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Abstract. The operational use of weather radars has become
a widespread and useful tool for estimating rainfall fields.
The radar-gauge adjustment is a commonly adopted tech-
nique which allows one to reduce bias and dispersion be-
tween radar rainfall estimates and the corresponding ground
measurements provided by rain gauges.

This paper investigates a new methodology for estimating
radar-based rainfall fields by recalibrating at each time step
the reflectivity-rainfall rate (Z-R) relationship on the basis
of ground measurements provided by a rain gauge network.
The power-law equation for converting reflectivity measure-
ments into rainfall rates is readjusted at each time step, by
calibrating its parameters using hourlyZ-R pairs collected
in the proximity of the considered time step. Calibration
windows with duration between 1 and 24 h are used for esti-
mating the parameters of theZ-R relationship. A case study
pertaining to 19 rainfall events occurred in the north-western
Italy is considered, in an area located within 25 km from the
radar site, with available measurements of rainfall rate at the
ground and radar reflectivity aloft. Results obtained with the
proposed method are compared to those of three other liter-
ature methods. Applications are described for a posteriori
evaluation of rainfall fields and for real-time estimation. Re-
sults suggest that the use of a calibration window of 2–5 h
yields the best performances, with improvements that reach
the 28% of the standard error obtained by using the most ac-
curate fixed (climatological)Z-R relationship.

1 Introduction

Advances achieved in the recent past in radar technology
and in the methods for processing data are leading to an in-
creasing confidence toward the use of radar-based rainfall
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estimates into hydrologic analyses and simulations. An accu-
rate knowledge of the spatial characteristics and the amount
of rainfall falling on a catchment area is of crucial impor-
tance in flood forecasting and warning systems (Smith, 1993;
Claps and Siccardi, 1999; Arnaud et al., 2002; Brath et al.,
2004), and can substantially improve the allocation of wa-
ter resources for agricultural uses as well as for hydroelec-
tric production (Alfieri et al., 2006). Further, an accurate
quantitative precipitation estimation through radar measure-
ments can provide an aid to the understanding of relations
between point and areal rainfall (Bacchi and Ranzi, 1996)
and for defining the probability distribution of annual rain-
fall intensity for large return periods (i.e., high rainfall rates),
due to the large amount of data that the radar collects at each
scan (e.g., Koistinen et al., 2006).

The procedure for evaluating radar-based rainfall fields re-
quires (i) to define in the best possible manner the reflec-
tivity field (Z) induced by precipitation falling toward the
Earth surface, and (ii) to link Z to an estimate of the rain-
fall rate (R), eventually with the aid of actual precipitation
measurements. Ciach and Krajewski (1999) stressed the im-
portance to distinguish the search for a physical dependence
between rainfall reflectivity and rainfall intensity in a spe-
cific precipitation system from the goal of producing the
most accurate radar-based predictions of the rainfall field at
the ground level. This second objective, which is the main
focus of this paper, is often pursued by pairing radar mea-
surements (aloft) with ground data provided by rain gauge
networks. The adoption of a unique climatological relation-
ship to link Z andR is a widespread practice for estimat-
ing rainfall fields, due to its simplicity of use and its abil-
ity to provide, on average, low-biased estimates. The liter-
ature concerning this topic reports a large number of differ-
entZ-R relationships between radar reflectivity and the cor-
responding rainfall rate in the form of power-laws, such as
those listed by Battan (1973) and Doviak and Zrnic (1984),
which include the widely adopted formulations proposed by
Marshall and Palmer (1948), Joss and Waldvogel (1970),
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Woodley et al. (1975), among others. However, because of
the considerable variability that the raindrop size distribu-
tion shows during a rainfall event, the actualZ-R relation
changes continuously in space and time. Therefore, the ma-
jor drawback of using a unique relationship is that it can-
not account for the broad variability of the trueZ-R rela-
tion in the presence of different types of precipitation (e.g.,
convective or stratiform), as well as the variations that oc-
cur within each rainfall event (e.g., see Richards and Crozier,
1983; Smith and Krajewski, 1993; Lee and Zawadzki, 2005).

