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Abstract

Common procedures for flood frequency modeling are based on anal-

ysis of series of annual maxima (AMS) of the instantaneous discharge. A

practical alternative to AMS series is usually considered when the record

length is short. In this case, analysis of Partial Duration Series (PDS) on

continuous streamflow records allows one to increase the available infor-

mation by using more than one flood peak per year. In this paper, the

analysis of continuous streamflow data is reconsidered from the begin-

ning: a Filtered Peaks Over Threshold (FPOT) procedure is proposed as

an alternative to the PDS approach, and objective criteria are devised for

choosing a reasonable threshold and for determining the average annual

number of events λ. The revised procedure demonstrates that there is no

need for specific limitations on the magnitude of λ to preserve the basic

hypotheses of the marked point process build in the PDS procedure. The

proposed FPOT method is applied to 33 time series of daily runoff from

rivers of North-Western Italy. Significant advantages over the classical

PDS method are demonstrated, both in terms of physical interpretability

of the parameters and efficiency of the estimates.

Keywords: Floods, PDS Analysis, FPOT Analysis, Extreme Events,

Daily runoff.
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1 Introduction

Management and planning of areas subjected to flood risk heavily relies on

tools for flood frequency analysis (FFA), which give the statistical foundations

to the planning options. The classical procedure for building at-site or regional

flood frequency curves is based on the analysis of annual maxima series (AMS).

These series contain the critical information of peak flow amount but their use

is limited by two main factors: (i) the length of AMS series can be very short

and (ii) AMS series do not have the time continuity that can allow one to infer

the state of the basin preceding a given peak. The first limiting factor produces

uncertainties in the interpretation of results of purely statistical procedures,

while the other point implies that statistical models with phenomenological

basis must rely on ancillary data for validation of the underlying hypotheses on

the antecedent soil state.

Geomorphoclimatic models for derivation of flood frequency curves, mostly

built along the path traced by Eagleson [1972], can represent a reasonable com-

promise between the empirical statistical models for FFA [see e.g. Bobée et

al., 1993; GREHYS, 1996] and the rising breed of models based on continuous

streamflow simulation [e.g. Hashemi et al., 2000; Cameron et al., 2000]. In the

physically-consistent derivation of flood frequency curves, the statistical prop-

erties of flood peaks are often expressed in terms of frequency of occurrence and

intensity of the events. These features are related to the characteristics of the

forcing process of precipitation.

As regards the occurrence, Poisson-distributed processes have been widely
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used, mainly because of their connections with popular distribution functions of

extreme values, that allow one to introduce physically-controllable mechanisms

in the variability and shape of the frequency curves [e.g. Rossi et al., 1984]. A

recent expression of this tendency is the geomorphoclimatic derivation of the

flood frequency curve proposed by Iacobellis and Fiorentino [2000], in which a

key controlling factor for the flood formation mechanism is the ratio between

the average annual number of rainfall and flood events, λp and λ respectively.

Both parameters assume a great relevance in FFA, and it becomes important

to propose methods for their evaluation, possibly based on continuous data in

addition to annual maxima.

In this regard, close examination and, sometimes, validation of models for

the occurrence processes are found in the Partial Duration Series (PDS) ap-

proach to FFA, where continuous-time data are analyzed to statistically derive

flood frequency distributions [see e.g. Lang et al., 1999]. More often than not,

the information available is represented by average daily flows, and this partly

explains why PDS analysis is not perceived as a real alternative to the analysis

of AMS. However, the temporal resolution of available time series is rapidly

increasing, thanks to the widespread installation of automatic gauging stations.

In any case, even at the daily time scale, the PDS procedure is very useful for

obtaining good estimates of λ.

