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The statistical and phenomenological aspects of the runoff process observed on different scales of
aggregation are taken as a priori information for the conceptually based stochastic modeling of
seasonal runoff. Runoff is considered as the sum of two groundwater components, with over-year and
subannual response lag, and of a purely random component representing the direct runoff. This
scheme is equivalent to a linear system, with two parallel linear reservoirs plus a zero lag linear
channel. The system output is the runoff, and the input is the effective rainfall, considered proportional
to the direct runoff. Assuming the effective rainfall as a non-Gaussian periodic independent process
and considering nonseasonal groundwater parameters, this conceptualization leads to an autoregres-
sive and moving average (2, 2) stochastic process with periodic independent residual. Stochastic model
parameters are directly related to the linear system coefficients, and the effective rainfall structure can
be determined from the estimated model residual. In order to obtain parameter estimates consistent
with the conceptual constraints, two estimation stages, on an annual and a seasonal basis, and an
iterative procedure are needed. The model was applied to a number of time series of monthly
streamflows in the Apennine regions of Italy with promising results.

1. INTRODUCTION

Most of the literature on stochastic modeling of seasonal
streamflow consists of purely empirical models, which do
not take into account physical information on the phenom-
enon. These models generally follow the approach proposed
by Box and Jenkins [1970], who introduced autoregressive
moving average (ARMA) models [e.g., Salas et al., 1980].

Time series of seasonal runoff are characterized by peri-
odic variability in several statistical characteristics. In other
words, river flows for a given season of the year are
statistically similar from year to year but may vary consid-
erably across seasons. A common approach to seasonal data
modeling is first to deseasonalize the series and then fit an
appropriate nonseasonal stochastic model to the deseason-
alized data [e.g., Delleur et al., 1976; Salas et al., 1980,
section 5.3]. Moreover, it is usually desirable to deal with
approximately normally distributed and homoscedastic
model residuals, so that the data are transformed generally
by taking logarithms. Attempts to refer to nontransformed
variables were indeed made by Fernandez and Salas (1986,
1990] and Sim [1987], who proposed linear stochastic models
with gamma marginal distribution, namely GAR and
GARMA models.

With the aim of reproducing the autocorrelation structure
of the seasonal hydrological series, particular attention has
been directed to linear models with periodic parameters,
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since the approach proposed by Thomas and Fiering [1962].
The Thomas-Fiering model corresponds to a PAR(1) (peri-
odic autoregressive model of order 1). Tao and Delleur
[1976] proposed later the use of PARMA models, to which
successive significant contributions were made by, among
others, Hirsch [1979], Salas et al. [1982], and Jimenez et al.
[1989], with particular reference to the PARMAC(1, 1) model.
Parameter estimation techniques of the periodic AR and
ARMA models are quite cumbersome, particularly in the
case of PARMA models, and some diagnostic checking
procedures [e.g., Salas et al., 1980] are only approximations
of those developed for stationary, constant parameter mod-
els. Moreover, given the great number of parameters to be
estimated, models with periodic parameters fail when ap-
plied to short series [Kottegoda, 1980].

Statistical identification techniques of time series models
are generally based on the shape of the total and partial
autocorrelation function. Due to the periodicity displayed by
the autocorrelation function these techniques are difficult to
apply to seasonal time series, unless the PARMA class of
models is chosen a priori [Jimenez et al., 1989].

As an alternative to the empirical model identification, a
priori information on the runoff phenomenon can be used to
build linear stochastic models founded on a conceptual
interpretation of the process. The advantages of using con-
ceptually based stochastic models can be summarized as
follows: (1) The use of a priori information provides objec-
tive criteria for identification of model type and order,
implicitly determining parsimony in the number of parame-
ters; (2) links can be established between stochastic and
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conceptual parameters, and thus separate estimates of the
latter allow validation of stochastic parameters, which is
particularly important in situations of limited data; (3) it is
viable, in principle, to evaluate model parameters at un-
gauged stations.

This paper aims to contribute in defining a systematic
approach for the construction of conceptually based univari-
ate stochastic models of seasonal runoff. Guidelines for
model identification are discussed in section 2 of the paper,
which refers to the appendices for the mathematical deriva-
tions. In section 3, the probabilistic model of the residual is
analyzed. Sections 4 and 5 relate respectively to estimation
and verification of the model. Application of the proposed
model to seven time series of monthly runoff of basins
located in the Apennine regions of Italy is the subject matter
of section 6.

2. ConcepruaLLY BASED ARMA MODELS
OF SEASONAL RUNOFF

Links between conceptual and stochastic representation
of the runoff process have often been reported in literature.
The first stochastic models proposed for the runoff process
were actually conceptually based, as summarized by Klemes
[1978]. On this subject, additional notable contributions
concerning linear conceptual models include papers by Spo-
lia and Chander [1974)], Salas et al. [1981], Koch {1985],
Vandewiele and Dom [1989], and Salas and Obeysekera
[1992].

An important contribution to this topic, on a seasonal
basis, has come from Moss and Bryson [1974], who derived
a bivariate ARMA(1, 1) model with periodic parameters
from the mass balance equations of a conceptual model of
the runoff process. Univariate models with periodic param-
eters, -namely PAR and PARMA models, were shown by
Salas and Obeysekera [1992] to derive from a conceptual
representation of the seasonal runoff. In particular, a PAR-
MA(p + 1, g + 1) process was shown to result from the
Thomas-Fiering model of a watershed [see Fiering, 1967]
given the hypothesis of seasonal precipitation as following
an ARMA(p, g) process. The PARMAC(]1, 1) process arises
from the more reasonable hypothesis of rainfall following a
periodic independent stochastic process. In the above con-
text, a deeper insight into the basis for a conceptual repre-
sentation of the runoff process is needed for a rational choice
of PARMA model type and order.

2.1. A Conceptual Rationale for Model Identification

In this paper a conceptually based univariate stochastic
model of seasonal runoff is proposed, based on the statistical
and phenomenological aspects of the process displayed on
different scales of aggregation. According to this rationale,
which somewhat resembles an approach suggested by
Klemes [1983], seasonal runoff can be considered as the sum
of components characterized by different response lags to
precipitation. In general, it can be assumed that the stream-
flow is made up of one purely random component, one
component with subannual lag and one with over-year lag.

The random component is the direct runoff and is assumed
proportional to the effective rainfall I, = P, — E,, where P,
is the precipitation and E, is the evapotranspiration in
season 7. The effective rainfall is considered as a periodic
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independent stochastic process, in analogy to the assump-
tion made by Yevjevich and Karplus [1973] with regard to the
monthly precipitation. Proportionality between I, and direct
runoff corresponds to the hypothesis of very short response
time of the processes involved in the direct runoff in com-
parison to the length of the seasonal interval.

The subannual lag component is considered as arising
from groundwater storages with an average lag time of a few
months and is responsible for the short-term persistence
displayed by the seasonal time series. The over-year lag
component is considered as coming from groundwater stor-
ages with an average lag time of a few years and is respon-
sible for the long-term persistence displayed by the time
series, which is more readily observable when the series are
aggregated on an annual scale. Both of these two storage
elements are considered as linear reservoirs, so that the
system which transforms the effective rainfall in runoff is
considered linear. This assumption limits the analysis to
linear stochastic models.

