Continuous Area kn?)

Series # Gauging Station Recording Period
1 ALENTO at Casalvelino 1.1.58 - 31.12.72 284
2 CALORE IRPINO at Montella 28.12.44 - 31.12.70 123
3 TAMMARO at Pago Veiano  1.1.58 - 31.12.70 555
4 Sacco at Ceccano 1.1.59-31.12.70 922
5 GIOVENCO at Pescina 1.1.60 - 31.12.70 139
6a TIBER at Rome 8.7.20 - 31.5.42 16545
6b " 1.1.47 - 31.5.69 "
7 NERA at Torre Orsina 1.1.47 - 31.5.69 1445

According to the conceptual framework fstimation of parameters on different scales of
aggregationcoefficientsc, andk, should be estimated on tmonthly scale. It isvorth
specifying thatfor all series, except serigg3, coefficientsc, and k, are to be estimated
through a PIR-ARMA(2,2) model, due to the presence of the over-year groundwater

component, while the model for the monthly data of station # 3 is a PIR-ARMA(1,1).

TABLE 2. Watershed classification based on the flow indexes. Groupl includes impermeable
basins. Group 2 includes basins with significant over-year groundwater runoff.

Spring Flow Deep Flow

Group Series# Gauging Station Index (%)  Index (%)
1 3  TAMMARO at Pago Veiano 0 2.09
1 ALENTO at Casalvelino 1.0 8.8
2 CALORE IRPINO at Montella 0.4 19.7
4 Sacco at Ceccano 2.3 9.7
2 5 GIOVENCO at Pescina 344 55.2
6a TIBER at Rome 39.6 50.4
6b " 28.9 50.1
7 NERA at Torre Orsina 40.1 74.3

However, application ofthe shotnoise model showed thap andk, can beefficiently
estimated even othe T-day scaleThis last result let usuppose that parameterg andks

cannot be "seen" on tlaaily scale becaudhe frequency ofthe response of that component is
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simply too low to be evident in the frequency spectrum computed withddedyin particular,
as discussed in the next section, estimates obtained witihhdheoise proved t@ive abetter
picture ofc, than the one obtained omonthly data. It was thedecided forc, andk, to give

credit to the shot noise estimates (Table 3).

TABLE 3. Final values of shot noise model parameters for analysed series and correspondent
values of standard errors (in italic)

Series # 1 2 3 4 5 & 6b 7

T (days) 3 2 3 3 2 4 4 5
Co 0.340 0.155 0.272 0.319 0.106 0.098 0.101 0.025

C1 0.281 0.194 0.236 0.242 0.112 0.158 0.136 0.018
St. Err. 0.010 0.004 0.013 0.010 0.004 0.007 0.011 0.005

ki(days) 3.105 2.672 2912 2706 3.274 4.076 5552 5.401
St.Err. 0241 0098 0.337 0.257 0.194 0.357 0.631 3.190

Co 0.297 0.546 0492 0.261 0.191 0.225 0.243 0.247
St. Err. 0.011 0.004 0.015 0.010 0.004 0.008 0.012 0.005

k,(days) 60.4 722 356 539 563 437 402 109.3
St.Err. 503 142 198 464 278 274 272 613

& 0.082 0.106 - 0178 0590 0.520 0.520 0.710
ky(days) 551.4 228.5 - 507 1073 1233 1233 1533

Estimation of the subsurface component parameters and selection of the redeadgite
are performed in theame time, sincthe final c; andk; are selected as the estimatesde on
the scaleT that complies wittthe hypothesigg(t) = &(0). Reference intervals fourfdr all of
the analysed serieare reported inrable 3togetherwith the estimates of; andk;. The
coefficientcy results from the volume continuity condition.

