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Abstract. Validation of probabilistic models based on
goodness-of-fit tests is an essential step for the frequency
analysis of extreme events. The outcome of standard test-
ing techniques, however, is mainly determined by the behav-
ior of the hypothetical model,FX(x), in the central part of
the distribution, while the behavior in the tails of the distri-
bution, which is indeed very relevant in hydrological appli-
cations, is relatively unimportant for the results of the tests.
The maximum-value test, originally proposed as a technique
for outlier detection, is a suitable, but seldom applied, tech-
nique that addresses this problem. The test is specifically
targeted to verify if the maximum (or minimum) values in
the sample are consistent with the hypothesis that the dis-
tribution FX(x) is the real parent distribution. The applica-
tion of this test is hindered by the fact that the critical val-
ues for the test should be numerically obtained when the pa-
rameters ofFX(x) are estimated on the same sample used
for verification, which is the standard situation in hydrolog-
ical applications. We propose here a simple, analytically
explicit, technique to suitably account for this effect, based
on the application of censored L-moments estimators of the
parameters. We demonstrate, with an application that uses
artificially generated samples, the superiority of this modi-
fied maximum-value test with respect to the standard version
of the test. We also show that the test has comparable or
larger power with respect to other goodness-of-fit tests (e.g.,
chi-squared test, Anderson-Darling test, Fung and Paul test),
in particular when dealing with small samples (sample size
lower than 20–25) and when the parent distribution is similar
to the distribution being tested.
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1 Introduction

An outlying observation, or outlier, is a record that appears to
deviate markedly from other members of the sample to which
it belongs (Grubbs, 1969). It is clear from this definition that
an outlier can occur either because data values are incorrect
(for example due to inaccurate recording or transcription),
or because the population has an heavy-tailed distribution,
which increases the probability of having single observa-
tions which stand way apart from the others (e.g.,Barnett
and Lewis, 1994). Still, the practitioners are often tempted
to omit the outliers from the available data samples, because
this choice allows one to proceed with the statistical analysis
using simpler and well-behaved distributions. While appli-
cation of outlier detection methods may be extremely impor-
tant for screening the data and recognizing gross errors, un-
supervised outlier rejection may result in a remarkable loss
of information, in particular when the behavior of the tails
of the distribution is fundamental to the performed statistical
analyses (which of course is exactly the case in the frequency
analysis of hydrological extremes). To quoteGumbel(1960):
“The rejection of outliers on a purely statistical basis is and
remains a dangerous procedure. Its very existence may be
a proof that the underlying population is, in reality, not what
it was assumed to be”. In this paper we accept this view-
point and show how extreme observations, possibly marked
as outliers, can be used to select the probabilistic model for
the frequency analysis of extreme events.

This objective changes the statement of the problem, from
one where the extreme observations are screened as poten-
tial outliers to be rejected, to one where they are used for
validation of a probabilistic model, i.e. for goodness-of-fit
purposes.
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A simple approach to the validation of the probabilistic
model in hydrology is based on plotting the data on probabil-
ity charts (Stedinger et al., 1992) and verifying if the obser-
vations fall approximately on a straight line. Limitations of
this approach derive from (i) the subjectivity inherent in the
visual verification of the alignment of the empirical points,
and (ii) the fact that the method is available only for two-
parameters distributions. Several different testing techniques
have been developed for application to the frequency analysis
of hydrological extremes as, for exampleVogel (1986), Ah-
mad et al.(1988), Chowdhury et al.(1991), Vogel and Mc-
Martin (1991), Fill and Stedinger(1995), Wang(1998) and
Laio (2004). Alternatively, the model validation issue has
been recast as a model selection problem, where several can-
didate models are compared, and the best model to represent
the available data is selected (e.g.,Strupczewski et al., 2002;
Mitosek et al., 2006; Di Baldassarre et al., 2008; Laio et al.,
2009). However, a common drawback of goodness-of-fit and
model selection techniques is that their outcome is mainly
determined by the behavior of the hypothetical model in the
central part of the distribution, while the behavior in the tails
of the distribution, is relatively unimportant for the outcome
of the test: standard goodness-of-fit tests seldom reveal an
ill-fitting tail without a very large amount of data (Bryson,
1974).