With reference to the watersheds considered in this appli-
cation, which are part of the Apennine region of Italy, the
presence of two groundwater components in the runoff
series is first of all recognizable by observing the runoff in
the dry season and noting the rate of decrease in the
discharge. In fact, observation of the series of daily runoff on
a semilogarithmic scale highlights that during spring and
summer, corresponding to the dry season, discharges de-
crease over time following approximately straight lines of
different slopes. A vear of records of a series with an
over-year groundwater component is shown in Figure 1a, in
comparison with one relative to an ephemeral stream (Figure
1b) which practically lacks discharges in the dry season.
Another way of recognizing the existence of the over-year
component is the presence of significant autocorrelation in
annual runoff series, particularly when two distinct seasons,
wet and dry, exist. In this case, the year can be started at the
end of the dry season (hydrologic year) and the correlation
can be ascribed only to the presence of an over-year lag
storage [Rossi and Silvagni, 1980].

Summarizing, the above considerations address a concep-
tual model in which runoff is the sum of the outlets of two
parallel linear reservoirs and of a periodic independent
stochastic component. This scheme is depicted in Figure 2
and will be analyzed in detail in the ensuing discussions.

2.2. Proposed Model

In this analysis, runoff is considered as the result of a
linear transformation of the effective rainfall, which is un-
known since the approach here is univariate. However, the
rainfall-net rainfall transformation is not part of the model.
This avoids considering the evapotranspiration as a fixed
proportion of the total precipitation, as assumed in the
Thomas-Fiering watershed model.

With reference to Figure 2, discussed more fully in Ap-
pendix B, net rainfall I, is subdivided into the following
parts: al,, recharge to the over-year groundwater; bi,,
recharge to the subannual groundwater; and (1 — a — b)/,,
direct runoff. Coefficients a and b are called the recharge
coefficient of the over-year and subannual groundwater,
respectively. In general, they are variable, depending on the
degree of soil saturation. The question whether or not to
consider constant a and b will be discussed later.
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Fig. 1. Daily streamflows in semilogarithmic scale: (a) River
Tevere; (b) River Tammaro. Streamflows are in units of cubic
meters per second.

Each of the recharge volumes af, and b7, contribute both
to the storage volumes V, and W,, respectively, and to the
outflow, with proportions defined by the recharge recession
coefficients r, and r, defined in Appendix A. These coeffi-
cients are incorporated in the conceptual scheme essentially
to take advantage of possible a priori knowledge of the form
of the recharge over time, which can be important particu-
larly when considering runoff on the annual scale. Coeffi-
cients r; and r, depend on the storage coefficients & and ¢,
respectively, and on the a priori within-season distribution of
precipitation. They are considered as predefined constants,
while the conceptual model parameters are a, b, &, and q.

Considering nonseasonal parameters and periodic inde-
pendent stochastic input, the outlet of the linear system of
Figure 2 corresponds to an ARMA(2, 2) stochastic process
with periodic independent residual, PIR-ARMA(2, 2), as
shown in Appendix B. This stochastic process is expressed
as

di—®d, | —Pad, 2= &, - O, ~ 06, (1

where d, = D, — E[D,] is the zero-mean runoff, and ¢, is
the zero-mean residual. Also given in Appendix B are
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explicit relationships between the four conceptual parame-
ters and the AR and MA parameters, which are ®,, ®, and
®,, 0, respectively.

For ephemeral streams, which have a negligible over-year
groundwater component, the conceptual model is made up
of only one linear reservoir plus a linear channel with zero
lag (Figure 3). As noted in Appendix B, based on the
hypothesis of periodic independent input, runoff corre-
sponds in this case to a PIR-ARMAC(1, 1) stochastic process

d,—fbd,_]=e,—®£,,] (2)

Again, parameters ® and O are directly linked to the
recharge and storage conceptual parameters.

As underlined by Salas et al. [1981], processes in (1) and
(2) are to be considered as restricted ARMA processes. In
fact, due to the underlying conceptual hypotheses, their
parameter spaces, given in Appendix B for the PIR-
ARMA(2, 2) process and by the above authors for process
(2), are subspaces of those corresponding to the general
ARMA processes.

2.3.

As shown before, a constant parameter PIR-ARMA(2, 2)
model is identified for seasonal streamflows. The hypothesis
of nonseasonality of the conceptual parameters requires
some discussion with reference to the alternative of consid-
ering all parameters as seasonally variable. In this regard,
the increase in model accuracy arising when considering
seasonal variability of the storage coefficients k and g does
not seem remarkable. In fact, even in the context of models
with periodic parameters some authors [e.g., Moss and
Bryson, 1974; Hirsch, 1979; Salas and Obeysekera, 1992],
who consider the presence of only one reservoir, tend to
assume the storage coefficient constant over seasons.

Possible Improvements in the Model Structure
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Fig. 2. Representation of the linear system underlying the forma-

tion of monthly streamflows.
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reservoir plus a zero lag linear channel (e.g., conceptual model of
annual runoff).

Regarding possible refinements of the model that can arise
by relaxing the hypothesis of constancy of parameters a and
b, it is first worth remarking that in the proposed model
coefficients @ and 4 do not represent proportions in the
rainfall-net rainfall transformation but indicate percentages
of the net rainfall transformed in each of the three compo-
nents of runoff. As discussed in Appendix B, by considering
seasonal variability only for recharge coefficients the PIR-
ARMA(2, 2) becomes a PARMAC(2, 2) process with nonsea-
sonal AR parameters. Similarly, when considering ephem-
eral streams, the PIR-ARMA(1, 1) becomes a PARMA(1, 1)
process with nonseasonal AR parameter.

Thus PARMA models with nonseasonal AR parameters
can be a suitable, more refined, alternative to PIR-ARMA
models. However, the increase in complexity when adopting
models with periodic parameters is remarkable, given that,
excluding mean, variance, and residual variance, in the case
of monthly data the PIR-ARMA(2, 2) has four parameters
while the PARMA(2, 2) with nonseasonal AR coefficients
has 26 parameters.

2.4. Models of the Aggregated Runoff Process

An obvious requirement for a model built for a given time
scale should be its compatibility with the models developed
for the aggregated scales. As Obeysekera and Salas [1986]
have commented, this requisite has seldom been addressed.
Based on this point, some comments on the runoff process
on the annual scale are in order.

It has long been recognized that the long-term persistence
effects displayed by annual runoff series, and particularly the
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Hurst effect [e.g., Lloyd, 1967], can be adequately repro-
duced by the ARMA(, 1) model [O’'Connell, 1971]. This
empirical finding was later substantiated by Rossi and Sil-
vagni [1980], Salas and Smith [1981], and Salas et al. [1981]
based on a conceptual interpretation of the phenomenon on
that scale.

In particular, Rossi and Silvagni [1980) gave more credit
to the ARMA(I, 1) model with respect to higher-order
ARMA models. They showed that analyzing data in the
hydrologic year, in the presence of definite wet and dry
seasons, avoids the consideration of spurious correlation
effects. Moreover, the restricted parameter space of the
conceptually based ARMAC(1, 1) model given by Salas et al.
[1981] exactly matches the conditions in which, according to
O’Connell [1971], the Hurst effect can be reproduced by the
ARMAC(1, 1) model. Incidentally, the conceptual model used
by Salas et al. [1981] is modified here (Appendix B) so that
both evaluation of conceptual parameters from the estimated
stochastic coefficients and evaluation of the net rainfall from
the estimated residual process are feasible.

