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ABSTRACT

Informational entropy of river networks, as defined by Fiorentino and Claps (1992a), proved

to be a useful tool in the interpretation of several properties exhibited by natural networks. In

this paper, self-similar properties of river networks are taken as the starting point for

investigating analogies and differences between natural networks and geometric fractal trees,

comparing their variability entropy with parameters of both classes of networks. Attention is

directed particularly to relations between entropy and Horton order and entropy and

topological diameter of subnetworks. Comparisons of these relations for fractals and natural

networks suggest that network entropy can contribute to clarify important points concerning

self-similar properties of river networks. Moreover, the estimation of the fractal dimension of

branching for natural networks can be considerably improved using the relation between

entropy and Horton order throughout the network.

1. INTRODUCTION: INFORMATIONAL ENTROPY OF RIVER NETWORKS

The informational entropy of river networks was defined by Fiorentino and Claps

(1992a) as:

S =    p   p
=1

− ∑ δ δ
δ

ln
∆

(1)

consistently with the definition given by Shannon (1948) in information theory, where pδ's the

relative probabilities related to a given "state" δ. It can be shown (e.g. Wannier, 1966) that the

informational definition of entropy is equivalent to its definition given in statistical-
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mechanics, in which entropy is proportional to the relative probability of a state of a

thermodynamical system.

In the definition of informational entropy of a river network, the network is considered

as a system in which stream segments (links) are the elements whose placement characterize

the system configuration. A network link is the path connecting two junctions and the

topological distance from the outlet, i.e. the number of consecutive links forming the shortest

path from its upstream node to the outlet, corresponds to the state δ in which the link is placed

(see figure 1). The selection of δ as the state variable in the relation (1) was further

substantiated by Fiorentino et al. (1993). The total number of states is the network topological

diameter ∆, corresponding to the maximum topological distance from the outlet. If one

disregards the length of links, as is assumed in this paper, the network configuration is

completely determined by the topological width function which is the diagram of the relative

frequency pδ of the links as a function of the topological distance δ. The maximum entropy

for a given topological diameter is attained with uniform width function (i.e. same number of

links at each topological distance) and is expressed as Smax = ln∆.

Under the hypothesis of uniform energy expenditure, Fiorentino et al. (1993) obtained

analytical expressions of channel profiles by maximizing entropy subject to the knowledge of

the average elevation of the river network. Also some important scaling properties of

channels, such as slope-area and stream power-area relationships, were derived, with scaling

factors depending on the fractal dimension D of the branching process of the channel network.

Moreover, the informational entropy of river network was empirically found

(Fiorentino et al., 1993) to vary with marked regularity with network characteristics,

particularly Horton order, magnitude and topological diameter. In this paper, a specific

investigation of the above regularities is presented, looking at properties of both fractal and

natural networks with regard to entropy.

To take advantage of the fractal nature of river networks, first hypothesized by

Mandelbrot (1983) and later confirmed by several authors with different approaches, synthetic
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fractal networks are introduced here and their properties are exploited to achieve analytical

expressions of the entropy as a function of parameters of their configuration. Entropy

properties exhibited by natural river networks are then compared with the properties of the

entropy of some geometric fractal trees, resulting in interesting interpretations of empirical

findings.

2. DEFINITION OF FRACTAL PLANE TREES AND THEIR INFORMATIONAL

ENTROPY

2.1. A model of fractal plane trees

Fractal plane trees are fractal (self-similar) objects, that can be defined as "having a

shape made of parts similar to the whole in some way" (Mandelbrot, 1986). Fractal objects

result from repeated generations, starting from an initiator, which is a set of segments, and

using a generator, which is a different set of segments. In the construction of the fractal set

first the initiator is substituted with the generator and then each segment of the generator

becomes an initiator and is substituted again, in a recursive way (e.g. Feder, 1988, p. 16). If

only selected segments of the generator become initiators, the resulting tree is a non-uniform

fractal. However, our approach is restricted to uniform fractals.

Fractal plane trees can be obtained with an initiator made of a unit-length segment and a

tree-like generator, made of equal shorter segments whose length is η (Mandelbrot, 1983,

pp.72-73).

After a finite number m of generations the resulting tree, which we will call m-structure,

has finite Euclidean length and is indeed a prefractal, since fractal object have infinite length.