This problem can be overcome by using the maximum-
value test, which was originally proposed byGrubbs(1969)
as a technique for outliers detection in a Gaussian setting,
and subsequently extended to Gumbel-distributed parents by
Rossi et al.(1984). The test is specifically targeted to verify
if the maximum (or minimum) values in the sample are con-
sistent with the hypothesis that the distributionFX(x) cor-
responds to the real parent distribution. However, usual ap-
plications of this test to non-Gaussian distributions are com-
plicated by the fact that the parameters of the hypothetical
distribution,FX(x), are unknown and need to be estimated
using the same sample used for the test, which in turn implies
that the acceptance region for the test needs to be calculated
through numerical simulation (see e.g.Rossi et al., 1984).

2 Methods

This section is devoted to describing the basic features of
the standard maximum-value test (Sect.2.1), and of the nec-
essary modifications to the testing procedure due to param-
eter estimation on the same data sample used for testing
(Sect.2.2). In the following of the paper, the standard ver-
sion of the test will also be referred to as SMV test (Standard
Maximum Value), and the modified version as MMV (Mod-
ified Maximum Value) test.

2.1 Basic definitions

Suppose thatx(1)≤...≤x(n) is an ordered sample ofn inde-
pendent observations from an unknown parent distribution
with cumulative distribution functionGX(x); also suppose
that one wishes to test the null hypothesis that the data were
sampled from a distributionFX(x|2), where2 is a vector
of parameters that need to be estimated. In symbols, the null
hypothesis to be tested isH0:GX(x)=FX(x|2). In this pa-
per we will consider two- and three-parameter distributions
as candidate operational models, i.e. as hypothetical parent
distributionsFX(x). More in detail, we will direct our at-
tention to: (i) two-parameter distributions belonging to the
location-scale family, i.e. distributions that can be written in
the form

F(x|θ1,θ2) = 8

(
x −θ1

θ2

)
(1)

where8(·) is a generic function,θ1 is a position (or location)
parameter andθ2 is a scale parameter; (ii) three-parameter
distributions belonging to the location-scale-shape family,
characterized by the property

F(x|θ1,θ2,θ3) = 8

(
x −θ1

θ2
;θ3

)
(2)

where8(·;θ3) is a generic function with two arguments, the
second argument being the shape parameterθ3. Most distri-
bution commonly used in the hydrologic practice belong to
one of the two families indicated above, including the Gum-
bel distribution, the normal distribution, the two-parameter
exponential distribution, the GEV distribution, the Pearson
type III (or three-parameter gamma) distribution, etc. (see
Table1 for details on the parametrization adopted in this pa-
per). Other commonly used distributions, as for example the
lognormal, log-Pearson type III, and Frechet distributions,
can be traced back to these families with a preliminary log-
transformation of the data.

Parameter estimation is here carried out with the L-
moments method as defined, for example, inHosking and
Wallis (1997), because this method is especially suitable to
be used in combination with the maximum value test, as will
be clarified in the following. The method of L-moments pro-
vides parameter estimators based on the matching of distri-
bution and sample L-moments. The former are defined as

L1 =

∫ 1

0
x(u)du

L2 =

∫ 1

0
(2u−1)x(u)du (3)

L3 =

∫ 1

0
(6u2

−6u+1)x(u)du,
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Table 1. Probability models considered in this paper.0[·] is the gamma function.

Distribution Acronym CDF or PDF Range

Exponential EXP F(x,θ)=1−exp
[
−(x−θ1)/θ2

]
θ1<x<∞

Gumbel or Extreme Value Type I EV1 F(x,θ)=exp
[
−exp

[
−

x−θ1
θ2

]]
−∞<x<∞

Normal or Gaussian NORM f (x,θ)= 1√
2πθ2

exp

[
−

1
2

(
x−θ1

θ2

)2
]

−∞<x<∞

Generalized Extreme Value GEV F(x,θ)=exp

[
−

(
1+

θ3(x−θ1)
θ2

)−1/θ3
]

θ3(θ1−x)
θ2

<1

Gamma or Pearson Type 3 GAM f (x,θ)= 1
|θ2|0[θ3]

(
x−θ1

θ2

)θ3−1
exp

[
−

x−θ1
θ2

]
x−θ1

θ2
>0

wherex(u) is the quantile function ofx, i.e., F(x(u))=u,
0<u<1. Unbiased estimators of sampleL-moments are
commonly written as

l1 =
1

n

n∑
i=1

x(i)

l2 =
1

n

n∑
i=1

(
2(i −1)

n−1
−1

)
x(i) (4)

l3 =
1

n

n∑
i=1

(
6(i −1)(i −2)

(n−1)(n−2)
−

6(i −1)

(n−1)
+1

)
x(i).