The procedure foselection ofl throughmaximisation othe surfaceunoff variance to the
total runoff varianceratio 02402 is exemplifiedfor the station #3 ifTable 4. Aggregation
scales ranged from 1 to 7 days. Observation of these reshits, are common toall other
series, allowne to notice that the subsurfacmoff storagecoefficientk; is quitesensitive
with respect to aggregatiomhile the corresponding rechargeefficientc,, as well as the

other parameters, resulted quite stable with the increase of
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The variability of k; with aggregation wasot unexpectedsince the aggregation on
multiple daysneeded for theorrectestimation of surface componentpguces also a loss of
resolution on the subsurface componéatying a delay only slightlgreater than the one of
the surface component. This is perhaps the reakgrthe maximum ofthe ratioo24a?; is not
very evident. Orthe othethand, it isworth remarking thathe sensitivityshown byk; resulted
not particularly important, as compared withe stability of the parametec,, in terms of the
reproduction of the process features.

With respect to the selection of the reference scale, it meation thatthe presence of
residual correlation ithe effective rainfallseries is ofgreat supportbecause it indicatethat
some effects introduced lie lag of the surfacerunoff componentare transferred to the

estimated input. This means that the surface lag is not yet enough smaller. than

TABLE 4. Estimation over different aggregation scales. Series # 3: Tammaro at Pago Veiano
(the values correspondent to the reference Jcate bold)

aggregation Co C1 ki (days) Co ko (days) 02402
(days)
1 0.2175 0.2501 1.4476 0.5324 32.9918 0.2771
2 0.2406 0.2868 2.1295 0.4726 33.8132 0.2460
3 0.2721 0.2359 29121 0.4920 35.5948 0.2846
4 0.2564 0.2713 3.3299 0.4723 31.9288 0.2252
5 0.2049 0.2914 1.9579 0.5037 30.6993 0.1276
6 0.2948 0.1506 2.3006 0.5546 34.7493 0.2725
7 0.2462 0.2210 4.7390 0.5328 32.1816 0.1820

4.2. Effective Rainfall Model Estimation

The Poisson white noise exponential model of precipitd BdMNE) was fitted on thmput
series obtained after estimationtbé shomoise parameters. the PWNEmodelthe number
N of rainfall events in thenterval At follows a Poisson distribution, with parameigrand an
exponential distribution, with meanf3l/is assumed fdaheintensity ofthe instantaneoysulse
The inputintensity can also follow differertontinuous distributions, such aggamma or a

mixture of two negative exponential functions.
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The probability density function afhe cumulate@ffective rainfallY over the duratiodt is

given by p.g.Eagleson1978]:

fy(y) = e_Mt[é(W,/)\@tB (2/AatBy) e (5)

whered(.) is the Dirac delta function amgl.) is the first order modified Bessel function.

Moment estimates of parameters are given by

>>
N
o

. p=tN (6)
G

4o
=

wherem ands are thesample mean amstandard deviationwhile Maximum Likelihood(ML)

estimates are given by the following relatioBg@ngelo and Versacé 990]

1 j IO(ZB My yj) 3 (7)

y=My P (8)

where variabley; indicate the; historic values oY, rearranged such thatNf, is thenumber
of zerovalues thefirst N,y values ofy; are equal taeroandy; > 0 forNg+1< j< N.lg()
is the modified Bessel function of zero order.

Parameters of the PWNiBodel were estimated on seasamsging from 14 to 33 days
according to thecale of aggregation dfie reconstructed inputollowing the suggestions by
Yevjevich and Harmancioglfil989], the seasonalvariability of each parametep was

described by a truncated Fourier series:

p(t) = AO+§[A sin(z?mtﬂbiﬂ (9)

i=1
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in which coefficientsa, and ®; respectivelyrepresent themplitudes andhe phases of the
series, and\ is themean value othe parameter. In the case under study, based also on the
results of theapplication made bySirangelo[1994] on central-southerttaly series, two
harmonics were considered sufficient.

Estimation of coefficient®; and®;, as well as\,;, were performed both with thmoments

and with the maximum likelihood methods, and are reported in Table 7.

5. Model Testing

5.1. Hydrological Validation of Parameters Estimates

In the procedure suggested @laps et al (1993)validation of parameters tfie over-year
groundwater was considered @t of theidentificationstage and was based on thdirect
evaluation ofthe coefficient c3 through the DFI and the SFI. In the previous section,
effectiveness of the above hydrological indexes in the validatidreafonceptual parametey
was shown once again.