It has been also shown [Rossi and Silvagni, 1980; O’Con-
nell et al., 1991] that the ARMAC(1, 1) model is not always
needed to describe the structure of annual runoff series. In
fact, Rossi and Silvagni [1980], analyzing series from rivers
in southern Italy, showed that in the absence of a significant
over-year groundwater component, runoff in the hydrologic
year can be considered as an independent random process,
well reproduced by a Box-Cox transformation of the normal
distribution. It may be concluded that annual runoff can be
considered as generally following an ARMA(I, 1) process
and that in some cases, for instance when considering
ephemeral streams, runoff in the hydrologic year can be
regarded as a white noise process.

The issue of determining the structure of aggregated
processes has been addressed by a number of researchers
[e.g., Kavvas et al., 1977; Vecchia et al., 1983; Obeysekera
and Salas, 1986]. In particular, Vecchia et al. [1983] derived
the ARMA(1, 1) process from the aggregation of the
PARMAC(I, 1). By extension of this finding, the aggregation
of a PARMA(2, 2) results in an ARMA(2, 2) process.

Considering an annual aggregation scale, within the con-
ceptual representation suggested here (see Figure 2), it is not
possible to distinguish the subannual groundwater response
from that of the other subannual lag components, so that
they are all included in annual direct runoff. Consequently, a
conceptual system made up of only one linear reservoir plus
a zero lag linear channel (Figure 3) is assumed. Considering
the annual net rainfall as a stationary independent stochastic
process, this conceptual representation corresponds to an
ARMAC(1, 1) process.

3. ProBaBILISTIC MODEL OF THE RESIDUAL

The marginal probability distribution of the residual ¢, of
a stochastic model is usually analyzed empirically, either by
transforming the runoff series in order to reduce ¢, to
normality or by building models which incorporate a gamma
distribution for residuals. A different approach to the analy-
sis of the residual is attempted when a conceptual meaning is
imposed.

The residual ¢, of the PIR-ARMA model is a periodic
independent random process, i.e., its probability distribution
parameters are considered as varying with the seasons. As
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shown in Appendix B, ¢, represents an estimate of the
effective rainfall /,. Because the conceptual model and its
stochastic form (1) are only an approximation of reality, it
must be assumed that in the residual of an actual PIR-ARMA
model there is an error term, which can induce negative
values in the effective rainfall. Consequently, (1) can be
reconsidered using the actual stochastic model residual &}:

di—®d;  —Pyd, 3 =6, - 018 1 — B8], (3)

with ¢, = ¢, + £, g, being the component having concep-
tual meaning and ¢, representing a Gaussian error term, with
zero mean and variance crgz. These components may be
considered uncorrelated and the following hold:
" 2 _ 2 2
E[e}] = El&,] o, =0, +0; 4
Therefore reference can be made to the ‘‘estimate with
error’’ of the net rainfall:
€}

I'r‘ll-l‘=—c‘ %)

where up equals E[D,] and ¢ = (1 — ar, — br,), and to the
‘‘conceptual estimate’’ of the net rainfall:

€,
I —py=— (6)
c
which, given (4), are related by
Br =Ry
(7
2 2 2
o a a
2 £ 3 2 £
op=—+—=0¢j+—
AT 1T

Because of its meaning, the variable 7, should assume only
positive values and present finite probability at zero. A
reasonable probabilistic representation of I, results by con-
sidering the variable as the sum of a Poissonian number of
events with exponentially distributed intensity [e.g., Ben-
Jjamin and Cornell, 1970]. The corresponding probability
density function has the expression

PlI=0]=¢"" I=0

fih = e A wain"2g 2N 1>0 ®)
where A is the exponential parameter, v is the Poisson
parameter and $,(x) is the modified Bessel function of order
1. The above probability function is called the Bessel distri-
bution. This representation is more realistic than the gamma
distribution, which results from the sum of a fixed number of
exponentially distributed events. Using 8 = 1/A as the
exponential parameter, which can be expressed in millime-
ters, relations between the sample moments and the distri-
bution parameters are

3

of =2vp? V1= g

wi=vB ®)

with y; as the skewness coefficient. Relations in (9) refer
only to the conceptual estimate 7, of the net rainfall.

The probabilistic model of the net rainfall estimated with
error, I, is the sum of a Bessel and a normal random
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variable, with parameters », B and o = o}/c’. Moments of
this distribution are [Claps, 1992]

pp=vB  op=0f+2vp?

10

The above relations can be used to estimate parameters for
the probability distribution of the residual of each season.

4. PARAMETER ESTIMATION OF
THE PIR-ARMA MoDEL

The analysis of the phenomenological aspects of the
seasonal runoff clearly shows that the variability of mean,
variance, and autocorrelation is directly or indirectly due to
the seasonal variability of rainfall. For this reason, the series
is not deseasonalized, since this operation not only does not
completely eliminate periodicity in the autocorrelation func-
tion [Tao and Delleur, 1976] but also causes the removal of
characters in the series which have a subannual evolution,
such as the effects of the subannual lag groundwater. More-
over, in order to preserve the formal correspondence be-
tween the conceptual and stochastic representations of the
process, data are not transformed.

4.1. Standard Parameter Estimation

The estimates of stochastic parameters of the PIR-ARMA
model are obtained by means of the least squares method,
using the TSP statistical package (Quantitative Micro Soft-
ware, Irvine, California, 1982). As shown by Pierce [1971],
least squares parameter estimates of a PIR-ARMA model
have finite variance and are asymptotically normal but are
not the most efficient in a statistical sense, i.e., mean square
error is only asymptotically minimum among the linear
estimates, the asymptotic condition corresponding to white
noise residual. A lowering in the statistical efficiency is the
price one must pay in order to safeguard the formal structure
of the conceptualization in the stochastic model.

In the estimation of stochastic parameters it must be
recognized that the model considered is a restricted ARMA
model, because relations (B22)~(B25) between conceptual
and stochastic parameters constitute constraints on the
admissible region of stochastic parameters. This leads to
more serious estimation problems. In fact, under these
conceptual constraints, parameters @, and ®, make sense
only near the nonstationarity condition (see Appendix B)
where their estimates can show high variability [Box and
Jenkins, 1970, paragraph 6.3.5.].

At the application stage, the simultaneous estimation of
PIR-ARMA(2, 2) parameters was found to be unreliable, in
the sense that estimates of the AR parameters resulted
outside of their admissible space. As underlined above, the
reasons for this unreliability are ascribed to the nature of
conceptual constraints. This is also in agreement with a
comment by Acton [1970] on the ill conditioning of the
problem of estimating all four parameters of a system whose
response is the sum of two exponentials.

4.2. Parameter Estimation Over Different
Aggregation Scales

An approach for parameter estimation based on the use of
information from different aggregation scales is proposed, as
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an alternative to the usual method discussed above. Param-
eters related to the over-year groundwater are estimated on
the annual scale while those related to subannual groundwa-
ter are estimated on the seasonal scale. Information is
transferred from the annual to the seasonal aggregation scale
by means of the conceptual hypotheses, so as to increase the
reliability of estimates and the compatibility with the aggre-
gated scale.

To better distinguish the conceptual schemes considered
on the different scales, the original conceptual model was
reshaped (Figure 4) highlighting two subsystems: one with
over-year response, made up of only the over-year ground-
water, and one with subannual response. These subsystems
are considered separately in the estimation stage.