The number of segments of an m-structure is Mm = M1
m, with M1 as the number of segments

of the generator, and its segment length is ζm = ηm (see figure 2). In this paper, generators are
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taken such that the longest path is straight and segments form only right angles. This does not

affect generality and allows us to obtain that the number of partitions 1/η of the initiator

equals ∆1, which is the topological diameter of the generator tree. After m generations, the

topological diameter  is:

∆m = ∆1
m (2)

  The Euclidean length L(ζ) = M(ζ) ζ of the self-similar geometric set depends on the

unit of measure ζ and of the number M(ζ) of segments necessary to cover the set, both

changing with each generation. The fractal measure (i.e. invariant with respect to the index of

generation) L = M(ζ) ζD does not change with generations because of the way the fractal

dimension D is defined (e.g. Feder, 1988, p.19):

D =   
M

 
 − ln

ln
1

η
(3)

Considering that various fractal dimensions have been introduced for river networks (e.g. Liu,

1992;  Beer and Borgas, 1993), this fractal dimension is to be considered as only due to the

branching process and is better specified as the network similarity dimension.

2.2. Informational entropy of fractal trees

The topological width function of fractal trees can be readily obtained recursively as a

function of m by first determining the number Wm(j) (j = 1,..,∆m) of links at the topological

distance j from the outlet. To this end, it is convenient to separate Wm(j) in ∆1 classes, each of

length ∆m−1. The reason for this is that, after the generation transforming an (m−1)-structure

into a m-structure, this latter contains as many (m−1)-structures as the number of segments of

the generator. The network diameter will then become ∆m = ∆1
m = ∆1∆m−1, leading to ∆1

classes. In the generic ∆i class, Wm(j) is made up of as many (m−1)-structures as the number

of segments of the generator at the level i, leading to:
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Wm(1,...,∆m−1)  =  W1(1) ⋅ Wm−1(1,...∆m−1)  =  1⋅ Wm−1(1,...∆m−1) class 1

Wm(1⋅∆m−1+1,...,2⋅∆m−1)  =  W1(2) ⋅ Wm−1(1,...∆m−1) class 2

............................................................................................

Wm((∆1−1)⋅∆m−1+1,...,∆1⋅∆m−1)  =  W1(∆1) ⋅ Wm−1(1,...∆m−1)   class ∆1

Since  the generic class r of the function W(m)(j) corresponding to the m-th multiplication has

∆m−1 topological levels:

W(m)(j),  j=(r−1)⋅∆m−1 +1, ...,r⋅∆m−1 

it is convenient to introduce the following notation:

rW(m)(i),   i=1...∆m−1   

where i is the relative topological level. Hence, probabilities associated to the topological

distances in the generic class of the width function are:

rPm(i) = 
rWm(i)

Mm
 ,             i=1 ...∆m−1 .                

Considering that

 rWm(i) = W1(r)⋅Wm−1(i) ,        i=1 ...∆m−1

and that after m generations the total number of segments is Mm = M1
m, the probability is:

rPm(i) = 
W (r)

M
 
W (i)

M1

m

m 1

1 −1

−
 ,    i=1...∆m−1

and can be expressed as:

rPm(i) =  
W (r)

M
 P (i)

1
m

1
−1  ,     i=1...∆m−1 (4)

With reference to the m-structure, the expression (1) defining the informational entropy can

be expanded in order to show all components of the summation:

S =  P j P j  P ( j)  P ( j) +  .. +   P j)  P ( j)
j j= +1

2

(

j=( 1) +1
m m m m m m m

m

m

m

m

m

ln ln ln( ) ( )
=

⋅

− ⋅

⋅−1

−1

−1 

−1

−1 

∑ ∑ ∑+
1 1

1∆

∆

∆

∆ ∆

∆ ∆

    (5)
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The summation term for the generic class r is:

r
m

r
mlnP i P i

i

m

( ) ( )
=

−1

∑
1

∆

(6)

and considering that equation (4) gives

ln rPm(i) = ln Pm−1(i) + ln  
W (r)

M
1

1

one can rewrite (6) as:

W (r)

M
P (i) P (i) +  P (i  

W (r)

M
1

1
m m m

i=1

1

1

m

−1 −1 −1

−1 

∑ ln ln
∆

)

Expanding all terms in parenthesis we get:

W (r)

M
 P (i)  P (i)  +   

W (r)

M
 

W (r)

M
 P (i1

1
m

i=1
m

1

1

1

1
m

i=1

m m

−1 −1 −1

−1 −1 

∑ ∑
∆ ∆

ln ln ) (7)

where the first summation represents the entropy Sm−1 of the (m−1)-structure and the second

summation equals 1. Substituting the generic term (7) into expression (5) the resulting

equation is

S  =  S  
W (r)