As regards parameters of the over-month groundwater compgnant,thatthe estimates
of ¢, andk, obtained on the T-dagcale withthe shothoise modelook quiteefficient, it was
natural to compare them with the estimates obtained through the PIR-ARddAl applied to
monthly data.For this comparisonthe interval T was set at theeference value, even though,
as can be seen in Table the parameters undenvestigationare almostinsensitive to
aggregation from 1 to 7 days.

Table Sreports theestimates of parametets andk, (andcy) obtained with botimodels,
along with theshot noise estimates of parametets and k; of the subsurfaceunoff

component, reported again for reference. The results obtained require some comments.



20

TABLE 5. Comparison between PIR-ARMA and shot noise model parameters

Series # Model

o ¢, ki (days) ¢ ko (days)

1 SN 0.340 0.281 3.11 0.297 60.4
PIR-ARMA  0.186 0.732 58.5

2 SN 0.155 0.194 2.67 0.546 72.2
PIR-ARMA  0.155 0.740 60.7

3 SN 0.272 0.236 2.91 0.492 35.6
PIR-ARMA  0.210 0.790 55.2

4 SN 0.319 0.242 2.71 0.261 53.9
PIR-ARMA  0.145 0.677 90.1

5 SN 0.106 0.112 3.27 0.191 56.3
PIR-ARMA  0.133 0.277 66.9

6a SN 0.097 0.158 4.08 0.225 43.7
PIR-ARMA  0.117 0.363 49.8

6b SN 0.101 0.136 5.55 0.243 40.2
PIR-ARMA  0.117 0.363 49.8

7 SN 0.025 0.018 5.40 0.247 109.3
PIR-ARMA  0.034 0.256 106.8

It can be first observed that, apart form station wadyes obtainetbr k, from both models
are substantially coinciding, particularly if considerinige acceptable region of parameters
shown in Table 6 and discussedhe next subsection. On tie¢gherhand, values obtained for
¢, with the PIR-ARMAmodelsare systematicallygreater than those obtainé@m the shot
noise model. On this sid€laps et al.[1993] attributed theirelatively high values to the
interference of the subsurface component on the over-month component. Results presented
here confirms thatonjecture, because tisem ofc,; andc, obtained through the shabise
model practically matchethe values ofc, estimated on thenonthly scale. It is alsaorth

remarking that, was estimated quite well already on the monthly scale.

5.2. Statistical Testing of Parameters Estimates
Verification ofthe results omodel estimationveremade under different viewpoints. First,

sometests were performed tascertain theeliability of parameter estimates. The testing
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concerns the possible presence oftipla local minima ofthe objective function irthe feasible
region of parametersyhich would not allow the numerical algorithm tdind the absolute
minimum. This aspect wawerified using aprocedure proposed yuan et al [1992], who
suggest to searaminima of the objective function, likethe function defined by relation (3),
starting from different points othe feasible region of the parametefgplication of this
procedure on all of the series analysed confirmed the stability of the parameter estimates.

A further verification of thisaspect was performed Bxploring the objective function
surface on the subspaces determined by couples of parameters. Patthimisuface are
shown in Fig. 1, with reference to four couples of parametel & the plots the presence
of only one region of attraction for the minimum can be recognised, and the region is also quite
well defined.

Evaluation ofefficiency of estimates can also be made by determining their variance (or
standard errors)his determination can be achiewbdough the knowledge of tfevariance
matrix of estimates, that allowme to obtain the standaestror (SE) ofestimates using an
asymptotical result given ®ard [1974]. Values of the standard errors computedhlianf the
parameter estimates agaren in Table Jor all series. Standarerrors ofkg andcs were not
reported since from the ARMA estimation result only the SE of the AR and MA parameters.