Several approaches for improving the radar estimates of
rainfall based on radar-gauge comparisons have been pro-
posed in the past years (e.g., Brandes, 1975; Zawadzki, 1975;
Collier et al., 1983; Austin, 1987; Ulbrich and Lee, 1999).
These methods often try to reduce the estimation uncertainty
by introducing additional information such as the precipita-
tion type (e.g., convective or stratiform), the distance of the
gauge from the radar, the elevation of the radar beam, and
so forth (see for example Joss and Lee, 1995; Anagnostou
and Krajewski, 1999a, b; Gabella and Amitai, 2000). Recent
applications of real-time procedures are reported in Seo and
Breidenbach (2002), Chumchean et al. (2006), Germann et
al. (2006), Chiang et al. (2007).

Legates (2000) carried out a real-time calibration of the
Z-R power-law relationship by considering the radar-gauge
pairs of the previous month characterized by non-zero rain-
fall, in order to account for seasonal fluctuations due to dif-
ferent types of precipitation and for possible drifts of the
hardware calibration. It is known that the actualZ-R rela-
tion is subject to variations on much shorter time scales, but
it is still not clear whether an optimal calibration period for
providing the best rainfall estimates is definable.

In the present paper, we propose a simple methodology
for producing accurate radar-based estimates of rainfall in-
tensity, by readjusting the coefficients of theZ-R relation-
ship continuously in time considering short calibration win-
dows. The procedure is tested on 19 rainfall events, with
no recorded snow on the ground, that occurred in the north-
western Italy between 2003 and 2006. We use reflectivity
measurements from a weather radar and rainfall data from a
network of 20 rain gauges located within a range of 25 km
from the radar.

The next section describes the procedure devised for esti-
mating rainfall fields from radar-gauge pairs. Section 3 gives
some information on the case study and the data adopted;
then it shows the results obtained with the two proposed tech-
niques and a comparison with those of some literature meth-
ods. Some conclusions are reported in the final section.

2 Methods

The basic idea behind this work is that, for each time stept ,
one can estimate as manyZ-R relationships as the number of
the available data pairs in theZ-R plane. When a two-para-

meters power-law of the form

Z = a ·Rb (1)

is adopted, the coefficientsa and b can be obtained by
fitting the relation to match at least two points identified
by non-zero concurrent measurements of rainfall rate and
radar reflectivity. TheZ-R pairs can be taken either at
the same spatial coordinates (i.e., the same rain gauge
j ) at different times (i.e., {Z1 = Z(ti,j),R1 = R(ti,j)}

and {Z2 = Z(ti+1,j),R2 = R(ti+1,j)}), or for the
same time step ti , considering two neighboring
rain gauges (i.e., {Z1 = Z(ti,j),R1 = R(ti,j)} and
{Z2 = Z(ti,j +1),R2 = R(ti,j +1)}), where it is con-
ventionally assumed thatj + 1 is the rain gauge closest to
j . If the measurements were not affected by errors, for
(ti+1 − ti) approaching zero (or for the distance betweenj

andj +1 approaching zero) the relation obtained by using
only two Z-R pairs would be the most suitable to convert
reflectivity measurements in rainfall rates. Of course, the
relation would change when moving to a different place or
considering another instant in time.

The above described procedure is not practicable, due to
a number of limitations which affect the problem. First, the
radar reflectivity and the ground-rainfall measurements are
subject to several sources of error (e.g., see Steiner et al.,
1999). As a consequence, the adoption of only twoZ-R
pairs for estimating the coefficientsa andb would provide
scarcely-reliable and highly fickle relationships. A further
major source of uncertainty is due to the non-homogeneity of
the volume sampled by the two instruments and to a possible
temporal lag between the two measured variables (e.g., Za-
wadzki, 1975). The radar carries out instantaneous measure-
ments of volume aloft, whose size varies with the distance
from the radar. The rain gauges that we considered measure
cumulative rainfall depths at the ground level, by sampling
an area of 200 cm2 for a duration as long as the sampling
time (10 min for this study).

Because of the difficulty to defineZ-R pairs which refer to
the same volume of atmosphere sampled, rainfall measure-
ments are usually aggregated over longer durations. Like-
wise, radar data are averaged over time and space, by con-
sidering a number of pixels from the reflectivity maps nearby
the position of the rain gauges and a duration corresponding
to the same one adopted for the rainfall data aggregation. In
this work, the choice of the aggregation period is one hour
in time and nine radar pixels in space (i.e. a 1.5×1.5 km2

area) centered on the pixel which contains the considered
rain gauge.