In actual applications of the PDS method [e.g., Lang et al., 1999; Robson

and Reed, 1999] values of λ are usually kept in the range between 2 and 3 (see

Section 5), that contrast to physical and statistical considerations. In fact, in
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temperate climates the actual number of discharge peaks per year is usually

much higher than 2-3. This can be qualitatively verified by visualizing the daily

discharge time series and counting the number per year of major peaks. Other

proofs are found in the application of the mentioned geomorphoclimatic models,

where λ values lower than 5 are shown to be quite unreasonable in terms of

rainfall-runoff transformation [Iacobellis and Fiorentino, 2000; De Michele and

Salvadori, 2002]. A last indirect confirmation is given by the results of analyses

of series of annual maxima with flood frequency distributions that explicitly

include λ as a parameter: a typical example is the TCEV distribution [Rossi

et al., 1984], extensively used in regional analysis of floods in Italy. Rossi and

Villani [1994, p. 208] show that estimates of λ in homogeneous hydrometric

regions in Italy fall in the range 3-15.

Large λ values are also advantageous under a statistical viewpoint: it is

recognized [e.g. Madsen et al., 1997] that λ = 1.5 − 2 is usually sufficient to

have an advantage towards the AMS estimates in terms of variance of flood

quantiles. A further increase of λ augments the data in the sample, and further

improves the efficiency of the design flood estimates (see Section 5). Incidentally,

results from a different field (analysis of wind velocity data) show that optimal

estimates are obtained with a number of exceedances of the order of ten per

year [Naess and Clausen, 2001].

Due to this apparent discrepancy between estimated and expected λ values,

we believe it is worthwhile to re-evaluate the basis over which the traditional

PDS analysis has evolved. This is done in the following section, where an
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evolution of the PDS method, named Filtered Peaks Over Threshold (FPOT)

is introduced. In Section 3, the building of the Poisson-Pareto model for the

peaks over threshold is discussed, and in Section 4 the efficiency of estimation

of flood quantile is evaluated. The application to an extensive dataset of daily

runoff series in Piemonte (Italy) (Section 5) closes the paper.

2 Using Continuous Streamflow Data for FFA

The use of streamflow time series in flood frequency analysis usually follows a

three-step approach. In the first step, a procedure is adopted to select, from

the continuous time series, those values that can reasonably be considered as

peak events. Two selection methods are considered here: the classical PDS

approach and a newly proposed procedure. Whatever method is chosen, the

continuous stochastic process of daily runoff is transformed into a marked point

process defined by the two random variables n (number of peaks per year) and

q (magnitude of the peak event).

The second step of the flood analysis is the identification of an appropriate

model for the marked point process: usual assumptions are that subsequent

peaks are independent, that the number of occurrences n per year is Poisson-

distributed, and that the probability density function (pdf) of the flood peaks,

fQ(q), is exponential or Pareto. All of these assumptions will be discussed in

detail in Section 3.

The building of an appropriate model for the peak events allows one to derive
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a design flood (T -year event estimate, where T is the return period in years)

that can be expressed as

qT = F−1
Q

(
1− 1

λT

)
, (1)

where F−1
Q (·) stands for the inverse of the cumulative density function (cdf) of

the flood peaks, and λ is the expected value of n, i.e the mean number of events

per year.

The third and last step is model estimation, i.e. the inference of appropriate

values for λ and the parameters of FQ(q) based on the available data. An

estimate of qT is so obtained, and the accuracy of the estimation method can

be studied.

The mentioned three steps are strictly interconnected: the peak selection

procedure should be tuned in order to have the basic model hypotheses met;

this affects the dimension of the sample from which the parameters are estimated

and, in turn, the accuracy of the estimates. It is therefore crucial for the whole

statistical analysis to have an efficient and objective peak selection method.

2.1 Peak Selection within the PDS Procedure

In the procedure known as PDS or Peaks Over Threshold (POT) [e.g., Todorovic,

1978; Davison and Smith, 1990; Madsen et al., 1997; Lang et al., 1999; Robson

and Reed, 1999] the usual approach to peaks selection consists in retaining only

those peaks that exceed a certain threshold value qb. An individual peak is
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considered as the portion of the continuous hydrograph that exceeds qb (see

Figure 1a, thresholds qb1 and qb2), and its magnitude corresponds to the highest

discharge in this period. Peaks selection is therefore strictly connected with

threshold specification.