Estimation of the over-year groundwater parameters on
the annual time scale. On the annual scale, the ARMAC(1,
1) model is selected according to what was discussed in
section 2. To preserve the conceptual meaning of parame-
ters, data records, referring to the hydrologic year, are not
transformed. Estimation of the AR and MA stochastic
parameters allows the determination of coefficients a and &
and the estimation of the annual net rainfall series /, by
means of relations (B11). Coefficients k, expressed in years,
and a are assumed valid for all of the lower scales.

The hypothesis on the form of the recharge function
leading to the value of r, must be specified to accomplish the

ig. 4. Linear system of monthly streamflows reshaped as a combination of two subsystems.

evaluation of conceptual parameters. On the annual time
scale, the form of the recharge function r(7) depends on the
climatological regime of the site being investigated, which
can show minima and maxima of rainfall in different seasons.
As a first approximation, an impulse recharge was consid-
ered with occurrence time T set in the centroid of the runoff
regime curve, used as an approximation of the net rainfall
regime curve. These curves designate the diagrams of the
nondimentional monthly averages of runoff and net rainfall.
In this case, (A6) is used to compute r;. In addition, to better
assess the variability of r,, the previous estimate is com-
pared to the value of r, obtained by means of (A8), valid for
uniform net rainfall distribution.

If only two distinct seasons exist, one dry and one wet, a
more refined evaluation of this coefficient could be achieved
by deriving the analytical expression of r;, for a gamma
recharge curve, assuming that the shape of a gamma function
is well suited for the reproduction of the runoff regime.
However, given that the centroid of the recharge distribution
must be preserved by the gamma curve, the consequent
value of r;, will assume intermediate values between the two
values corresponding to the previous hypotheses.

Estimation of the subannual groundwater parameters on
the seasonal time scale. The conceptual subsystem with
subannual response, as shown in Figure 4, has the same
structure as the conceptual model of Figure 3, formerly
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considered for the annual runoff. In this case, the input to the
system is the fraction I = (1 — a)l, of the effective rainfall,
while runoff is the difference between the total runoff D, and
the over-year groundwater runoff G,. Given I’ as a periodic
independent process, D% is a PIR-ARMAC(1, 1) process.
Relations (B10) and (B11) between conceptual and stochas-
tic parameters obtained for the scheme in Figure 3 hold with
substitution of symbols k, a, and I, with g, b* = b/(1 — a),
and 1%, respectively.

The possibility of estimating parameters of the PIR-
ARMAC(1, 1) model is conditioned by the determination of
the runoff series D%, which is unknown. In fact, the over-
year groundwater runoff G, can be obtained only when the
seasonal net rainfall series is determined. Since the evalua-
tion of the net rainfall series is a result of the parameter
estimation itself, an iterative estimation procedure is
needed.

The iterative procedure is characterized by (1) preliminary
estimation of trial net rainfall; (2) calculation of the over-year
groundwater runoff and of the D% series due to the trial
input; (3) estimation of the PIR-ARMAC(1, 1) model and of
the updated net input; and (4) comparison of the updated and
the trial input: if too different, return to step 2 with the
updated series as trial input. These steps are commented on
in detail below.

Step 1: A preliminary seasonal net rainfall series can be
obtained by disaggregating the net rainfall series estimated
on the annual basis, with the constraint of preserving the
shape of the dimensionless seasonal runoff mean. Practi-
cally, if /; is the net rainfall estimated for the year j, the
values corresponding to the season 1 of year j are [; , =
I;9(7), where g(7) = p,/u, . being the mean of runoff in
season 7 and u being the general runoff mean.

Step 2: Equation (B4), obtained with reference to a
linear reservoir, expressed in transfer function form, gives
the over-year groundwater runoff G, as a response to the
trial input af,:

(1)

where ¢, = ¢ “V* and a is estimated on the annual scale. To
use this expression on the seasonal scale, k is expressed in
seasons and r; is computed with (A8), as will be discussed
hereafter.

To obtain the G, series from (11), initial values of G, and
I, are needed. If there are two distinct climatic seasons, it is
a fairly straightforward task to define the initial values
starting the series at the end of the dry season. However, for
long series records, accuracy in the determination of these
data is not essential. For short series, estimation of the initial
values could be made by means of backcasting techniques.

The seasonal subsystem runoff series is obtained as D =
D, — G,. Possible negative values of D% are not adjusted in
this step, because this can alter the convergence of the
procedure. When the convergence is achieved, negative
values of D% can be due to an incorrect estimate of the initial
value of G, or to an unsatisfactory estimate of the coefficient
a

G, =c; G tal(l —ry) +al,_(r, —cp)

Step 3: The PIR-ARMAC(L, 1) model is fitted to the zero
mean series d’; of the subannual subsystem runoff obtained
in the previous step. Estimates of the stochastic parameters
and of the residual ¢;* allow the calculation of 4* and g as
well as the evaluation of the net rainfall series:
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(1 —b*r,)

nr (12)
where u* = E[I}] = E[D?]. Note that reference is always
made to the net rainfall estimated with error.

Actually, (12) is only the simplest relation which allows
correspondence of the first two moments between residual
and net input as reported in (B12). The same correspondence
could be reached in different ways and could have an impact
in reducing errors in the estimated series, which are respon-
sible for negative values found in I7*.

The a priori evaluation of the recharge recession coeffi-
cients on the seasonal scale requires some comments. Coef-
ficients r; and r, are calculated, once & and g are known,
through (A8), which corresponds to the hypothesis of uni-
form net rainfall during the season. This hypothesis is
indirectly discussed by Moss and Bryson [1974] with refer-
ence to the effects of the rainfall distribution on mean and
variance of a recharge recession coefficient, say r,. It is
shown that both when the number of storms per interval is
relatively high and when the number of events approaches
zero, the mean of r, is practically equal to that correspond-
ing to uniform recharge. Given this, a uniform within-season
recharge seems more reasonable than any other possible
predetermined recharge function.

The updated net input to the whole system is obtained by
simply restoring mean and variance with the position

. I - E[DY)

' (1-a)

Step 4: The updated net input series 1} is compared with
the trial series used in step 2. Iterations are stopped when the
standard deviation of the two series differ by less than 5%.
Otherwise, the updated series is used as trial input in step 2.

When procedure convergence is reached the following are
determined: (1) the conceptual model coefficients, i.e. the
characteristics of the linear system; (2) the coefficients &,
d,, ©,, 0, of the PIR-ARMA(2, 2) stochastic model,
through (B18)~(B21); and (3) the residual variance o of the
PIR-ARMA(2, 2) model, from the residual variance o2+ of
the PIR-ARMAC(1, 1) model of the subannual subsystem:

1 —ar, — br,\?
ol =gl —L 4
l—a—br,

+ E[D,] (13)

(14)

5.  VERIFICATION OF THE CONCEPTUALLY BASED
PIR-ARMA MODEL

The verification of conceptually based stochastic models
assumes different aspects, with respect both to objectives
and to methods, from the diagnostic checking operated on
empirically identified models. In fact, the aim of the Box-
Jenkins approach to time series modeling, in which the series
must ‘‘speak for themselves,"’ is to achieve optimal statisti-
cal representation of the data analyzed. A model which is
identified for a given river flow series based on this approach
is not valid in general for different rivers. Conversely, a
conceptually based model is built in order to achieve the best
representation of the data consistent with an interpretation
of the runoff phenomenon, so that its validity can be general.