M
  +     1  

W (r)

M

W (r)

Mm m
1

1r=1

1

1r=1

1

1
−1∑ ∑⋅

∆ ∆1 1

ln

from which, considering that ∑W1=M1, finally results:

Sm = Sm−1 + S1 

that by recursion leads to the straightforward equation:

Sm = m S1 (8)

It is interesting to compare this result to the variation of entropy with growth of

maximum-entropy and minimum-entropy-production tree structures. Fiorentino and Claps

(1992b) introduced these tree structures, which present opposite characteristics. A

maximum-entropy tree (figure 3.a) grows in such a way to maintain uniformity in the width

function (which is indeed asymptotical). In this growth, Horton order does not increase while

entropy does. A minimum entropy-production tree (figure 3.b) is built in order to minimize
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the increase of entropy with its growth. This is obtained maximizing the increase in the

number of  links for increasing topological diameter (at each growth stage every source

bifurcates producing also an increase in the network Horton order); for such a structure,

entropy tends asymptotically to a constant. Both tree structures are non-uniform fractals.

In the next section, the patterns shown by these two structures are compared to the

variation of entropy with respect to some parameters of natural and fractal networks.

3. PROPERTIES OF FRACTAL AND NATURAL NETWORKS WITH REGARD TO

ENTROPY

3.1. Informational entropy and Horton order of subnetworks

In natural networks the average  entropy of subnetworks of the same Horton order  was

found (Fiorentino et al., 1993) to vary linearly with the order. In particular, the equation

SΩ=c(Ω−1) (9)

was found, with very high correlation coefficient (> 0.99) and with c very close to 1.

Coefficient c is the rate of increase of entropy with the order, that corresponds to a rate of

entropy production. Also c is an estimate of the average entropy of second-order subnetworks.

Analyzing synthetic fractal trees in a hortonian framework it is easy to determine the

order of subnetworks, since each generation transforms first-order links into trees equal to the

generator increasing the network order of an amount equal to (Ω1−1). After m generations the

tree is an m-structure with order:

Ωm = 1 + m(Ω1 − 1) (10)

Hortonian subnetworks of an m-structure can be or can be not j-structure themselves,

depending on the order Ω1 of the generator.
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By substituting in (10) m as taken from (8), entropy of m-structure subnetworks of order

Ωm is obtained as:

S  =    S  Ω
Ω
Ωm

m −1
−1

⋅
1

1 (11)

For generators of order 2, all Hortonian subnetworks are j-structures, so (11) can be written

as:

SΩ=(Ω−1) S1 (12)

which is equal to relation (9) found for natural networks. Therefore it becomes apparent the

meaning of the coefficient c in (9), as the entropy of an equivalent generator producing the

fractal structure of branching in the river network.

In this paper, fractal networks are built using four kinds of trivalent (i.e. three segments

joining into each node) generators (figure 4) and data from eight natural drainage networks of

southern Italy basins were used, with characteristics reported in table 1.

Figure 5 shows the relative position of the straight lines corresponding to (Ω,S) relations

for natural and fractal networks. Lines related to natural networks were obtained (Fiorentino

et al., 1993) by linear regression between Horton order and average entropy of subnetworks of

equal order. All subnetworks are considered at fixed resolution.

It can be noted that natural basins behaves as fractal structures mostly intermediate

between these obtained from generators 4.a and 4.b. Even though the use of generators of

order Ω1 greater than 2 is awkward, because there is no explicit expressions for the entropy of

subnetworks which are not j-structures, a third order generator (figure 4.d) was considered. It

can be regarded as a structure intermediate between the 4.a and 4.b, as confirmed by the

position of its (Ω,S) curve. In this case, equation (11)  can be applied only for Hortonian

subnetworks of odd order, which are all j-structures. Subnetworks of even order are still equal

throughout the network but their entropy can only be computed through the definition (1). It is

also interesting to comment the position of curves relative to maximum-entropy and
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minimum-entropy-production networks: both curves constitutes bounds of the region of

existence of real-world curves and show the two related networks to have characteristics very

different, in a Hortonian viewpoint, from those of natural and fractal networks.