A number of methods for selecting meaningful thresholds have been proposed

in the literature, either based on physical criteria or on statistical considerations.

The idea behind the physical (hydraulic) criteria is that only the hazardous flows

are interesting [e.g., Ashkar and Rousselle, 1983], and the latter are easily iden-

tified by considering a suitably high flood for a specific river section. However,

the application of this criterion usually reduces the number of considered floods

to a value that is too small for a meaningful statistical analysis. In order to

include more peak flows in the analysis, it is therefore necessary to lower the

threshold level. All of the other statistical methods attempt to do this, but, so

far, it does not seem that objective methods to define qb have emerged in the

vast literature in the field (see for example the discussion in Lang et al. [1999]).

The main difficulties in the choice of the threshold derive from the fact that

this choice affects the basic model hypotheses, in particular regarding the re-

quirement that subsequent peaks are independent. This produces high threshold

values, that reduce the beneficial effects (in terms of variance of estimates) of

having several peaks per year. Another limitation of the PDS procedure is that,

when the thresholds is low, separate peaks can fall in the same upcrossing por-

tion, so that they are erroneously considered as a unique event (see Figure 1a,

threshold qb1). This effect can be particularly troublesome when time series
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with a strong seasonal component are considered, in which case the whole wet

season could turn out to be a unique peak event.

2.2 Peak Selection within the FPOT Procedure

To overcome the problems described in the previous Section, the peak selec-

tion procedure is revised here. The starting point is again the continuous time

series of discharge, sampled at the daily time scale. We propose the following

procedure to identify the flood peaks:

(i) The events are identified in correspondence to all the local maxima of

the time series (open circles in Figure 1a), and the magnitude of each event is

assigned as the absolute ordinate of the maximum. The so-called actual peaks

(AP) time series is then obtained (black bars in Figure 1b). It is evident how this

procedure tends to identify a great number of peaks: some of them are relevant

to the flood frequency analysis while some others (for example those around

t = 50 days in Figure 1) are false peaks, deriving from the noisy component of

the signal. It is thus necessary to filter the AP in order to reduce this noisy

component.

(ii) A second sequence of peaks is then obtained [see Claps et al., 2002] by

subtracting from the magnitude of the AP events the discharge measured at the

first relative minimum preceding the event itself (open squares in Figure 1a). In

this manner we obtain a sequence of filtered peaks (FP) (white bars in Figure

1b), representing the discharge increment relative to a base level preceding the

event. As such, FP events do not strictly represent the real discharge; rather,
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they could approximate the effective rainfall component, i.e. the fraction of

rainfall that becomes runoff.

(iii) The last step consists in applying a threshold filter to the FP sequence

to retain only the large peaks. The problem of choosing a correct threshold for

the analysis, that is crucial for the classical PDS approach, is still present in the

FPOT procedure; however, in this case one takes advantage by the fact that the

noisy component becomes better recognizable when FP events are considered.

In fact, the magnitude of false FP events is always very small, while the same

is not true for the AP events (compare Figure 1a and 1b). This allows one

to get rid of the noisy component using the standard POT high pass filter.

The threshold filter applied to the FP sequence produces an occurrence sample,

i.e. a sequence of dates when peaks occur; the magnitude of each peak is then

assigned as that of the corresponding AP event. The FP sequence is therefore

used only for identifying the false peaks and removing the noisy component,

while all the remaining frequency analysis is carried out on the absolute flood

magnitudes (AP data).

To complete the procedure, a suitable threshold must be determined: in

Section 5 it will be discussed how the removal of the noisy component produces

independent Poisson-Pareto samples, and how this can be used as a condition for

choosing the appropriate threshold. After that, the identification and estimation

of the model can be carried out on the resulting marked point process.
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3 Building the Marked Point Process Model

The definition of the model basic assumptions discussed in Section 2 is crucial

for the whole statistical analysis. It is important to analyze in detail if all of

them are essential to the model formulation, and how it is possible to select the

peak events such that the necessary hypotheses are met.