An additionaltestwas performed regarding the robustness ofnilmaerical schemer, in
other words, toverify the capability ofthe estimation technique to attaine “true” parameter
values regardless of possible distortiahge tosmall fluctuations in thedata. Tothis end, a
non-standardjackknife resamplingprocedure, proposed biKlinsch [1989] for ergodic
stationary time series, wassed. Themean andthe standarddeviation of the estimated
parameters were computed, for each seressmpling200 sub-series of 1825 observations,
corresponding to ahifting window of 5 years §iurrone, 1994]. Toencompass thehole
series the shift was adapted to the series length.

For all of the series, parameter estimdtdkinsidethe acceptable regiodefined as having
the centre on thgackknife mean and with half-band width equal ttice the jackknife
standard deviation. In almostl cases estimate®ll even insidethe one-standard-deviation

interval (Table 6).
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5.3. Generation of Synthetic Streamflow Series

To verify the efficiency of the model in terms ofreproduction of thestatistical
characteristics of observed series, extensive simulation stdiegquired. Irgeneral one is
interested tdest if anumber of significantharacteristics of the observedriesare correctly
reproduced.

According to theaims of runoff modelling, flow sequencesre mainly needed in water
resourceplanningand management, so onemsinly interestedn: partition of flows among
different components, cumulative frequency functiortadél flow, minimum and maximum
daily flows, runoff volumesver differentduration,flow duration curves, run length statistics.
Among the many possible statistical characteristidh®bbserved series, the onested were
thefirst three momentghe flow duration curves and thmaximaandminima offlows, useful

to check the model behaviour in the tails of the distribution.
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TABLE 6. Jackknife robust estimates of paramefgeysud their standard deviatiors)
compared to final values of model parameters (in italic)

Series #

Co C1 ki (days) ) ko (days)
0.340 0.281 3.11 0.297 60.4
1 H 0.282 0.315 2.92 0.321 47.6
o 0.074 0.076 1.15 0.046 11.5
0.155 0.194 2.67 0.546 72.2

2 H 0.148 0.219 3.46 0.527 86.2
o 0.038 0.061 1.99 0.064 40.2
0.272 0.236 2.91 0.492 35.6
3 H 0.267 0.289 3.29 0.435 45.8
o 0.047 0.068 0.88 0.089 12.9
0.319 0.242 2.71 0.261 53.9
4 H 0.296 0.281 2.51 0.245 51.7
o 0.041 0.070 0.59 0.050 13.4
0.106 0.112 3.27 0.191 56.3
5 H 0.105 0.133 3.08 0.172 51.8
o 0.012 0.015 0.50 0.013 12.1
0.097 0.158 4.08 0.225 43.7
6a H 0.092 0.180 4.17 0.208 48.5
o 0.040 0.025 1.61 0.034 13.9
0.101 0.136 5.55 0.243 40.2
6b H 0.072 0.142 3.80 0.266 38.7
o 0.038 0.033 1.86 0.030 12.4
0.025 0.018 5.40 0.247 109.3
7 H 0.011 0.029 4.15 0.250 89.4
o 0.015 0.023 5.85 0.029 17.9

These comparisons were performed for the stationugirig the PWNEmodel for the
inputs, with ML estimates of parameters. The PWNE model was fittetheomnput series
inversely estimated on 3-daiata,with model parameterset at thevaluesreported inTable 3.
Data generation wasnade on adaily scale usingthe seasonal approximation @fput
parametergjiven in Table 7For each calendar day parameter valuesere obtained through
relation (9). The inputs were then convoluted with giigtem response function, as in (15) to

obtain the streamflow series.
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Daily flows were generated with length equal totkfBesthe observation period. Timake
the generatederies independent dhe initial conditions, 20 years afata werdirst generated
and not considered in the subsequent analyses.

To give a general idea of the quality of the simulated runoff, a comparison of runoff patterns
of observed and generatddily data are shown in Fig. 2 ftwo solar years with reference to
station # 1. Table 8 showise comparison anoments othe observed and generatialvs,
averaged on thdifferent months. It can be seen thia first three momentsre quitewell
preserved in simulatioripoth for thegeneral and fothe monthly values. Positive bias of the
generated skewness is to be noticed, ebmugh it resultedcompatible withthe sample
variability, measured by the?c bands, reproduced in Fig. 3 for all three moments.