Explicit relations for the estimation of distribution parame-
ters are obtained for position-scale(-shape) distributions. In
fact, for these distributions the quantile function can be writ-
ten as

x(u) = θ1+θ2 ·z(u,θ3), (5)

wherez(u,θ3) is the quantile function of the standardized
variablez=(x−θ1)/θ2, which only depends on the probabil-
ity level u and on the shape parameterθ3 (for two-parameter
distributions of course the dependency onθ3 is lost). Using
Eq. (5) in Eq. (3), distribution L-moments are re-written as

L1 = θ1+θ2

∫ 1

0
z(u,θ3)du = θ1+θ2A(θ3)

L2 = θ2

∫ 1

0
z(u,θ3)(2u−1)du = θ2B(θ3) (6)

L3 = θ2

∫ 1

0
z(u,θ3)(6u2

−6u+1)du = θ2C(θ3),

whereA(θ3), B(θ3) and C(θ3) are distribution dependent
functions (or constant values in case of two-parameter distri-
butions). For example, for the Gumbel distribution one easily
obtainsA=γE (whereγE=0.5772... is the Euler constant)

andB=ln(2) (theC value is not required for two-parameter
distributions). The values ofA(θ3), B(θ3) andC(θ3) for the
distributions considered in this paper are reported in Table2.

Estimators for location, scale, and shape parameters are
now obtained by equating Eqs. (4 and6). Consequently, one
obtains the following system of equations:

θ̂`
1 = l1− θ̂`

2A
(
θ̂`

3

)
θ̂`

2 = l2/B
(
θ̂`

3

)
C
(
θ̂`

3

)
B
(
θ̂`

3

) =
l3

l2
.

(7)

These estimators are represented by using the superscript`

to denote that they are the classical L-moments estimators,
in order to avoid confusion with the modified estimators in-
troduced in the following subsection. The equations in the
system can be separately solved by starting from the bottom
one, which allows one to find̂θ`

3; then this result is used to
find θ̂`

2 from the central equation; finallŷθ`
2 andθ̂`

3 are used
in the top equation to find̂θ`

1. In case of two-parameter dis-
tributions, only the first two equations are needed, and the
solution is analytically explicit.

Once the parameters have been estimated, the maximum-
value test can be applied. This test is specifically targeted to
verify if the maximum (or minimum) values in the sample are
consistent with the hypothesis that the distributionFX(x|2)

is the real parent distribution. In detail, the testing procedure
requires that[
FX(x(n)|2̂)

]n
< 1−α (8)

where[FX(x|2̂)]n is the maximum value distribution (as de-
fined, for example, byKendall and Stuart, 1979andKotte-
goda and Rosso, 1998), x(n) is the n-th order statistic (i.e.
the maximum value in the sample) andα is the significance
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Table 2. Distribution dependent functions to be used for parameter estimation, as defined in Eqs. (6 and10). 0[·] is the gamma function,
0[·;·] is the incomplete gamma function, and Norminv is the inverse of the standardized Gaussian cumulative distribution function.

A(θ3) B(θ3) C(θ3) D(n,θ3)

EXP 1 0.5 – −ln[1−0.51/n
]

EV1 γe ln[2] – −ln[
ln[2]

n ]

NORM 0 1/
√

π – Norminv[0.51/n
]

GEV 0(1−θ3)−1
θ3

(2θ3−1)
0(1−θ3)

θ3
(1+3θ3−2θ3)

0(1−θ3)
θ3

(
ln[2]

n

)−θ3
−1

θ3

GAM θ3
0[θ3+1/2]

0[θ3]
√

π

0[θ3+1/2]

0[θ3]
√

π
·τ3

∗ 0.51/n
=

0[θ3,D(n,θ3)]
0[θ3]