3.2. Informational entropy and topological diameter of subnetworks

From what was shown previously, the topological diameter ∆ of a subnetwork seems to

be a scale factor of the object by an entropic viewpoint, first of all because ln ∆ is the entropy

upper bound. Yet, it is less apparent if some regularity exists in the (S,∆) relation for subsets

of a network, either natural or fractal. To investigate this, Claps and Oliveto (1993) examined

the relation existing between the two variables for all subnetworks of the eight basins of table

1. Linear relations with very high correlation coefficients (> 0.99) were found between S and

ln∆.

Moving to synthetic fractal networks, equation (2) provides the topological diameter of

all m-structures, so that eliminating m between (2) and (8) one obtains:

S  =    S  
m∆

∆
∆

ln

ln
m

1
1⋅ (13)

which is the same  kind of equation found for natural basins.

It is interesting to comment how close natural basins and fractal networks curves are to

the case of maximum-entropy structures, for which S∆ = ln ∆. Regarding this, observation of

figure 6 reveals that the lines relative to both fractal and  natural networks deviate only

slightly from the diagonal representing the case of maximum-entropy trees. This appears in

contrast with the patterns observed in fig.5. However, it is to be considered that Horton order

doesn't give any information on maximum-entropy trees, since the order Ω is 2 independently

of the tree configuration.
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The dotted lines in fig.6, representing the regression lines found for natural basins, are

again comprised between the lines of the two fractal trees obtained from generators 4.a and

4.b.

Figure 6 also shows the curve relative to the Peano fractal network (e.g. Marani et al.,

1991) which is a tetravalent structure (four links joining into each node) with fractal

dimension 2 (is a plane-filling curve). This fractal tree occupies a completely different region

of the (S,∆) plane with respect to the other trivalent objects. This constitutes an additional

confirmation of the doubts expressed by Rodriguez-Iturbe et al. (1992), Fiorentino and Claps

(1992b) and Rinaldo et al. (1992), on the use of this fractal tree as a surrogate of natural

networks, for which it was proposed mainly because of its space-filling nature.

4. ESTIMATION OF RIVER NETWORK FRACTAL DIMENSION USING

ENTROPY

Synthetic fractal trees are completely defined by their fractal dimension (3) and, given

the results of the previous sections, by the informational entropy of their generator. A

comparison of the definition (3) with the equation

D =  
ln R

ln R
B

L

(14)

introduced by La Barbera and Rosso (1989) for the river network fractal dimension, suggests

an analogy between M1 and the Horton bifurcation ratio RB and between ∆1 and the Horton

length ratio RL.

Claps and Oliveto (1993) have shown that this analogy is asymptotically an equality for

fractal networks with Ω1=2 and that estimation of the similarity dimension D of fractal

networks by (14) is correct only for trees with an adequately high generation index m. The

latter result is valid for whatever Ω1. The sensitivity of the equation (14), as a function of the
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network Horton order, for the estimate of the fractal dimension of branching was also shown

by Beer and Borgas (1993) with reference to a natural network.

The question arise whether the similar patterns exhibited by fractal and natural networks

with reference to their informational entropy can be useful in reconsidering the estimation of

the network similarity dimension. As a matter of fact, both D and S1 are unique for each

specific fractal tree, particularly if simple generators are considered. So, a simple answer to

the above question can be given by the construction of a regression link between the two

variables.

Using only fractal structures with Ω1=2, including those of figure 2 and trees with

increasing topological diameter, the equation

D = 1.476 − 0.240 ln S1 (15)

was obtained by regression, with correlation coefficient R=0.999. This equation can be used

to estimate D once S1 is known.

Equation (15) was applied to the eight natural basins considered, with S1 evaluated by

the regression between SΩ and Ω (equation (12)). Resulting estimates of D, reported in table

2, are much more stable around their mean in comparison to the estimates obtained through

(14); this could be interpreted as an index of robustness of the estimation method.

5. FINAL REMARKS

Some relations between the informational entropy of the network and parameters

characterizing the network structure  have been investigated in this paper with regard to

synthetic fractal trees. These relations, established in analytical form, were found perfectly

matching empirical relations obtained in previous papers on natural networks. Therefore, the

fractal nature of river networks is substantiated by these analogies and used to better
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understand patterns of variability of some parameters as functions of the informational

entropy.

Some particular findings are worth emphasizing:

1) the entropy of fractal and natural networks is linearly related, in average, to the Horton

order. The slope S1 of the straight line represents the entropy of the elementary structure from

which  the self-similar network can be considered to be generated.