In order to obtain more stable and reliableZ-R relation-
ships it is necessary to increase the number ofZ-R pairs to
be considered for estimating thea andb coefficients. We pro-
pose to estimate a different power-law relationship for each
hourly time stepti , where the coefficientsa andb are ob-
tained by considering all the availableZ-R pairs with non-
zero rainfall rate recorded in a calibration window of duration
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d, taken in the proximity of the selected instantti . As a con-
sequence, each power-law regression is carried out on a num-
ber ofZ-R pairs with an upper boundNRG·d, given by the
number of rain gaugesNRG times the durationd (in hours) of
the calibration window. Different calibration windows of du-
rations between 1 and 24 h are tested, and results are shown
and discussed in Sect. 3.2 and 3.3. Parameters of each power-
law relationship are calculated by minimizing the squared
differences between the observed and the estimated rainfall
values. The latter are obtained through

R = 10∧

(
Z∗

10b̂
−

logâ

b̂

)
, (2)

whereâ andb̂ are the coefficients to estimate. Equation (2)
is obtained from Eq. (1), by considering that the reflectiv-
ity data are provided in the formZ∗=10 log Z [dBZ]. Note
that, despite Eq. (2) represents a straight line in the bi-
logarithmic plane log Z-logR, the regression procedure is
carried out in theZ-R plane by means of non-linear tech-
niques. The adopted optimization algorithm is a subspace
trust region method and is based on the interior-reflective
Newton method. The optimized coefficientsâ andb̂ are es-
timated iteratively by taking those obtained from the linear
regression method (see Eq. 3) as first attempt values. The
non-linear optimization causes a substantial heteroscedastic-
ity of the estimation residuals, but it is necessary for obtain-
ing regressions producing small errors also at high rainfall
intensities, which is important when dealing with extreme
precipitation events. Further, this approach has the advan-
tage of producing almost unchangedZ-R relationships when
a threshold for the minimum considered value of reflectivity
is set. This is better clarified at the end of this section.

In order to assess the performances of the mentioned non-
linear regression method we carried out a comparison of the
results obtained with this method and with the commonly
adopted method based on the equation

logZ = logâ ′
+ b̂ ′ logR, (3)

derived from Eq. (1), wherêa′ andb̂′ are the estimated val-
ues ofa andb. Results of such comparison are discussed in
Sect. 3.2.

The calibration procedure was then used both for (i) a pos-
teriori evaluation of the rainfall field, hereafter referred to as
“continuous-time” (CT) readjustment, and (ii) for real-time
(RT) estimation. In the first case, for each time stepti , the
Z-R relationship is estimated by considering theZ-R pairs
for a time window of durationd centered onti , i.e., taking all
the available pairs betweenti −d/2 andti +d/2. In real-time
monitoring the aim is to estimate the current rainfall field
from reflectivity measurements at the same instantti , where
each relation is estimated from theZ-R pairs of the preced-
ing hours. In this case the relation to use at the timeti was
inferred from theZ-R pairs betweenti−1−d andti−1. Fig-
ure 1 shows a scheme of the calibration windows to assume

Fig. 1. Calibration windows considered for estimating theZ-R re-
lationship at a given time stepti . Both windows for real-time (RT)
estimation and continuous-time (CT) readjustment are shown.

(both for CT readjustment and RT estimations) for a certain
durationd and time stepti , wheret andd are expressed in
hours.

Some further details are needed to clarify the operational
use of the method. For some time windows no validZ-R
relationship was found, either because fewZ-R pairs were
available for the corresponding calibration window (i.e., rain-
fall was zero for most of the rain gauges) or because the co-
efficients of the power-law did not comply with the imposed
constraints,̂a >1 andb̂ >1. We rejected the estimatedZ-R
relationships characterized by coefficientsâ <1 or b̂ <1, in
that they produce unreliable estimates of the rainfall rate for
large values of the reflectivity. A physical interpretation of
the assumption̂b >1 was also suggested by Smith and Kra-
jewski (1993), who considered the effect of the variability
of the raindrop characteristics within a statistical model for
estimating the power-law parameters.

For these cases the relation to adopt was chosen as the
closest one in time. In particular, for CT estimation, when
the calibration window [ti −d/2, ti +d/2] does not provide
a valid relationship, the windows [ti+1 − d/2, ti+1 + d/2],
[ti−1 −d/2, ti−1 +d/2], [ti+2 −d/2, ti+2 +d/2], [ti−2 −d/2,
ti−2+d/2] and so forth, are tested progressively until the first
relationship with valid coefficients is found. Likewise, in RT
estimation, the time windows [ti−2, ti−2−d], [ti−3, ti−3−d],
[ti−4, ti−4 −d] are considered. The relation obtained from
the bulk adjustment is used if none of these windows pro-
vides a valid result.