Model verification in the Box-Jenkins approach is made
with tests on parameter significance and on independence of
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Fig. S.

residuals, whose results may or may not lead to the decision
of rejecting the model. If the model is rejected, an alternative
one is to be selected, which will be less complex in general
if there is lack of parameter significance while a more
complex model is generally needed if the hypothesis of
independence of residual is not verified. Thus, in some way,
diagnostic checking can be considered as part of the model
identification stage. This is not exactly the case when
conceptual hypotheses are invoked for model identification,
because only limited alternative models are compatible with
the conceptualization of the runoff phenomenon.

In the previous sections, a limited number of conceptually
based models have been identified for seasonal streamflows,
namely ARMA models with periodic independent residual
(PIR-ARMA) or models also with periodic stochastic param-
eters (PARMA). In this paper, model construction is consid-

TABLE . Characteristics of the Stations and Time Series
Considered
Mean

Record Annual

Area, Length, Rainfall,
Code Station km? years mm
1 Alento at Casalvelino 284 13 521
2 Calore Irpino at Montella 123 26 609
3 Giovenco at Pescina 139 1t 277
4 Tammaro at Pago Veiano 555 13 350
5 Sacco at Ceccano 922 12 483
6 Tiber at Rome 16,545 50 448
7 Nera at Torre Orsina 1,445 25 606

Locations of the gauging stations considered in Italy. The numbers relate to the codes assigned in Table 1.

ered only with reference to PIR-ARMA models, because of
their simpler structure.

On the annual scale, the ARMAC(!, 1) model is first tested
for comparison with the possible alternative of a white noise
model. According to the scheme presented in the previous
sections, when passing to the seasonal scale these two
alternatives lead respectively to a PIR-ARMA(2, 2) and to a
PIR-ARMAC(1, 1) model.

The validity of the ARMAC(1, 1) model on the annual scale
is essentially verified by means of the autocorrelation func-
tion and of the significance of the autoregressive parameter
estimate. The observance of the conceptual constraints must
be also guaranteed. Once it is decided that the ARMA(1, 1)
formulation, rather than the white noise formulation, is the
model for the annual data at hand, testing procedures can
help the assessment of the reliability of estimates.

At the application stage it is often observed that the
significance of the moving average parameter ® is lower than
that of the AR parameter ®. However, a high standard error
of O cannot lead to the rejection of the ARMA(I1, 1) model
and the consequent selection of an AR(1) model, because the
latter does not correspond to the conceptual scheme.

Low significance of the @ estimate implies low reliability
of the estimated recharge coefficient a. To support the
estimate of a, an index similar to the base flow index
[Institute of Hydrology, 1980} is introduced. It is called the
deep flow index (DFI) and represents the ratio between the
average over-year groundwater runoff and the average total
runoff. The former term is calculated as the mean of the
annual minima of the mean monthly discharge (smoothed
minima technique). This corresponds to the assumption that
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TABLE 2. Group 1 Series: Parameter Estimates of the TABLE 4. Group 1 Series: Stochastic Parameter Estimates
ARMAC(1, 1) Stochastic Model Applied to Annual of the PIR-ARMA(2, 2) Model Applied to Monthly
Runoff Data Runoff Data
Standard Standard Station P, b, 9, 0,
Station P Error @ (3] Error © R?
3 1.61 -0.621 1.35 -0.387
3 0.712 0.687 0.42 0.777 0.216 6 1.52 -0.535 -0.202
6 0.744 0.438 0.536 0.464 0.09 7 1.74 -0.741 —0.228
7 0.788 0.366 0.421 0.424 0.261

groundwater runoff is linearly variable with time and that the
annual minimum of the mean monthly discharge can be
considered as being produced only by deep groundwater
runoff. The validity of the DFI as a measure of the over-year
groundwater runoff can be recognized if we consider that
this runoff component is underestimated in the wet season
and overestimated in the dry season, thus giving rise to
opposite sign errors which minimize the global error.

On the caacnnal ecale whatavar the madel of annnal data
L0 L0C s€asinai sCai, winatlver tnd modae: o1 anniua: dawa,

two parameters are to be estimated, corresponding to the
storage and recharge parameters of the subannual ground-
water. Here again, MA estimates are generally less signifi-
cant than the AR ones. So, the estimate of the recharge
parameter b can result in low reliability. A rough verification
of the estimate of » can be made by seeing if the recon-
structed series of the global groundwater runoff component
correctly reproduces the recession periods and the stream-
flow minima of the observed series. This check is only
preliminary to a simulation study, which is a more general
tool for the giobal testing of model hypotheses.

Goodness-of-fit tests on stochastic models are generally
based on the analysis of residuals. Based on the results of
these tests one can decide to use more complex models. On
the seasonal scale, more complex alternative models to the
PIR-ARMA arise by considering seasonal variability of
parameters: PARMAC(1, 1) model in case of independence of
annual data and PARMA(2, 2) model in the other case.
These aiternatives can be considered with regard to the
analysis of different aspects of the residual.

In the classical time series analysis the residual is tested
with respect to independence, normality, and stationarity.
While standard tests of independence can be applied to the
PIR-ARMA model residual, a different point of view is to be
considered when dealing with its probabilistic structure, not
to mention its periodic characteristics. The residual is in fact
considered here as the sum of a conceptual and an error
components, so that its analysis is completed by checks on
both components.

Validation of the conceptual part, considered as effective
rainfall, could be made either by a comparison with the
general characteristics of the total precipitation in the basin
upstream or by using information from other stations located

in climatically and geologically similar regions. This issue is
currently being investigated.

The characteristics of the error term ¢
ierm &,

model performance which can be considered good if ., = 0
and if ag is constant among seasons. In addition, the smaller
0'5, the smaller the global unexplained variance. High sea-
sonal variability of a-f can be considered an index of the low
efficacy of the hypothesis of nonseasonal parameters.

Assessment of alternative models with periodic parame-
ters is outside the objectives of this paper. However, the use
of PARMA models appears hampered by awkward parame-
ter estimation. In particular, estimation of the PARMA(2, 2)
model with seasonal or nonseasonal AR parameters is prac-
tically unmanageable, while the PARMA(1, 1) model is
suitable, in principle, only for streamflow series without the
over-year groundwater component. Moreover, the problem
of dealing with conceptually constrained estimates is yet to
be faced for this class of models. If significant inadequacies
are found in the model verification, before deciding to use a
more complex model which may be theoretically capable of
more detailed explanation of the statistical characteristics of
the series, the available amount of data must be taken into
account with respect to the requirement of reliable estima-
tion of parameters.

are rela
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6. PIR-ARMA MODEL APPLICATION
AND TESTING

The proposed procedure was applied to seven time series
of monthly runoff of rivers in central southern Italy (see
Figure 5 and Table 1). For the selected rivers no consider-
able regulations or diversions during the observation period
were reported and the snowmelt runoff contribution can be
neglected.

The watersheds under study are all characterized by the
geology and climate of the Apennine mountains. One geo-
logical feature of the Apennines relevant to the runoff
process on a monthly and annual scale is the presence of
several great fractured carbonate massifs, containing large
aquifers at their base. The climate of the Apennines is
characterized by two distinct seasons: a rainy season, during
autumn and winter, and a dry season, during spring and
summer. The hydrologic year thus begins on October 1.