2)  the logarithm of the topological diameter is linearly related to entropy, with slope close to

1. So, natural networks can be considered as quasi maximum-entropy structures;

3) both S1 and the fractal dimension D are unique features of the self-similar networks. Hence,

the relation linking these two variables permits an interesting new method for estimating the

fractal dimension of the branching for natural networks.
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Basin A

(Km2)

Dr. Dns.

(km-1)

M. L.

(Km)

n H

(m)

E

(m)

∆ Ω RB RL

Arcidiaconata 123.9 2.24 23.04 254 657 301 50 5 4.12 2.39

Lapilloso 28.5 2.34 11.56 72 394 229 36 4 4.34 2.28

Vulgano 94.1 2.08 22.08 193 663 370 37 5 3.79 2.26

S.Maria 58.1 2.26 15.53 159 226 144 48 5 3.72 2.57

Salsola 44.1 2.24 14.21 100 513 270 31 5 3.28 2.29

Casanova 57.3 2.20 15.79 123 524 290 26 5 3.44 2.55

Celone S.V. 92.5 2.07 27.59 181 715 362 42 5 3.83 2.73

Celone a P.F. 233.5 1.55 48.61 292 861 405 53 5 4.1 2.74

Tab. 1. Some characteristics of the Southern Italy basins considered. A (drainage area);

Dr.Dns. (drainage density); M. L. (mainstream length); n (magnitude); H (total elevation

drop of the main stream); E (average basin elevation relative to the outlet); ∆ (topological

diameter); Ω (Horton order); RB (Horton bifurcation ratio); RL (Horton length ratio).



Basin S1 lnRB/lnRL D

Lapilloso 1.081 1.78 1.43

Celone F.S. 0.981 1.40 1.47

Arcidiaconata 0.952 1.63 1.48

Celone S.V. 0.953 1.34 1.49

Vulgano 0.880 1.64 1.49

Salsola 0.837 1.43 1.51

Casanova 0.859 1.32 1.53

S.Maria 1.018 1.39 1.49

Average 1.49 1.49

Std. Dev. 0.169 0.029

Tab. 2. Ln RB / ln RL and D estimated by equation (15) for the natural networks in Table 1.

Values of S1 needed in equation (15) are estimated by regression with the order (equation

(12)).



 FIGURE CAPTIONS

Fig. 1.  Definition sketch of a simplified drainage network formed by links, external nodes

(sources) and internal nodes. The Horton order ω of each link is reported in parenthesis. In

this network the magnitude n (number of sources) is 6, the topological diameter ∆ is 5, the

Horton order Ω is 3.

Fig. 2. Generation of a fractal tree. Parameter m is the generation index. The structure with

m=1 is the generator. The initiator is a unit-length segment.

Fig. 3. Representation of non-uniform fractal networks. (a) maximum-entropy network

(Rb=∆, Ω=constant=2); (b) minimum-entropy production network (Rb=2, Ω=∆).

Fig. 4. Generators of the fractal networks considered: (a) M1=3, η=1/2, D=1.585, S1=0.637,

Ω1=2;  (b) M1=5, η=1/3, D=1.465,  S1=1.055, Ω1=2;  (c) M1=7, η=1/4, D=1.404, S1=1.352, Ω1=2;

(d) M1=7, η=1/5, D=1.490,  S1=1.516, Ω1=3.

Fig. 5. Empirical and theoretical linear relations between Horton orders and average entropy

of subnetworks. Networks are identified as follows: maximum-entropy network (∙∙∙o∙∙∙);

minimum-entropy production network (-∙-∙-∙- ); fractal network 4.a (—o—); fractal network

4.b (—x—); fractal network 4.c (—+— ); fractal network 4.d (—∗ — );  natural networks

(∙∙∙∙∙∙∙∙∙); .

Fig. 6. Empirical and theoretical linear relations between average entropy of subnetworks

with diameter ∆ and ln ∆. Networks are identified as follows: fractal networks 4.a, 4.b, 4.c'

(———); fractal network 4.d (- - - - -); natural networks (∙∙∙∙∙∙∙∙∙); maximum-entropy network

(-∙-∙-∙- ); minimum-entropy-production network (—o—); Peano basin (—+—).



Figure 1 Claps, Fiorentino and Oliveto



Figure 2 Claps, Fiorentino and Oliveto



Figure 3 Claps, Fiorentino and Oliveto

                                                 (a) (b)



Figure 4 Claps, Fiorentino and Oliveto
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Figure 5 Claps, Fiorentino and Oliveto
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Figure 6 Claps, Fiorentino and Oliveto
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