∗∗

∗ τ3 is theL-coefficient of skewness of the distribution. It can be computed using Eqs. (A.86 and A.88) inHosking and Wallis(1997).
∗∗ Equation to be solved numerically.

level of the test. A similar test statistic was originally pro-
posed byGrubbs(1969) as a technique for outliers detection
in a Gaussian setting, and subsequently extended to Gumbel-
distributed parents byRossi et al.(1984). However, applica-
tions of this test in a non-Gaussian setting either require ex-
tensive numerical simulations, or fail to consider the effects
of parameter-estimation, i.e. of the substitution of2 with 2̂

in Eq. (8). In fact, when parameters are estimated from the
same sample used for goodness-of-fit purposes, the limiting
values for the goodness-of-fit test (in this case, 1−α) should
be suitably recalculated; this is a general requirement for all
goodness-of-fit tests, seeD’Agostino and Stephens(1986)
andLaio (2004), among others, for details. Here we follow
a different approach, as described in the following subsec-
tion, which allows one to suitably account for this effect, still
maintaining the simplicity and full analytical tractability that
are the distinctive features of the maximum value test.

2.2 Modified maximum-value test

In this section a simple and analytically explicit technique is
proposed to account for the effects of parameter estimation.
Since the maximum-value test is based only on the n-th or-
der statisticx(n), the basic idea is to avoid usingx(n) in the
parameter estimation, so that the test statistic will turn out
to be only slightly dependent onx(n) (as discussed inLaio
et al., 2010). It is not possible to simply eliminatex(n) from
the sample and carry out parameter estimation on the remain-
ing n−1 values, because the resulting parameter estimators
would be significantly negatively biased (due to the fact that
the larger value in the sample – and not a value taken at ran-
dom – is excluded from the sample). Therefore we explore
the possibility to substitutex(n) with an estimator which is
provided by the median of the hypothetical maximum value
distribution,[
FX(x̃(n)|2̂)

]n
= 0.5. (9)

The decision of using the median of the hypothetical maxi-
mum value distribution as an estimator ofx(n) comes from
the possibility to obtain analytically explicit results with this
estimator. The same was not guaranteed by using the mean
of the maximum value distribution as the estimator ofx(n).
Consequently, by considering Eqs. (9 and5) one obtains

x̃(n) = θ1+θ2 ·z
(
0.51/n,θ3

)
= θ1+θ2 ·D(n,θ3), (10)

whereD(n,θ3) is a distribution dependent function of the
sample sizen and shape parameterθ3 (only of n in case of
two-parameter distributions). For example, for the Gumbel
distributionD(n)=−ln[ln[2]/n]. The values ofD(n,θ3) for
the other distributions considered in this paper are reported
in Table 2. New parameter estimators, weakly dependent
on x(n) and therefore amenable for use in Eq. (8), can now
be obtained by resorting to the substitutionx̃(n) → x(n) in
Eq. (4), and resolving the L-moments equations to find out
the new parameter estimators. More in detail, one can note
thatx(n) always appears with a weight 1/n in the summations
of Eq. (4), for L-moments of any order. As a consequence,
the substitutionx̃(n) → x(n) trivially leads to the following
modified form of sample L-moments estimators:

l∗1 =
1

n

n−1∑
i=1

xi +
1

n
x̃(n) = l′1+

1

n
x̃(n)

l∗2 =
1

n

n−1∑
i=1

(
2(i −1)

n−1
−1

)
xi +

1

n
x̃(n) = l′2+

1

n
x̃(n)

l∗3 =
1

n

n−1∑
i=1

(
6(i −1)(i −2)

(n−1)(n−2)
−

6(i −1)

(n−1)
+1

)
xi +

1

n
x̃(n)

= l′3+
1

n
x̃(n),

(11)
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where l′1, l′2, and l′3 are the first three sample L-moments
calculated by excluding the largest value in the sample, or
l′1=l1−x(n)/n, l′2=l2−x(n)/n, andl′3=l3−x(n)/n. By equat-
ing the modified sample L-moments in Eq. (11) to the distri-
bution L-moments in Eq. (6) one obtains