3.1 Independence between Subsequent Peaks

What is usually considered an essential requirement for any flood frequency

analysis is that the selected peak events are mutually independent. It should be

noticed, however, that the above hypothesis is not essential in the derivation of

Equation (1), that is valid also when subsequent peaks are correlated [Rosbjerg,

1985]. However, in the latter case model complexity strongly increases: this

explains why the mutual independence of peaks is so often invoked in FFA,

even at the expense of artificially reducing the number of considered peaks or

compromising some of the other model hypotheses.

For example, one of the commonly used methods aimed at selecting indepen-

dent peaks consists in fixing the average number of peaks per year, λ, to a value

below 2-3 [see Todorovic, 1978]. This method has been criticized for its lack

of flexibility, but also the proposed alternatives [Rosbjerg et al., 1992; Madsen

et al, 1997] tend to limit λ to values as low as 2-3 (see Section 5 below). The

reduction in the degree of dependence between subsequent peaks is also often

achieved by imposing the further requirement that a peak is separated from

the previous one by a given number of days (usually 5 days plus the natural
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logarithm of the basin area in square miles). Moreover, consecutive peak floods

are defined as independent only if the inter-event discharge drops below 75% of

the lowest of the two peaks (guidelines from the US Water Resources Council

[1976]). The use of these restrictions, however, distorts the occurrence distri-

bution and constitute a violation of the basic hypothesis of Poisson distributed

events [Askhar and Roussselle, 1983].

A question arises here: are these limitations really necessary in order to have

independent peaks? From the case study we have analyzed the answer seems

to be negative, since very often it is possible to extract samples of peak values

with larger values of λ and reasonably independent peaks.

A more effective approach to the independency issue is needed: a good

alternative could be to start from a very low threshold and move the threshold

upwards (so reducing λ and increasing the average distance between subsequent

peaks) until some independence test is met. A possible variable to be used for a

test of independence is the autocorrelation coefficient of subsequent peak values

(Miquel [1984], cited by Lang et al. [1999]), but in this case the test would

be effective only for normal or near-normal variates, which is usually not the

case for daily or hourly discharges. In contrast, the independence test based on

the so called Kendall’s τ does not require hypotheses on the parent population.

This test is described in Appendix A and applied within the FPOT approach

in Section 5.
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3.2 Distribution of the Peak Occurrences

A second model hypothesis that is often invoked in the PDS approach (based on

asymptotic properties of the exceedances process), concerns the distribution of

n, the number of peaks per year, that is usually assumed to be Poisson, namely

fN (n) =
e−λλn

n!
. (2)

Again, it is worth noting that the actual distribution of the occurrences

does not affect the validity of Equation (1), since it only involves the mean

value of that distribution, λ [Lang et al., 1999]. On the other hand, hypotheses

of independent and Poisson distributed peaks are essential to relate the cdf of

the flood peaks, FQ(q), to that of the annual maxima, GQ(q), by means of

GQ(q) = e−λ(1−FQ(q)). (3)

When the Poisson assumption needs to be respected, an efficient test is

the one proposed by Cunnane [1979]: appropriate acceptance limits for the

dispersion index Id (the ratio of the variance to the mean) of Poisson distributed

data are easily established [see Lang et al., 1999], and it is then sufficient to verify

if the sampling dispersion index lies in the acceptance range (see Section 5).

Apart from the definition of Equation (3), however, the Poisson hypothesis

does not seem to be essential when FFA is approached through the PDS method:

in fact, the binomial and negative binomial distributions are valid alternatives

to the Poisson distribution when one parameter is not sufficient to describe the
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whole complexity of the n distribution [see Lang et al. 1999]. In those cases,

relations analogous to Equation (3) can be derived, with the variance of the

T -year estimate that increases only slightly despite the added parameter [Önöz

and Bayazit, 2001].

3.3 Distribution of Peak Magnitudes

The last model hypothesis regards the distribution of the magnitude of the

selected peaks. A common choice is the Generalized Pareto Distribution (GPD),

whose cdf is

FQ(q) = 1−
(

1− k
q − q0

α

) 1
k

, (4)

where q0, α and k are the location, scale, and shape parameters, respectively.