Another operational problem regards calibration window
at the beginning or at the end of a rainfall event. A shorter
temporal window is assumed for evaluating theZ-R rela-
tionship in these cases, by considering only the available pe-
riod. For example, if one sets a calibration window of dura-
tion d=5 h in RT estimation, the reflectivity field of the first
time step,Z(t1), will be converted into rainfall rates by using
the relationship derived from the bulk adjustment. Then, for
t = t2, the method tries to calibrate a relationship by consid-
ering theZ-R pairs with non-zero rainfall rate att1 (d=1 h).
For t = t3, the calibration window will be [t1, t2], therefore
d=2 h. In turn, the subsequent time steps assume a duration
d=3, d=4, and finallyd=5 h from t6 onwards (i.e., for the
intervals [t1, t5], [t2, t6], etc.), till the last time step of the
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rainfall event. It is worth noting that the radar often mea-
sures a low but non-zero reflectivity even when no rainfall
is detected from any rain gauge. Thus, if we were to apply
a Z-R relationship continuously for estimating rainfall rates
we would obtain a weak persistent rainfall rate, spread out
over the whole territory. Furthermore, if all the pairs with
non-zero reflectivity and zero gauged rainfall were used for
calibrating the overallZ-R relationship, the subsequent rain-
fall estimates would turn out to be highly biased. In order to
reduce this effect we carried out a further analysis, both for
CT readjustment and RT estimation, which consists in set-
ting a threshold (ZMIN ) for the lowest reflectivity value to be
considered. Then, reflectivity values below the threshold are
not considered for evaluating theZ-R relationship and a zero
rainfall rate is attributed to the data withZ ≤ ZMIN .

The error characteristics of the estimated rainfall values
are assessed by applying a cross-validation procedure for all
the considered durations of the calibration window. This
is carried out by excluding one rain gauge at a time from
the evaluation of theZ-R relationship and then comparing
the estimated rainfall depth with the actual measurement at
the excluded station. The quality of the estimation proce-
dure was assessed by means of the root mean squared error
(RMSE), the mean absolute error (MAE) and the estimation
bias, which were calculated as follows:

RMSE=

√
1

N

∑
∀ti

∑
∀j

(
Rti ,j −Gti ,j

)2 (4)

MAE =
1

N

∑
∀ti

∑
∀j

∣∣Rti ,j −Gti ,j

∣∣ (5)

bias=
1

N

∑
∀ti

∑
∀j

(
Rti ,j −Gti ,j

)
(6)

for all the considered durations of the calibration window. In
Eqs. (4)–(6) we indicate withGti ,j the measured hourly rain-
fall depth at the timeti and at thej -th rain gauge, whileRti ,j

is the estimated value obtained from the corresponding radar
reflectivity, by following the cross-validation procedure. The
differences

(
Rti ,j −Gti ,j

)
represent the estimation residuals,

while N is the number of availableZ-R pairs.

3 Application and discussions

3.1 Case study

The study region is a flat/hilly area located in the north-west
of Italy, nearby the city of Turin, where the Regional Agency
for the Protection of the Environment (ARPA Piemonte)
manages a weather radar and a network of automatic rain
gauges (see Fig. 2).

The radar considered in this study is a C-band Doppler and
dual polarization system with a digital receiver, located at

 
 

Fig. 2. Geographical setting of the Piedmont region and location
of the rain gauges (black dots), the Bric della Croce radar (plus
symbol) and range rings at 25 and 50 km from the radar.

“Bric della Croce”, over the Turin hills at 736 m a.s.l., since
1999. ARPA Piemonte provides maps of the reflectivity fac-
tor of precipitation on a cartesian grid of 250 by 250 km
with a resolution of 500 m in space and 10 min in time. The
adopted radar product is a 2-D reflectivity map of the low-
est visible radar cell with no correction for vertical profile
of reflectivity, showing the reflectivity at horizontal polar-
ization. A technique for clutter suppression is operationally
implemented in the post-processing of polar volumes, which
is based on three different tests to detect clutter affected data.
We refer to Bechini and Cremonini (2002) and to Cremonini
and Bechini (2003) for a thorough description of the consid-
ered weather radar and the processing of the collected data.
Ground rainfall measurements are taken every 10 min by a
network of tipping bucket rain gauges with a lower threshold
of rainfall detection of 0.2 mm/10 min.