θ̂1

(
1−

1

n

)
+ θ̂2

(
A(θ̂3)−

D(n,θ̂3)

n

)
= l′1

−
1

n
θ̂1+ θ̂2

(
B(θ̂3)−

D(n,θ̂3)

n

)
= l′2

−
1

n
θ̂1+ θ̂2

(
C(θ̂3)−

D(n,θ̂3)

n

)
= l′3,

(12)

where Eq. (10) has also been used. The solution of the sys-
tem of Eqs. (12) allows one to find out the modified estima-
tors of the position, scale, and shape parameters,θ̂1, θ̂2, and
θ̂3. We will denote these estimators ascensoredL-moments
estimators of the distribution parameters, because the proce-
dure of substitution of the maximum sample value resembles
a Type 2 censoring.

By rearranging the term in Eq. (12) one obtains

B(θ̂3)−C(θ̂3)

B(θ̂3)
(
1−

1
n

)
+

A(θ̂3)
n

−
D(n,θ̂3)

n

=
l′2− l′3

l′2

(
1−

1
n

)
+

l′1
n

, (13)

which can be used to find out the estimator of the shape pa-
rameter (by using the distribution-dependent functions de-
fined in Table2). This θ̂3 value can then be used in

θ̂2 =

l′2

(
1−

1
n

)
+

1
n
l′1

B(θ̂3)
(
1−

1
n

)
+

1
n
A(θ̂3)−

D(n,θ̂3)
n

, (14)

to find out the scale parameter estimator,θ̂2. As usual, for
two-parameter distributions Eq. (14) can be directly used,
without preliminary application of Eq. (13), because of
course no shape parameter exists in this case. For example,
for the Gumbel distribution, by using the functions in Table2
in Eq. (14), one easily finds

θ̂2 =

l′2

(
1−

1
n

)
+

1
n
l′1

ln[2]

(
1−

1
n

)
+

1
n
γE −

ln[ln[2]/n]

n

. (15)

Finally, the two estimatorŝθ2 and θ̂3 can be used to esti-
mate the location parameter through the relation

θ̂1 = l′1− l′2− θ̂2[A(θ̂3)−B(θ̂3)], (16)

which specifies to

θ̂1 = l′1− l′2− θ̂2[γE − ln[2]] (17)

for the Gumbel distribution.
Some comments can be useful at this point to better con-

textualize the obtained results:

– The censored L-moments estimators (Eqs.13, 14 and
16) are only weakly dependent on the sample maxi-
mum value (seeLaio et al., 2010), and for this reason
are amenable for use in the modified maximum-value
test. In particular, these estimators are asymptotically
independent ofx(n), as can be inferred by the theory re-
ported inFalk and Reiss(1988).

– For two-parameter distributions the result is analytically
explicit, while for three-parameter distributions it re-
quires to numerically solve Eq. (13), which, however,
is a rather trivial task with computers. We also note
that the level of complexity of censored L-moments es-
timators is exactly the same as that of the standard L-
moments estimators, that again require the numerical
solution of the third of Eq. (7) to perform parameter es-
timation for three-parameter distributions.

– For n → ∞ the censored L-moments estimators con-
verge to the standard L-moments estimators,θ̂1 → θ̂`

1,
θ̂2 → θ̂`

2, and θ̂3 → θ̂`
3. This can be easily verified

by considering that forn → ∞ one recovers the third
of Eq. (7) from Eq. (13), the second of Eq. (7) from
Eq. (14), and the first of Eq. (7) from Eq. (16). There-
fore, asymptotically one findsl′1 → l1, l′2 → l2, and
l′3 → l3.

– In a rather different context (trying to compensate for
rainfall outliers in short time series)Hershfield(1961,
1965) developed a partially similar procedure to account
for the effect of maximum value elimination on param-
eter estimation. However, his results are limited to the
first two moments (the mean and the variance) and they
are not valid for any distribution as the ones we present
(because they were obtained from real rainfall data).
Moreover, these results were provided only in a graphi-
cal form, even ifKoutsoyiannis(2000, p. 22) (in greek)
provides them in closed analytical form.