TABLE 3. Group 1 Series: Summary of the Conceptual Model Parameters of Annual Runoff
Station k rk r} a* at DFI
3 2.94 0.83 0.85 0.61 0.59 0.62
6 3.38 0.85 0.87 0.53 0.52 0.53
7 4.2 0.89 0.89 0.71 0.71 0.77

*Hypothesis of impulsive input in the centrum
tUniform within-year input.

of the runoff regime.
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TABLE 5. Group 2 Series: Stochastic Parameter Estimates of
the PIR-ARMA(1, 1) Model Applied to Monthly
Runoff Data
Standard Standard
Station oo} Error ® ® Error ©
1 0.576 0.098647 -0.098 0.127273
2 0.55 0.075862 -0.073 0.095425
4 0.579 0.101224 —0.068 0.128302
5 0.526 0.126747 -0.032 0.151659

Watersheds upstream from the stations considered can be
subdivided into two categories, according to their hydrogeo-
logic characteristics and to the relevance of runoff in the dry
season. The first category, which will be referred to as group
1 and includes the stations 3, 6, and 7, refers to watersheds
partly made up of highly permeable carbonate formations
and presenting remarkable runoff in the dry season; group 2
includes stations 1, 2, 4, and 5, whose watersheds can be
classified as quite impermeable over their whole area, in
which runoff is very low in the dry season and whose data do
not display significant autocorrelation on the annual scale.
Basins of group 2 are mainly made up of clay-type geologic
formations, and present hill morphology with moderately
steep slopes. All the basins considered present high climatic
homogeneity, and within each group notable similarity in the
hydrogeological structure can be assumed.

For all the basins under study, monthly series were
analyzed, because the monthly scale was considered to be
consistent with the hypothesis of randomness of the direct
runoff component.

According to mode! identification criteria on the annual
scale discussed previously, the ARMA(1, 1) model was fitted
to the three series of annual runoff from rivers belonging to
group 1, which present remarkable over-year groundwater
contribution. Estimates of the stochastic parameters to-
gether with their standard errors and values of the R? are
shown in Table 2. Estimates of the AR parameter ¢ resulted
in values that are much more statistically significant than
those of the MA parameter 0, as can be recognized from the
standard error values. The low R? values, particularly for
station 6, point out the high overall variability of the process
on the annual scale.

Table 3 shows the values of conceptual parameters a and
k obtained by using (B11). As can be observed, the order of
magnitude of k was of 3—4 years, which is reasonable as a
measure of over-year persistence. Two estimates of coeffi-
cient a are obtained for different hypotheses of distribution
of the recharge, as anticipated in Section 4. These estimates
differ only slightly, so that a more careful definition of the

TABLE 6. Group | and 2 Stations: Estimates of the Subannual
Subsystem Conceptual Parameters

Station Group q b re
1 2 1.84 0.76 0.77
2 2 1.67 0.77 0.75
3 1 2.23 0.277 0.807
4 2 1.84 0.79 0.77
5 2 1.53 0.73 0.73
6 1 1.66 0.363 0.75
7 1 3.56 0.256 0.869
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Fig. 6. River Nera. Period: October 1946 to September 1969.
Observed monthly streamflow series (solid), reconstructed over-
year groundwater runoff (dotted), and reconstructed total ground-
water runoff (dash-dot). Streamflows are in units of cubic meters per
second.

input distribution does not appear to be a point of major
importance.

The estimate of the recharge parameter a was checked
through the DFI index. The good agreement shown in Table
3 between coefficient a and DFI indicates that high standard
errors of the estimates of @ do not exclude a reasonable
result in terms of the recharge coefficient estimate.

The PIR-ARMAC(2, 2) model was then fitted to the series of
monthly runoff of the stations in group 1. Table 4 shows the
estimates of the stochastic parameters, obtained through the
iterative procedure shown in section 4. The PIR-ARMA(1, 1)
model was fitted to the group 2 series, and Table 5 reports
the estimates of parameters ® and © as well as their standard
errors. As can be observed, the estimates of © still have high
standard errors in comparison with those of &, indicating a
relatively higher uncertainty on the corresponding values of
b.
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Fig. 7. River Tevere. Period: October 1921 to January 1935.

Observed monthly streamflow series (solid), reconstructed over-
year groundwater runoff (dotted), and reconstructed total ground-
water runoff (dash-dot). Streamflows are in units of cubic meters per
second.
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TABLE 7. Box-Pierce Portemanteau Test Applied to Groups 1
and 2 Series
Station Lag f = lag-p-q X f2 Qstat
1 24 22 339 20.8
2 50 48 65.2 52.3
3 20 16 26.3 21.0
4 24 22 339 37.0
5 22 20 314 25.4
6 98 94 117.4 103.2
7 48 44 60.5 55.9

For all series the autocorrelation is calculated up to lag N/6, with
N equal to the number of recorded data. The condition Qg, < X f
is satisfied by all stations except station 4.

Table 6 shows the values of the estimated subannual
subsystem parameters for all the series considered. The
values of the storage constant q are, as expected, of the
order of magnitude of a few months. Tables 5 and 6 show
that the parameter estimates relative to the group 2 series are
characterized by remarkable similarities. Values for the
storage constant ¢ and the recharge coefficient b fall within
a narrow range, which is consistent with the substantial
hydrogeological uniformity of the basins in this group.

By using the net input estimated by the means of (5), the
reconstructed subannual and over-year groundwater runoff
series were examined, partly so as to check the validity of
the estimate of the recharge parameter 6. An example of the
reconstruction of groundwater runoff is shown in Figures 6
and 7, relative to the Nera and Tiber rivers, respectively.
The figures show that the reconstructed series are consistent
with the hypotheses made, particularly in correspondence to
the minima of the observed series. Some inconsistencies
emerged in the first months of the record, mainly due to the
uncertainty of the initial value to assign to the over-year
groundwater component.

Commenting on the estimates of parameter b and the
reconstruction of the global groundwater component, it can
be said that the percentage of this component with respect to
the total runoff seems quite high. This outcome could be
either a typical effect of the aggregation of the data or the
result of interference between the subsurface runoff, which
has a response lag of much less than | month, and the
subannual groundwater component, which is considered as
deriving from groundwater storages with seasonal recession.
An interpretation of the global meaning of the subannual
component could be obtained by analyzing data on a lower
scale of aggregation. The use of an appropriate conceptual-
stochastic model on the daily scale, which is under study as
an extension of the approach proposed here, might be
helpful for this purpose.

A test on the uncorrelation of residuals and a comparative
rating of the explained variance were made as standard
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procedures of verification of the global efficiency of the
stochastic component of the model. The Box-Pierce porte-
manteau test [e.g., Salas et al., 1980] was first applied to the
standardized residuals. As shown in Table 7, the hypothesis
of overall uncorrelation of residuals is met by all series but
one.

Under the proposed conceptually based framework, sto-
chastic models selected on an empirical basis cannot be
considered as possible alternatives to the PIR-ARMA mod-
els. However, a comparison can be useful in order to provide
arelative evaluation of the PIR-ARMA model performances.
This was done by using as a competing model the popular
PAR(1), which performs particularly well from a statistical
point of view [e.g., Noakes er al., 1985; Jimenez et al.,
1989]. The PAR(1) model was fitted to the logarithms of the
runoff series (as is generally suggested for applications) after
deseasonalizing by monthly mean subtraction. The compar-
ison was based on the explained variance R? of the stochas-
tic component, equal to (1 — o2/} with o2 as the residual
variance of the stochastic model and ¢ as the variance of
the runoff series. The probabilistic analysis of the residual
was not taken into account. Excluding monthly means,
variances, and residual variances, the PIR-ARMAQ2, 2)
model requires the estimation of four stochastic parameters,
reduced to two for the PIR-ARMAC(1, 1) applied to ephem-
eral streams, while the PAR(I) model requires the estimation
of 12 autoregressive parameters. Results reported in Table 8
show that the proposed model performs significantly better
than the PAR(1) model, with a 30% average improvement in
R?. No correction is made on the R? to account for the
different number of parameters to estimate in the two
models.