We selected 19 rainfall events among those with the high-
est daily rainfall depths between the years 2003 and 2006,
which add up to a cumulated rainfall depth of 560 mm, on
average among the considered rain gauges. The event dura-
tions vary between few hours and three days. Rainfall mea-
surements at 20 rain gauges and the corresponding maps of
rainfall reflectivity were collected for the considered events.
The considered rain gauges are rather uniformly distributed
on the study area, at distances between 3 and 25 km from the
radar; the reflectivity measurements over them are taken at
heights below 1000 m from the ground. Overall, the adopted
dataset counts on 10 639 available hourlyZ-R pairs.
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Such a simple case study was intentionally chosen for em-
phasizing the amount of estimation uncertainty which derives
from the use of a constantZ-R relationship. By comparison
we aim to consider a more realistic variability of theZ-R re-
lation at finer time scales, which is able to account changes
in the raindrop size distribution and in the vertical velocity of
air masses, among others. In addition, at farther ranges and
higher beam elevations the estimation uncertainty increases,
due to several sources of error such as attenuation of the radar
beam, non-homogeneous beam filling, evaporation or growth
of rain below the radar beam height, so that identifying the
extent of each single source of error becomes increasingly
difficult. By limiting the study area to a close range from the
radar, some range-dependent sources of error get a reduced
impact on the overall error characteristics. It is noteworthy
that the proposed methodology carries some advantages also
with regard to sources of error that are not range-dependent.
In fact, the self-calibration properties of theZ-R relation-
ship over short time spans allow the procedure to correct for
those errors that vary in time, such as attenuation due to wet
radome and errors in radar calibration.

3.2 Continuous-time (CT) readjustment

The procedure described in Sect. 2 was first applied for
the CT estimation of the hourly rainfall field by testing
24 durations of the calibration window, ranging between 1
and 24 h.

Results are compared with those which stem from the ap-
plication of theZ-R relation that is currently adopted at
ARPA Piemonte,Z=300R1.5 (Joss and Waldvogel, 1970),
and with those obtained by using the power-law relation
which globally minimizes the squared sum of the estima-
tion residuals. This latter procedure consist in estimating the
coefficientsâ and b̂ from Eq. (2) on the whole sample of
10 639 pairs, and leads to the relationZ=79.1R1.81, hereafter
referred to as “bulk adjustment”. For the CT readjustment
procedure we also applied a method which evaluates a dif-
ferentZ-R relationship for each of the 19 considered rainfall
events (referred to as “event adjustment”).

Figure 3a shows the RMSE of the rainfall rates estimated
with the CT readjustment (thick solid line) for the considered
durations, together with the RMSE obtained from the event
adjustment, the bulk adjustment and the Joss and Waldvo-
gel (J-W) relation (thick circles). The MAE and the bias of
estimation are represented in Fig. 3b and c, respectively.

Figure 3 demonstrates that an improvement towards the
J-W relation is achievable by assuming a uniqueZ-R rela-
tionship derived from a bulk adjustment carried out on all
the availableZ-R pairs. As shown in Fig. 3c, this result is
due to a substantial reduction of the estimation bias. Ta-
ble 1 shows the results of a comparison between the use
of a linear regression on logR as in Eq. (3) and the adop-
tion of the analytic expression of Eq. (2). Results in Ta-
ble 1 demonstrate a general reduction of the error when us-

Fig. 3. RMSE (a), MAE (b) and bias of estimation(c) for differ-
ent calibration windows and comparison with the results obtained
with the event adjustment, bulk adjustment and the J-W relation.
Continuous-time (CT) readjustment and real-time (RT) estimation
approaches are shown, both evaluated by assuming a lower thresh-
old of 0 and 10 dBZ for the reflectivity values.

ing a non-linear fit as in Eq. (2), except for the MAE with
ZMIN =10 dBZ. Nevertheless, the linear regression on logR

produces a considerable bias and a substantial variability of
the estimated coefficientŝa and b̂ with the thresholdZMIN
(see columns 2 and 3). The adoption of a calibrated relation
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Table 1. Error characteristics and coefficients of the power-law relationship (Eq. 1) obtained with the adoption of a uniqueZ-R relation,
evaluated with the linear (Eq. 3) and the non-linear (Eq. 2) methods described in Sect. 2. The corresponding results are also reported for the
case of assuming a thresholdZMIN =10 dBZ.