– Sometimes systematic records of data can be integrated
with additional data, derived from measurements of sig-
nificant occasional events (e.g.,Frances, 1998). When a
number of occasional additional measurements is avail-
able, one can merge them with the systematic ones (e.g.,
Bayliss and Reed, 2001), producing a new time series of
“equivalent” lengthm, wherem is the number of years
between the first and the last measurement of both the
systematic and the occasional record, merged together.
The MV test can be easily applied also to these merged
samples of systematic and non-systematic data, by sim-
ply substitutingm for n in Eq. (8), and by usingWang
(1990) estimators of sample L-moments instead of the
standard estimators in Eq. (4). The possibility to be ap-
plied when non-systematic data are present is a unique
feature of the MV test, not shared by other commonly
used testing techniques.
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3 Assessment of the power of the test through synthetic
data

In the previous section we have outlined the structure of the
modified maximum-value test, showing how the testing pro-
cedure should be applied, i.e. by introducing Eqs. (13, 14
and 16) into Eq. (8), given a candidate operational model
FX(x) and a significance level of the testα. In this sec-
tion we compare the power of the MMV test to the perfor-
mances of other goodness-of-fit tests and outlier detection
procedures. To this aim the parent distribution,GX(x), from
which synthetic samples of independent observations will be
generated, is supposed to be known. The null hypothesis to
be tested isH0 : GX(x)=FX(x) with the Gumbel distribution
as hypothetical distribution, i.e.FX(x)= EV1 (see notation
in Table1). The power of the tests (i.e. the ability of the
test to recognize thatH0 is false) is analyzed under differ-
ent parametrization ofGX(x). Particular attention is payed
to the behavior of the tests when dealing with small sam-
ples. The casesGX(x)=GEV and ofGX(x)=TCEV (Rossi
et al., 1984) are treated in Sects.3.1 and3.2, respectively.
The GEV and TCEV distributions are used here as possible
parents due to their widespread use in the frequency analysis
of the hydrological extremes (see e.g. papers citingHosking
et al., 1985andRossi et al., 1984). The benchmark tests, in
both cases, are the classical Pearson test and the Anderson-
Darling test (referred to, respectively, as CHI and AD test in
the following of the paper), plus a specific test for outliers
detection (Fung and Paul, 1985), called Fung-Paul (FP) test
in the following of the paper.

The classical Pearson test falls in the category of the chi-
squared type tests. The testing procedure requires that the
range ofx is partitioned in classes; a convenient procedure to
avoid arbitrariness and maximize the power of the test entails
the choice ofk equiprobable classes under the hypothesized
distribution, withk=2n0.4 (Moore, 1986). The test statis-
tic for the case 0 (i.e., when the parameters ofFX(x) are
fully specified a priori) is the chi-squared distribution with
k−1 degrees of freedom. Conversely, when the distribution
FX(x) is not completely known there is a partial recovery of
degrees of freedom of the chi-squared distribution with re-
spect to the commonly recommended value ofk−1, with the
consequence that the asymptotic distribution will lie some-
where between a chi-square distribution with withk−p−1
andk−1 degrees of freedom (e.g.,Kendall and Stuart, 1979).

The Anderson-Darling test is based on the comparison be-
tween the hypothetical,FX(x), and empirical distribution
function, Fn(x), i.e. a cumulative probability distribution
function that concentrates a probability 1/n at each of the
n values in the sample. The discrepancy between the two
distributions can be measured with quadratic statistics of the
form

∫
x
[Fn(x)−FX(x)]29(x)dx, where9(x) is a weight-

ing function. When9(x)=[FX(x)(1−FX(x))]−1 one ob-
tains the Anderson-Darling statistic, calledA2, which has the
property of assigning more weight to the tails of the distri-

bution than to the central part. Critical values and percent-
age points for the AD test for EV1, NORM, GAM and GEV
distributions can be calculated following the procedure de-
scribed byLaio (2004).

The outlier detection procedure proposed byFung and
Paul (1985) is intended for testing the discordancy of one
or more outliers in a Gumbel sample. The test statistic is ex-
pressed asT =(x(n)−x(n−k))/(x(n)−x(1)), wherek=1,2,3 is
the number of outliers. The tabulated significance levels can
be found also inBarnett and Lewis(1994), abridged from
Fung and Paul(1985). The test is recommended for sample
sizes in the rangen = [5÷20].