From Table 8 it can be noted that the stochastic compo-
nent and the periodic variability of the mean of the proposed
model explain 49-74% of the total variance of the series. The
residual variance is partly due to the natural variability of the
phenomenon and partly to an error term. Consequently, a
measure of model performance in which all the parts of the
model with conceptual meaning are taken into account is a
total R?, equal to (1 — ¢/0?) where o} is the variance of the
error component of the residual. In the cases examined the
total R? was found to vary between 0.671 and 0.841.

Referring to these results, the proposed model seems to
perform reasonably well both from the point of view of
verification of the underlying conceptual hypotheses and
from that of the statistical descriptive ability. However, the
error variance aé was found to be rather variable between
the months, so that a future comparison with PARMA
models is in order. Moreover, a thorough evaluation of the
model’s statistical efficiency, in terms of reproduction of the
statistical characteristics of the observed series, can be
achieved only by means of an extensive simulation study.

TABLE 8. Comparison of Explained Variance R? for PAR(1) and PIR-ARMA Models

Station
t 2 3 4 5 6 7
R? PAR(1) 0384 0390 0417 0322 023 0363  0.682
R? PIR-ARMA(2, 2) 0.551 0496  0.745
R? PIR-ARMA(I, I) 0550  0.540 0597 0.488
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7. CONCLUDING REMARKS

Based on a phenomenological interpretation of the runoff
process, considered on different scales of aggregation, a
conceptual framework is proposed for univariate linear
stochastic model building of seasonal runoff. Streamflow is
regarded as the sum of two groundwater components with
different lag time and of a purely random term. Model
residual is proportional to the conceptual system input,
signifying effective rainfall, and is considered as a periodic
independent stochastic process. In this conceptual scheme,
the hypothesis of linearity is invoked only with regard to the
properties of aquifers. Under these hypothesis the model of
seasonal runoff is a constant parameter ARMA(2, 2) model
with periodic independent residual (PIR-ARMA). For
ephemeral streams, lacking the over-year groundwater com-
ponent responsible for the long-term persistence effects, the
proposed conceptual scheme leads to a PIR-ARMA(I, 1)
model. In this framework, compatibility with the stochastic
model of the aggregated runoff, typically considered on an
annual basis, is guaranteed by the identification method
itself.

More refined but more complex PARMA(2, 2) and
PARMAC(1, 1) models arise from the PIR-ARMA(2, 2) and
PIR-ARMAC(1, 1), respectively, when considering the sea-
sonal variability of parameters.

The recognition of the lack of an over-year groundwater
component may be difficult in environments where the
climate shows no distinct wet and dry seasons, so the notion
of the hydrologic year cannot be used. In these environ-
ments, however, one can take advantage of the a priori
information on the net rainfall distribution used in the annual
runoff model.

Explicit relationships are established between conceptual
and stochastic parameters, as a first essential step toward the
possibility of validating the conceptual hypotheses on which
the model is built. Parameter estimation is performed on
different aggregation scales by means of an iterative proce-
dure.

The residual is considered to consist of a noise term,
considered as a zero-mean Gaussian variable, and of a
conceptual component, denoting effective rainfall and dis-
tributed according to a physically consistent compound
Bessel probability function.

Model application to monthly runoff series in central
southern Italy showed that the PIR-ARMA models are
suitable for the interpretation of the process, at least to a first
level of testing.

A comprehensive simulation study and a comparison with
the corresponding PARMA models, useful to fully assess the
statistical efficiency of the PIR-ARMA models, are left to
future developments. Likewise, analysis of runoff data on a
lower aggregation scale, e.g., daily, is forthcoming, with the
added intention of a better understanding of the meaning of
the recharge and the recession parameters of the subannual
groundwater.

From the basis on which the conceptual framework is
built, it is possible to set up a stochastic model for the runoff
on a time scale in which the effects of the subsurface runoff
component are also explicitly considered. This scale must be
considerably larger than the surface runoff response time, so
that it can be considered as an independent process. The
subsequent conceptual model will be made up of three linear
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reservoirs in parallel plus a zero lag linear channel. For a
time scale of the order of a few days, a stochastic model
selected in the class of the shot noise models [see Murrone et
al., 1992] will better reflect the structure of the runoff
process.

Future research made possible by the proposed frame-
work may also be in the direction of the construction of a
bivariate model in which total rainfall is a known input
process and of runoff modeling in ungauged stations by
means of regional analysis.

APPENDIX A:
RECHARGE RECESSION COEFFICIENT

The continuous time response of a linear reservoir to an
input r(7) is [e.g., Chow et al., 1988]
—tlk L
(1) = Qge ™" + P r(r) dr (AD)
0

where Q is the discharge, k is the reservoir storage coeffi-
cientand Q4 = Q(t = 0). Integration of (A1) over a unit time
interval gives

1 1
D, =j Q(t)=f Qe "% dt
0 0
JI 1
+
o k

where D, is the outflow volume. Equation (A2) becomes,

given the initial volume Vy = kQy, by definition of linear
reservoir,

e J’ e r(ry dr dt (A2
0

1
Di=(1-e "y, + f

1 1
- e""‘f e r(r) dr dt
0 k 0

(A3)

Introducing the recharge recession coefficient,

l fll
re=1-—
o K

where R = | (} r(71) d7 is the recharge volume, (A3) can be
expressed as

1
e 1k f —e™ Hr)dr dt (A4
o R

D, = (1 — Ci (AS)
assuming, for the generic (+ — 1, ¢) unit time interval, D, as
the runoff, V,_; as the storage at the beginning of the
interval, R, as the recharge in the interval and ¢, = ¢ V%,

Assumlng r(7) as an impulse recharge in time 7, with 0 <
T < 1, (A4) becomes [Moss and Bryson, 1974]

Wi+ (1 = rpR,

re=e Uk (A6)
while, in case of uniform recharge r(r) = R/A over a
subinterval of duration A < 1 and initial time 7;, the
expression is

1-T,~AY
e( T; A)k)]

k
=70 —e M -q (A7)
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For A approaching zero, (A7) reduces to (A6) while for T'; =
0 and A = 1 (A7) becomes

re = k(1 — e~ ') (A8)

For A = 0 and T = 0, which corresponds to impulse
recharge at the beginning of the interval, (A7) gives

re=e V=¢, (A9)

APPENDIX B: STOCHASTIC REPRESENTATION
oF CONCEPTUAL MoODEL FORMS

Bl. Linear Reservoir

The simplest conceptual model, made up of a single linear
reservoir, can be assumed as the model of the runoff of a
spring. The outlet D, of the reservoir in a unit time interval
(+ — 1, t) is expressed in (AS) as a function of the initial
storage V,_; and of the recharge R, in the interval. The mass

balance equation for the groundwater storage is
V,= ¢V, + iR, (B1)

where, again, ¢, = ¢ ~"*. Substituting into (B1) the expres-
sion of V,_; resulting from (AS), one obtains

ciD, _ ci(l —rR,

:]—Ck

v, + ryR, (B2)

1- Ck

Considering in (B2) V,_,, D,_, and R,_, instead of V,, D,,
and R,, which does not affect generality, and resubstituting
V,-1 as obtained from (AS5), gives

D, (I=rdR, Dy cdl = rdR,

+rR,_
I_Ck l—Ck l—Ck I—Ck e
(B3)
and, rearranging,
D,_CkD,_l =(l -rk)R,—(ck-—rk)R,_, (B4)

If R, is considered as an independent stochastic process,
(B4) represents an ARMA(1, 1) process. Introducing the
variables d, = D, — E[D,Jand ¢, = (1 — ri (R, ~ E[R,]),
with mean zero, this model is written, in Box-Jenkins
notation,

d,—‘bd,_]=€,—®€,_1 (BS)

where ® = ¢, and ©® = (¢; — r)/(1 — ry) are the
autoregressive and moving average parameters, respec-
tively. Under these latter conditions it can be shown that
EID,] = E[R,].