Linear regression (Eq. 3) Non-linear regression (Eq. 2)

ZMIN =0 dBZ ZMIN =10 dBZ ZMIN =0 dBZ ZMIN =10 dBZ

â 106 137 79 78
b̂ 2.02 1.64 1.81 1.82
RMSE [mm/h] 1.67 1.56 1.53 1.53
MAE [mm/h] 0.57 0.53 0.55 0.54
Bias [mm/h] –0.21 –0.16 0.05 0.04

for each rainfall event allows one to obtain a further consider-
able reduction of both RMSE and MAE. This improvement is
not due to a significantly lower bias but probably to the abil-
ity to adapt the coefficientsa andb to account for the rainfall
type (e.g., convective or stratiform precipitation), as well as
event-to-event differences in radar calibration, residual clut-
ter, attenuation due to wet radome and to heavy rainfall .

The “within event” CT readjustment of theZ-R relation-
ship produces a further improvement of the estimation pro-
cedure, which is maximum for calibration windows of 2 h,
where the RMSE becomes the 28% lower than in the case
of bulk adjustment. Figure 3a denotes a progressive reduc-
tion of the RMSE as the width of the calibration window
narrows. The sudden increase of the RMSE that occurs for
a calibration window of one hour is due to the instability of
some obtained relationships, which are evaluated on a limited
number ofZ-R pairs. On the contrary, long calibration win-
dows generate more stable fits, because they are estimated
on larger sets ofZ-R pairs, but as expected the correspond-
ing Z-R relation turns out to be less accurate.

The robustness of the obtained results is confirmed in
Fig. 4, which shows that the qualitative behavior of the
RMSE as a function ofd, as shown in Fig. 3a, is re-
tained even when considering only the estimation residuals
of above-threshold rainfall rates, with thresholds varying be-
tween 1 and 10 mm h−1. Figure 4 shows the dimension-
less ratios between the RMSE of the above threshold rainfall
estimates and the corresponding (i.e., considering the same
thresholds) values obtained with the J-W method. Note that
the best improvements of the CT method toward the J-W
method occur forZ-R pairs with thresholds between 3 and
5 mm h−1.

The whole procedure was then repeated by setting a re-
flectivity threshold (ZMIN ), as described in Sect. 2, and the
corresponding results are shown in Fig. 3a, b, and c with a
thin solid line and thin circles. We found thatZMIN =10 dBZ
is a reasonable threshold value to adopt, which corresponds
to about 0.3 mm h−1 for the relation indicated above in this
section, obtained from the bulk adjustment method (i.e., with
â=79.1 andb̂=1.81). Such value was chosen to minimize

Fig. 4. Ratios between the RMSEs obtained by the continuous-
time (CT) readjustment, event adjustment, bulk adjustment, J-W
relation and the corresponding RMSEs derived by the use of the J-
W relation. Results are plotted by considering rainfall rates above
different thresholds between 1 and 10 mm h−1.

the resulting estimation error and therefore improving the re-
moval of non-meteorological echoes. Results that stem from
this method are slightly better than those obtained in the case
ZMIN =0 dBZ, except for a calibration window of 2 h. This
discontinuity is due to the instability of some estimatedZ-R
relationships, which in this case occurs also for calibration
windows as short as 2 h. In fact, the introduction of a thresh-
old onZ reduces the number ofZ-R pairs considered in each
regression. On the other hand, the use of a threshold has
the advantage to prevent the estimation ofZ-R relationships
considering only very low values ofZ, which may produce
large errors when used to convert high reflectivities into rain-
fall rates.

3.3 Real-time (RT) estimation

Similarly to the CT procedure, the RT estimation was car-
ried out for durations of the calibration window between
1 and 24 h, again for the two cases ofZMIN =0 dBZ and
ZMIN =10 dBZ.
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The RT estimation is carried out in cross-validation mode
for all the rainfall events, and the results are represented in
Fig. 3a, b, and c with a thick dashed line (ZMIN =0 dBZ) and
a thin dashed line (ZMIN =10 dBZ). In this case, results are
compared to those of the J-W relation and of the bulk ad-
justment. The event adjustment is not a viable method in the
real-time estimation, so it will not be considered explicitly
(in Fig. 3) when comparing the different approaches.