Reproduction of théow duration curves and ehaximaandminima offlow over different
duration are shown in Fig. 4 and Fig.réspectively Goodperformances of thenodel can be
recognised with respect to the reproduction of these characteristics. It is to thatice
preservation of theffects ofthe groundwaterunoff component produceemarkablygood
results in thesimulation of runoff during long dry periods, whichaee of the points where
previous shot noise models gave inadequate result3Neigs 1977;Battaglia 1986].

Maximum of flow over fixed duration were alseery well reproduced. Comparisons are
referred to the average yearly maximum (and minimum) flow of duration 1-30 days.

Observation of theeries ofthe yearly maxima of dailyfflow in Gumbel probabilitypaper
(Fig. 6), also shows thgood performance and adequacy of the PWiKEdelfor the inputs

with regard to the upper extremes.
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Fourier Moment method Maximum Likelihood method
Series # Coefficients A (1/day9 1/8 (mm) A (1/dayg 1/8 (mm)
Ao 0.0627 18.4652 0.1222 9.8799
A 0.0366 19.3238 0.0568 11.3508
1 b, 0.5194 0.6652 1.0510 0.5246
A, 0.0098 -3.6871 0.0146 -2.9899
>, 0.6329 -2.8692 2.0364 -3.1582
Ao 0.0780 17.0055 0.1541 9.0492
A; 0.0482 12.2677 0.0634 9.1986
2 b, 0.7778 1.0153 1.5916 0.7400
A, -0.0060 -2.9475 0.0237 -2.5246
d, 4.0475 -2.2568 3.5817 3.7131
Ao 0.0870 8.9844 0.1135 7.0678
A 0.0781 7.6915 0.0739 7.2112
3 b, 0.4628 1.0713 1.1218 0.5598
A, 0.0113 -1.9819 0.0213 -1.6621
>, 6.1570 -1.0450 2.8850 -3.1367
Ao 0.0713 15.9804 0.1194 9.2217
A; -0.0410 15.0478 0.0465 11.1499
4 b, 3.5851 1.4098 1.2894 1.0611
A, 0.0237 -3.3802 0.0359 -3.5134
>, 1.9072 -1.9942 2.8818 -2.5602
Ao 0.1573 5.4907 0.2321 2.9636
A; -0.0444 48171 0.0668 3.3123
5 b, 1.9184 1.2622 2.1649 0.8149
A, -0.0423 -1.4042 0.0282 -0.9944
d, 4.0489 1.7715 3.8458 -2.9002
Ag 0.0893 14.2871 0.1118 11.5891
A -0.0341 -8.5488 -0.0328 -9.3243
6a b, 0.5707 0.9060 1.7152 0.5343
A, 0.0169 4.0876 0.0225 1.7111
>, 3.5682 1.7722 3.4993 2.2347
Ao 0.0929 12.1795 0.1307 8.5534
A, 0.0282 7.3971 0.0368 8.0486
6b b, 0.8619 1.0213 1.9636 0.6803
A, -0.0130 -1.9725 0.0160 -1.6221
>, 4.6728 1.9306 3.3149 -3.1410
Ao 0.0696 24.4386 0.0865 16.5933
A -0.0131 19.1208 0.0191 11.2012
7 b, 1.2360 0.2672 0.2020 -0.1480
A, 0.0134 -9.8283 0.0061 -1.9034
>, 4.0353 3.6219 0.6079 3.7185




26

TABLE 8. Statistics of historical and generated daily flows for each calendar month (averaged
over the years) and for the whole period. Series # 1