If the within-period distribution of recharge is predeter-
mined, as assumed in this paper, coefficients ® and ® of (BS)
are not independent. In the limit case of impulse recharge at
the beginning of the interval, r; equals ¢, (see Appendix A)
and (B4) simplifies to

D,—CkD,_]z(l"Ck)Rt (B6)

which is equivalent to an AR(1) process.

On a seasonal basis, if the storage constant is considered
as varying with the seasons, (B6) becomes a PAR(1) model,
as shown by Salas and Obeysekera [1992] with reference to
a similar conceptual scheme, that can be written as
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dpm = Py -1 = (B7)

Enom

in which n denotes the year and m denotes the season.
Coefficients ®,, relate to the seasonal ¢ (m) as [Salas and
Obeysekera, 1992]

D, =ci{m = D[l = c (m))/[1 = cp(m = 1)]
= Ukim)

(B8)

where ¢ (m) = e

B2. Linear Reservoir Plus Zero Lag Linear Channel

This conceptual system was analyzed by Salas et al.
[1981] with reference to the annual streamflows. It is revis-
ited here by considering the input as the effective rainfall,
instead of total precipitation, and by taking into account the
effects due to the distribution of the within-period recharge.

With reference to Figure 3, the groundwater recharge R,
in the interval ¢ is considered as the fraction a/, of the
effective rainfall I,, while (1 — a)l, is the direct runoff.
Including the direct runoff into the mass balance equations
(AS) and (B1) and rearranging, an ARMAC(I, 1) process

d,—‘bd,_,,=£,—®£,_, (Bg)

is obtained for the runoff, as shown by Salas et al., [1981]. In
the hypotheses made here, (B9) holds with positions

Cp — ary
P=c,=e'* SLEL g€, = {1 —aryi,
l—ark
(B10)
and, correspondingly,
*-o ! ' il BII
a:——— = m— =
ri(l = 0) me ' 1-ar (BID

where i, = [, — E[I,]. and ¢, is the zero-mean residual. If
ol is the residual variance, the variance of the net rainfall
process is

2

£

(l - dl'k)2

o
(B12)

of-
Due to the conditions 0 < @ < 1 and & = 0 and to (B10) the
parameter space of the process (B9), given by Salas et al.
(1981], is restricted with respect to that of a general
ARMAC(1, 1) model. Process (B9) thus belongs to the class of
restricted ARMA processes.

With reference to seasonal runoff, Salas and Obeysekera
[1992] showed that, considering parameters « and k as
varying with the seasons, the scheme depicted in Figure 3
leads to a PARMAC(I, 1) process. If only one parameter is
assumed nonseasonal, a PARMALC(I, 1) process with nonsea-
sonal AR or MA parameter is obtained. In all cases, retain-
ing the results from the authors cited, explicit relationships
similar to those given in (B10) and (B11) can be obtained
between a,,, k,, and ¢,, 0.

B3. Two Parallel Linear Reservoirs Plus Zero Lag
Linear Channel

This case is represented in Figure 2 where, as an immedi-
ate extension of the previous scheme, b, q. W, and r, have
the same meaning as a, k., V, and ry, and, accordingly, ¢, =
e V4. For this conceptual system, runoff D, is given by
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D=1 —cp)V,.y + (1 =W,y + al{l —rpl,

+b(L—r)l,+ (1 —a-b), (B13)

The volume balance equations for the groundwater storage
are

V,=cV,oy + ard, (B14)

W=c, W, + brql, (B15)

Putting in (B13) the expressions of W, | and V,_, obtained
from (B14) and (B15) and rearranging resuits in one equation
inDh D .. D I 7 !

gy Ay y=Fs fgy Sy—iy 42
D, —{cp+cgdD g + (e )Dy; = (1 — ary — brl,
—[ex+cg—ar(l + cy) = bry(1 + c )i,

—(arcq + brycy ~ cxeM 2 (B16)

With reference to the zero-mean variables d, and i,, if £, =
(1 — ary — brg)i, is an independent stochastic process, the
above representation is equivalent to an ARMA(2, 2) pro-
cess,

d—-®d,_ -~ Pyd, 2=¢6,-06,,-0¢,, (BI7)
Following the reasoning by Salas and Obeysekera [1992] and
letting a, b, q, and k vary with the seasons, a PARMA(2, 2)
process arises.

Relations between conceptual and stochastic parameters
for the ARMA(2, 2) are

<D|=Ck+Cq (BIS)
D, = —cuey (B19)
cptc,—ar, (1 +c,)—br,l +cp)
| = k q k q q k (B20)
1 —ary—br,
aryc, + brocy — cpc
L= kCq qCk kCq (B21)
l—ar,—br,
D, + (0] + 40y
Cy = 2 (BZZ)
b, — (B2 + 4d,) 172
cq= > (B23)
3 M- N - Mbr, B24)
a= Ml‘k (

b=[~(0; - 0N+ (P, - PIM + (1 + 2¢}(N — M)]

‘2M(ci - cr, )7t (B2S)
where N = (1 — &, — ®y)and M = (1 — O, — ©,).
Relations (B18)~(B21) or (B22)-{B25) ensure equivalence of
the means of D, and I, [Claps, 1990]. The net rainfall
variance can be obtained from the residual variance o2
through the relation of = a2/(1 — ar, — br,)*.

In the general ARMA(2, 2) model, stationarity and invert-
ibility conditions provide admissible regions for the AR and

MA parameters. Limiting the analysis to the autoregressive
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constrained AR parameters

Fig. 8. Admissible region for autoregressive parameters of the

restricted PIR-ARMA(2, 2) model.

parameters @, and ®,, a triangular admissible region results
[Box and Jenkins, 1970, paragraph 3.2.4.] from the station-
arity conditions -1 < ®; < 1; ®; — ®; < 1;and ®, + &; <
1. Given that 0 < ¢, < l and 0 < ¢; < I, (B22)(B23)
provide conceptual constraints for ®, and &,:

b2+ 4d,>0 (B26)

®,<0 &,>0

which restrict the admissible space of the two parameters to
the region indicated in Figure 8. Again, the conceptual
representation determines a restricted ARMA process. It is
interesting to remark that if one of the storage coefficients,
for instance k, is large, ¢, approaches unity and this leads to
@, + &, = 1, which is close to the nonstationarity condition
&, + ¢, = 1. In other words, the outlet of a system with a
very slow response (such as a reservoir with a recession
coefficient ¢, = 1) may be confused with a trend.
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