As expected, the RT method estimates turn out to be less
accurate than the CT estimates, with a slight underestima-
tion, on average, for all the considered durations of the cal-
ibration window (see Fig. 3c). Although the estimation er-
rors are, on average, lower than those of the bulk adjustment
method (see Fig. 3b), the RMSE is higher for durations of the
calibration window of 1, 5, and 6 h. In particular, the anoma-
lous peak ford=5 h (Fig. 3a) is due to a single large error, as-
sociated to a point with high reflectivity (about 39 dBZ) and
no gauged rainfall on the ground, whereas theZ-R relation-
ship provides a very high rainfall rate estimate (69 mm h−1).

The introduction of the thresholdZMIN =10 dBZ induces
an improvement of the overall performances of the RT es-
timation, in that the corresponding bias, the RMSE and the
MAE are all reduced and the peaks of the RMSE are reduced
as well. The comparison in Fig. 3, between the RT and CT
methods, suggests that the most significant reduction of the
estimation error is given by considering theZ-R pairs at the
present timeti , for calibrating the analytic relationship. This
is clearly shown in the comparison of both the RMSE and
MAE, between the CT and RT methods with a calibration
window of one hour. In this case the procedure applied by
the two methods is the same, apart from the time step con-
sidered for calibrating theZ-R relationship, which isti for
the CT method andti−1 for the RT method.

It is worth noting that the two proposed methods allow one
to obtain a considerable reduction of the mean absolute error
(see Fig. 3b) if compared with the corresponding most ac-
curate literature approaches that were tested in this work. In
fact, the CT readjustment withd=3 h produces a MAE which
is about 15% lower than for the event adjustment, while the
MAE of the RT estimation withd=24 h is roughly 14% lower
than in the case of using a single climatological relationship
(i.e., bulk adjustment). Differently, the corresponding reduc-
tion in the RMSE (Fig. 3a) is lower (6% for the CT read-
justment and 4% for the RT estimation). This suggests that
few largest estimation errors are retained and largely affect
the RMSE, which depends on a squared measure of resid-
uals. A possible explanation to this outcome is that large
errors are not removed because they are not ascribable to the
non-identification of a suitableZ-R relationship, but rather
to other sources of error which affect the radar measurement
(see Steiner et al., 1999), and particularly to observations af-
fected by ground clutter contamination.

We plotted in Fig. 5 the empirical frequency distribu-
tions f (a) andf (b) of the coefficientsa andb of the esti-
mated power-laws, for the two proposed methodologies. We

Fig. 5. Empirical frequency distribution (bar chart) and cumulative
distribution (solid line) of the estimated coefficientsa andb of the
Z-R power law. Top panels(a): continuous-time (CT) readjustment
(d=3 h); bottom panels(b): real-time (RT) estimation (d = 24 h).

considered a calibration window of 3 h for the CT method
(Fig. 5a), and of 24 h for the RT method (Fig. 5b). The corre-
sponding cumulative distributions are also represented with
a continuous solid line. The spread of the estimated coef-
ficients is clearly shown from the four panels of the figure.
Further, one can note the sudden jump of the cumulative dis-
tributions for the two coefficients assuming valuesâ=79.1
and b̂=1.81. These represent the frequencies of rejected re-
gressions, and amount in both cases to about 35–40% of the
number of estimated values. Operationally, they are replaced
with the coefficients of the bulk adjustment regression indi-
cated above.

In Fig. 6 we represented a comparison between the rain-
rate measured at a rain gauge during an event (white bars)
and the corresponding estimates obtained with the meth-
ods described in this paper, by assuming the threshold
ZMIN =10 dBZ for all the cases. Again, calibration windows
of 3 and 24 h are considered respectively for CT and RT
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Fig. 6. Comparison of rainfall rates measured at a rain gauge and the corresponding estimates for one of the rainfall events, by using the bulk
adjustment method, the event adjustment, the J-W relation, the continuous-time (CT) readjustment and the real-time (RT) estimation.

Fig. 7. Comparison of rainfall rates measured at a rain gauge and the corresponding estimates for one of the rainfall events, by using the
continuous-time (CT) readjustment with five different calibration windows, between 1 and 24 h.

methods. Figure 6 clearly shows the ability of the CT method
to accurately estimate rainfall rates, while the J-W method al-
ways provides a considerable underestimation. This picture
is representative of the typical behavior of the tested method-
ologies. It is shown for giving a more direct way for compar-
ing the different estimation performances, while one should
refer to Fig. 3 for a more objective statistical evaluation. Sim-
ilarly, Fig. 7 shows a comparison between the gauged rain-
fall during a selected event and the estimated values obtained
by testing the CT method with five different calibration win-
dows between 1 and 24 h. One can note that the five pro-
cedures generally provide reliable estimates, especially for
short durations of the calibration window. Indeed, even the
1-h time window provides good results. These findings are of
crucial importance in that, although the CT procedure is an a
posteriori analysis of rainfall rates, by waiting just 1 h from
a given radar measurement, the accuracy of estimation sub-
stantially improves (compared to the corresponding real-time
estimates). This means that the CT method with a 1-h time
window can be considered a valid “near real-time” alterna-

tive for estimation, with important implications for hydrolog-
ical applications, where a 1-h lag time is a viable compromise
in place of substantial quantitative improvements.