3.1 Gumbel vs. GEV

The power of the MMV test to recognize as non-Gumbel a
GEV-distributed sample is evaluated hereinafter. In rigorous
terms this corresponds to assuming as parent a GEV distribu-
tion, while the distribution to be tested is an EV1. In detail,
10 000 samples formed byn elements (withn=[20÷ 50])
are generated from a GEV distribution with fixed parame-
tersθ1=1, θ2=1, and variableθ3 values. Note that positive
θ3 values correspond to positive skewness of the distribution;
when θ3=0 the GEV reduces to an EV1 distribution. For
each sample, the parameters of an EV1 distribution are es-
timated according to Eqs. (17 and15), which introduced in
Eq. (10) give x̃(n). The MV test statistic, as expressed in
Eq. (8), can then be resolved by resorting to the substitution
x̃(n) → x(n).

The results are reported in Fig.1, by comparison with the
FP, CHI and AD test performances, at the 10% significance
level. Also the case of the SMV test (i.e., applied with the
classical L-moments estimators, as in Eq.7) is shown. Ob-
serve that the power of the different tests converges to the
significance level for null values of the shape parameter, i.e.
when the parent distribution collapses on a Gumbel. The left
and right-hand side graphs are referred to the case ofn=20
and n=50, respectively. One can observe that, for rather
small samples (e.g.,n=20), which is a very common situ-
ation in hydrological applications, the MMV test performs
better than the SMV test (which even fails to converge to the
significance level whenθ3=0). Also, the CHI test results to
be by far less effective. By comparison to the FP test, the
MMV test turns out to be slightly more powerful. As for
the AD test, the performances are comparable with a slight
prevalence of the MMV test when the parent distribution is
similar to the distribution considered in the null hypothesis
(i.e., whenθ3→0). The behavior is again similar, but more
favorable to the AD test, for larger samples (as shown in the
right panel of Fig.1). The intersection between the MMV
and AD curves, in fact, is shifted to the right, with smaller
differences between the test performances. This is due to the
lesser influence of the maximum value in presence of larger
samples, and is indicative of the MMV test being more suited
for application to small samples. Note that the comparison

Hydrol. Earth Syst. Sci., 14, 1909–1917, 2010 www.hydrol-earth-syst-sci.net/14/1909/2010/



F. Laio et al.: Exploiting the information content of hydrological outliers 1915

0 0.1 0.2 0.3 0.4

10

20

30

40

50

60

GEV shape parameter ( �
3
)

p
o

w
e

r
[%

]

0 0.1 0.2 0.3 0.4

10

20

30

40

50

60

70

80

90
MMV

SMV

AD

CHI

FP

GEV shape parameter ( �
3
)

p
o

w
e

r
[%

]

A B

Fig. 1. Power of the tests considered in this paper (MMV = modified maximum value; SMV = standard maximum value; AD = Anderson-
Darling; CHI = chi-squared; FP = Fung-Paul) as a function of the shape parameterθ3 of the parent GEV distribution. The hypothetical
distribution is Gumbel, the sample size isn=20 in panel(A) andn=50 in panel(B).

with the FP test is not present on the right-hand panel be-
causeFung and Paul(1985) did not give the critical values
for n>20.

A possible explanation for the larger power of the MMV
test whenθ3 is close to zero is provided in Fig.2. The de-
sign eventxT is plotted as a function of return periodT (i.e.,
Eq. (5) is used withu=1−1/T ) for a GEV and a Gumbel
distribution sharing the first two L-moments. Whenθ3=0.15
(Fig.2a) the two distributions are substantially overlapped up
to a 20-year return period, and diverge only in the upper tail.
In contrast, whenθ3=0.45 the two distributions are rather
different also for low return periods (Fig.2b). It is clear that
the AD test, which is based on the comparison of the distri-
butions in the whole probability range, will be favored in the
latter situation, while the MMV test will perform better in
situations like the one depicted in Fig.2a, where the differ-
ences concentrate in the upper tail of the distributions. We
note in passing that the ability of the MMV test to falsify
the null hypothesis in these cases may be very important in
practical applications: for example, in the case of Fig.2a, the
wrong assumption of a Gumbel distribution would lead to a
30% underestimation of the 100-year design value.