Mean (cms) Standard deviation (cms) Skewness
Month Hist. Gen. Hist. Gen. Hist. Gen.
Jan 11.9935 10.9199 16.4726 15.0339 2.2738 3.0530
Feb 9.2241 9.9710 9.8953 12.6215 2.2370 3.0152
Mar 7.3553 7.4254 7.2697 8.9105 2.4190 3.2204
Apr 5.2805 5.0500 5.5319 4.7972 2.4582 2.9815
May 2.6469 3.1805 2.0212 2.5145 1.6508 3.1770
Jun 1.5716 2.0350 1.1604 1.2588 1.2716 2.8848
Jul 1.0335 1.3792 0.3167 0.6837 1.2813 2.8224
Aug 0.6509 0.9004 0.2051 0.2093 1.1545 1.9361
Sep 0.7878 0.7798 0.9144 0.3904 2.1076 3.1654
Oct 1.7465 1.9661 3.0342 2.9991 2.0680 3.3723
Nov 5.2338 5.5723 9.0731 8.4227 3.0213 2.9807
Dec 10.2225 9.7141 16.6532 13.7824 2.8460 2.8551
whole period 4.7905 4.8832 12.1982 10.1628 7.7051 7.0382

6. Concluding remarks

The building of ashotnoise modefor streamflows ashortscales of aggregation is presented
here according to a conceptually-based interpretation diasiaresponse to precipitation, in
which linearity is assumed for the effective rainfall to runoff transformation.

Our basic aim was to build a model able to preserveythamics othe streamflow process
over different scales of aggregation. Thespect ofthis requirement allowethe model to
comply with the structure of correspondingpnceptually-based models poged for the
monthly and annual scaleSlpps et al. 1993]. Moreover, parametestimation igart ofthis
compatibility, since coefficients responsible of the long-term autocorrelation in runoff series are
estimated, through the ARMA(1,1) model, on #reual scalePreservation of theffects of
the groundwaterunoff component with over-year lag determines a marked improvement in
the quality of the runoff seriesreproduced by the modetven because it allows toetter

discriminate the effects due to groundwater components and direct runoff.
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To simplify the watershed response function, a referesceée ofT days was indicated for
parameter estimation, such that the response of the sudiaoff component could be
assumed as equivalent to a Dirac delta functiar. theselection of this scale procedure
based on thenaximisation ofthe surfaceunoff variance wagroposedand its application is
simultaneous with the parameter estimation.

Model application to eight time series of central-southern lalinsshowed interesting
results, supported byydrological validations and statistidastsinvolving also asimulation
analysis. This lattewas performed using a Poisson white noise model with exponential pulses
(PWNE) for reproduction of theffective rainfalPWNE model parametevgere estimated on
the inverse estimate othe effective rainfallseries. Comparison of observed and generated
statistics and properties of thenoff series showedatisfyingagreement between theo,
with excellent reproduction of maxima of runoff for different duration.

Improvements in thenodel structurecan be achieved, ithe authors' opiniorgssentially
from refinements ithe effective rainfall inversestimation and ithe related stochastroodel,
on which additional investigatior@sebeing carriedut bythe authorsGiventhe goodoverall
performances of the model, ittlsought thatefining the modelling of effective rainfall isnore
important than introducing norinearity in the separation ofeffective rainfall in the
groundwater and subsurface subsystems.

In addition, further investigationsbout themodelling ofthe surfaceunoff response are
needed, starting fromefinement ofthe method for selection of the refererstmle when
dealing withdaily data.Finally, bythe viewpoint ofthe conceptual interpretation of watershed
response, hourly runoffata couldallow us to improvehe distinction ofthe subsurface and
surface responsegiving, in the meantime,the possibility to estimate the latter as an

exponential or gamma function.
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Appendix. Discretized representation of the shot noise model

In a linear system fed byoint process, if the inpydulse athe instantr; has intensityy;,
the systemoutput, for t > 1j, is equal toY; h(t-T;). Giventhe linearity of the transformations
operated by the watershed, ttscharge at time will be the sum ofthe outputs to the
previousindividual inputs [Parzen 1962], whosenumber is given byhe countinglunction of

the arrival process\(t):

N(t)

X(t)= ;Yi Ht-1) (10)
N(-o)