Finally, a further set of graphs is reported in Fig. 8, which
shows the scatter plots between measured and estimated rain-
fall rates for the five methods described in this work together
with their corresponding RMSE, both in linear (left side) and
logarithmic (right side) scale. Again, the selected durations
of the calibration windows are 3 h for the CT method and 24 h
for the RT method. Furthermore, all the scatter plots reported
in Fig. 8 are obtained by setting the thresholdZMIN =10 dBZ
as explained throughout this article, in that the resulting error
characteristics are slightly better than those provided by the
case of thresholdZMIN =0 dBZ . One can note, in the right
side panels of Fig. 8, the value of 0.2 mm h−1 as the rain
gauge instrumental resolution. Such graphical representa-
tion confirms the usefulness of setting a threshold for very
low values ofZ and of the use of a non-linear regression
as in Eq. (2), which gives larger weights to high reflectivity
values.

Nat. Hazards Earth Syst. Sci., 10, 149–158, 2010 www.nat-hazards-earth-syst-sci.net/10/149/2010/



L. Alfieri et al.: Continuous-time radar rainfall estimation 157

Fig. 8. Scatter plots between measured and estimated rainfall rates
for the five methods described in this article, both in linear (left
side) and logarithmic (right side) scale. The 1:1 line is also shown
in each plot. For all the five methods the thresholdZMIN =10 dBZ
is adopted.

4 Conclusions

This paper presents a simple procedure for usingZ-R rela-
tionships continuously updated in time, useful both for re-
analysis of rainfall fields and for real time estimation, and
carries out a comparison of the overall performances by test-
ing different calibration windows. The outcomes of these
methods are also compared with those of three other calibra-
tion methods reported in the literature. The adopted proce-
dure aims at producing the most accurate radar-based rainfall
estimates and we do not claim any physical interpretations of
the obtained relationships. The estimated coefficientsâ andb̂

of the power-law relationships as in Eq. (1) are bounded only
to prevent instability problems to occur. As a result, they are
considerably spread out around those of the meanZ-R re-
lation derived from the bulk adjustment method, and often
assume different values from those reported in the literature.
The obtained coefficientŝa andb̂ include the effect of sam-
pling errors of the radar measurements and the uncertainty
which derives from coupling reflectivity measurements aloft
with ground rainfall rates measured by the rain gauges.

Results are promising, as both the continuous-time (CT)
and the real-time (RT) approaches demonstrate substantial
improvements compared to the other tested methods, es-
pecially when a threshold for the minimum reflectivity to
consider is adopted. In particular, we suggest a calibration
window of 3 h for theZ-R relationship when applying the
continuous-time (CT) readjustment. In real-time (RT) esti-
mation, a calibration window between roughly 8 and 24 h
is a reasonable choice, which provides good accuracy of es-
timation and is not affected by instability problems. Even
though these results refer specifically to the case analyzed in
this study, they are rather robust, since are based on more
than 104 estimated hourly values of precipitation.

The strength of this methodology is the simplicity and the
objectiveness of use. Besides, it is almost unaffected by drifts
of the radar hardware calibration, due to the short time win-
dows used for calibrating theZ-R relationship. Further re-
finements to the proposed methodology are practicable, such
as the use of multiple regressions for the rainfall estimation,
which consider more than a single variable among those mea-
sured by the polarimetric radar, the removal of anomalous
points from theZ-R calibration (e.g., points with high reflec-
tivity and low rain rate or vice versa), additional quality con-
trol procedures (see for example Steiner et al., 1999; Gabella
and Amitai, 2000), or further thresholds for bounding the
maximum values ofZ andR. Future developments of this
work will be addressed at increasing the number of rainfall
events and of rain gauges to consider. Farther ranges from
the radar and different areal densities of the gauge network
are likely to affect the space-time variability of the power-
law coefficients and in turn the overall accuracy of the radar-
based rainfall estimates.
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