3.2 Gumbel vs. TCEV

The MMV test and AD test are compared also for the case
when the parent distribution is a TCEV distribution (Rossi
et al., 1984; Fiorentino et al., 1985) that is usually expressed
in the form

GX(x) = exp

[
−exp

[
−

x −θ1

θ2

]
−θ3 ·exp

[
−

1

θ4

x −θ1

θ2

]]
, (18)

whereθ1 is the position parameter,θ2 is the scale param-
eter, θ3 and θ4 are two shape parameters. Whenθ3=0 the

A

B

0

2

4

6

8

10

12

0

2

4

6

8

10

12

5 10 50 100 500

x
T

x
T

T [years]

5 10 50 100 500

Fig. 2. Comparison of a GEV(dashed line) and a Gumbel (solid
line) distribution function sharing the first twoL-moments. The
design eventxT is plotted as a function of return periodT (in loga-
rithmic scale). The parameter values for the GEV areθ1=0, θ2=1,
θ3=0.15 in panel(A) andθ1=0, θ2=1, θ3=0.45 in panel(B). The
parameters of the Gumbel distribution are found by matching the
first two distributionL-moments to those of the GEV distribution.

TCEV distribution reduces to a Gumbel distribution. A sig-
nificance levelα of 10% is again assumed for the tests. The
CHI, FP and SMV tests are not considered in this example to
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Fig. 3. Power of the modified maximum-value (MMV) and Anderson-Darling (AD) tests for a TCEV parent distribution. In panel(A)
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facilitate the comparison between the two tests (i.e., MMV
and AD) that performed better with a GEV parent distribu-
tion. The results are shown in Fig.3, where the parameters
of the “basic component” of a TCEV (to use the notation by
Rossi et al., 1984andFiorentino et al., 1985) are kept con-
stant (θ1=ln(10), θ2=1) while the parameters of the “outly-
ing component” are allowed to vary. The three panels refer
to different values of the parameterθ4, while the values of
θ3 vary continuously on the x-axis. Only the case ofn=20
is examined. In this case the MMV test is found to be more
powerful than the AD test for highθ4 values and lowθ3 val-
ues; while the performances of both tests are poor for small
θ4 values (panel C). Conversely, the AD test is more pow-
erful for high θ3 values; in fact, the intersection of the two
curves occurs forθ3'0.2 (panel A).

A similar behavior is therefore found with the two differ-
ent parent distributions (GEV and TCEV): the MV test per-
forms better than the AD test when the parent and hypothet-
ical distributions are rather similar. A possible explanation
of this behavior is the following: when the discrepancies be-
tween the parent and hypothetical distribution are large, they
significantly affect also the central part of the distribution,
therefore increasing the discerning ability of standard testing
techniques, as the AD test. In contrast, when the parent and
hypothetical distribution are rather similar, one may spot the
difference only by looking at the tails of the distribution, i.e.,
for example, at the maximum observed value.

4 Conclusions

Outliers in hydrological samples are often seen by the model-
ers as disturbing elements, because their very presence chal-
lenges well-established and convenient practices, by con-
tributing to raise doubts on the correctness of the hypothe-
sized probability distribution model (for example, the adop-
tion of the Gumbel distribution to represent flood or rainfall

annual maxima). In this paper we follow the principle that,
at least in some cases, it is exactly in the “outlying” data that
resides very important information for the validation of the
statistical model to be used in the frequency analysis of ex-
treme events. More in detail, we have described a procedure
to perform a goodness-of-fit test based solely on the maxi-
mum recorded value in the sample. We have shown that the
maximum value test, if correctly applied, represents a sim-
ple, analytically explicit, alternative to other commonly used
goodness-of-fit tests: this test performs consistently better
than the Chi-squared test, and it proves to be more power-
ful than the Anderson-Darling test to recognize the lack of
fit when the parent distribution is similar to the distribution
being tested. Since the test is based only on the maximum
recorded value, it is particularly suited when small samples
(e.g., n≤20÷25) are available. In the cases when the test
hypothesis is falsified and no other data (systematic or non-
systematic) can be added to the sample, our recommendation
is to resort to alternative solutions as, for instance, regional
analysis. Possible future developments of this work are in
the direction of further investigations of the problem of the
residual dependence of the censored L-moments estimators
on x(n) and application of the test to the case when non sys-
tematic data are included in the sample.
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