Relation (10) has theoreticallgfinite memory.The problem to overcome witlegard to
this formulation concernshe correctclassification ofthe initial condition (=0) and the
possibility of actuallyreproducing thenumerical scheme. To avadide carry-over ofinfinite”
eventsinfluencingthe output atny time, it is sufficient tdimit the "active" history of events
to a finite IUH base timg (the memoryhorizon,underlying99% of the IUH area)Even then,
the setting of thenitial conditions with theusual method othe "warm uplength" (e.g.
removingthe first n datainfluenced bythe initial conditions) can be impracticabletife IUH
base time is particularly large. Reasonamigl conditions can bset iflong dry periods exist,
since at their enthe over-month and the subsurface components can be neglected compared

to the over-year runoff component. In this case, the model expression becomes

N(t)

X()= X s + ; Y i) (11)
N(0)

whereXg is X(t=0) and is entirely represented by the over-year component.

Process (11) is the representation of the continuous streamflow prebdssime series
are usually available irdiscretized form, such as tlmean dailydischarge analyseldere. To
represent process (11) integrated on a tmtezvalAt, with At equal toT days T =1, 2, ...), a

time distribution of the rainfall intensity within the aggregation inteAtahust be assumed.
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Therainfall volumeY; in each interval isomputed as the integration of the instantaneous
pulsesY; occurredwithin At. The discretizedoutput X; will be then obtained through
convolution between the input volume and the discretized response fumgtion

Considering a time scalst greater than thiag of the surfacdlow component, this latter
can be considered as a random process intghsity poportional to theeffective rainfall at
any time. In thishypothesis, the surfageinoff responseig(t) can be represented by a pure
translation element, with zero lag. Its IUH is then represented by a Dirac delta fud(@jon,

The system unit hydrogragi(t) is the response to a uniblume of effective rainfall of
durationAt and intensity Wt. From the expression (1) of tisystemlUH, where ug(t) is
replaced by(0), if thewithin-interval time distribution othe input isassumed as uniform, the
unit hydrograph is expressed as:

t
1 1
hm(t):jEu(t—r)olr:Kt

t 3
Cod(0) + J' Z%e_(t—T)/ki o | =
0 i=1

0
1 3 _

=— [006(0) +y ga-eth )], t< At (12)
At =0

The discharge is maximum wher At and then decreases following an exponential recession:

3

hat (1) -1 Zci(l— g Ak )e_(t_At)/K : t > At (13)
At 5

Runoff atthe end of thentervals Nt, 2At, ..., sAt, is theintegral of the two above

expressions. From the former, the outflow volumet the end of the first interval is obtained:

At 3
hy = coB(0) + g Aitglq(l—e‘”ki) ¢ =
. s=1 (14)
_c06(0)+Ait izlci[K(e—At/K 1)+At]
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The latter expression givélse volumeshy in the subsequeittervalsdue to theainfall in the

first interval:
sAt 3
= J 1 Zci(l_ oAtk )e—(r—At)/K 4=
(s—pAat— =1
3 .
=Y ¢ %[em/ki + g Atk _2] e—At(s—l)/k, s>1 (15)
i=1

By aggregation of the input puls&sone obtains a new intermittent procesSf{ defined as

the total volume of pulses occurring in the generic intertal Jit, tAt], denoted as intervai

N(tAt)

Y = Y (16)
t N((tzl)At)

Streamflow in theintervalt due to an input occurresl intervals before is given by the
productY’i_ g¢1h's. Then, the discretized form of the model (11giten by

tAt t ,
X=X =k gtot/ks( ptlks _q) x 4 Y o1 b (17)
(t-1)At s=1

If the process Y} and the responséunction h' are mutually independenand {Y} is

serially uncorrelated, moments of the process (17) can be expresskdran¢ 1994] :

t '
E(Q) =p EY) 3 h;
s=1
t '
VARYX) = {p E(Y2) - p2E2(Y)} $ R (18)
s=1

t 1 1
COMX, Xii) = {P E(Y2) - p2 EX(Y)} Z hs hyy
=]

wherep represents the marginal probabilRgy"' > 0).
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Figure 1. Series # 1: contour plot of the objective function of the model for four couples of

parameters
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Figure 3. Series # 1: comparison of mean statistics of daily flows for each calendar month;

(—) historical flows;(--) generated flows; ) 2-std. bands
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