The GPD is a versatile distribution [Choulakian and Stephens, 2001] which

reduces to the exponential distribution when k = 0. It can also be interpreted

as the limiting distribution of independent excesses over threshold [Davison and

Smith, 1990; Cox et al., 2002]. Note that q0 could eventually be estimated as

a third parameter of the GPD [Tanaka and Takara, 2001], but this is not the

common choice. In fact, in order to avoid overparametrization it is usual to set q0

as the minimum value of the sample of selected peaks, or directly as the threshold

level qb. This latter option cannot be used in the FPOT approach because

the threshold is applied to filtered peaks. An additional important property

of the GPD is that the corresponding annual maxima distribution, obtained
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by substituting Equation (4) into Equation (3), is a generalized extreme value

(GEV) distribution.

When Equation (4) is set into Equation (1) the T -year flood estimate is

obtained as

qT = q0 +
α

k

[
1−

(
1

λT

)k
]

. (5)

Several methods have been proposed to verify the adequacy of the GPD hy-

pothesis or to directly select a threshold qb which produces a good fit to the

GPD. For example, Davison and Smith [1990] and Lang et al. [1999] propose

a test for the relation between qb and the mean excess above threshold, that

should approach a straight line when the GPD hypothesis is respected. Other

authors [e.g. Tanaka and Takara, 2001] prefer to directly test the stability of the

quantile estimates, i.e. to select a threshold where little difference in the results

would ensue if one would have chosen a slightly higher or lower threshold value.

However, in the absence of a clear test for stability, these procedures leave very

much to the subjectivity of the user (see the application by Lang et al. [1999]).

A further approach has been suggested by Dupuis [2000], who proposes to

apply an optimal bias robust estimation procedure: a weight between 0 and

1 is assigned to each data point (with a high weight meaning that the GPD

model is fitting well) and the threshold is modified until all data points have

weights close to 1. The approach is interesting, since it transfers at the level

of the weights the problem of finding an appropriate threshold, with the result
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that a more objective choice is made possible (in a sense, a similar advantage is

given by the FPOT towards a PDS procedure). However, it is necessary to run

specific simulations in order to understand when the downweighting indicates a

serious lack of fit, and the overall procedure can become very cumbersome and

of difficult applicability.

A more efficient alternative is to test the goodness of fit of the GPD: the prob-

lem is to find appropriate tests for the situation when the parameters of the dis-

tribution are unknown and their estimate is based on the sample of exceedances.

In this case the classical goodness-of-fit tests are not distribution-free. Only re-

cently, a specific test for the GPD has been established by Choulakian and

Stephens [2001], based on Cramer-von Mises and Anderson-Darling statistics

(see Appendix B). Preliminary analyses showed that the Cramer-von Mises

test demonstrates a greater stability and power over the Anderson-Darling test,

probably because in the latter possible discrepancies in the left tail of the dis-

tribution are provided with excessive weight.

4 Efficiency of the Estimation of the T -year Flood

The threshold and peaks selection procedure produces a sample of N peaks in

t years, possibly following a Poisson-Pareto model (Section 3). Based on the

information contained in this sample, the estimation of the T -year flood, q̂T ,

from Equation (5) can be performed. The usual procedure is to obtain from the

sample the estimates λ̂, α̂ and k̂ of model parameters, and then to insert these
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values into Equation (5) for finding q̂T . Obviously, the nature of q̂T is related

to the type of original data: daily average discharge data allow one to estimate

only the daily peak q̂T .

Note that the estimate of λ as λ̂ = N/t is univocal and independent of the

estimate of α and k, for which the choice of an estimation method must face

several options. Commonly used methods for the estimate are Maximum Like-

lihood, Method of Moments and Probability Weighted Moments [e.g. Madsen

et al., 1997], while valid alternatives are represented by the cited optimal bias

robust estimation [Dupuis, 2000], the De Haan method [e.g. Naess and Clausen

2001] or the Generalized Maximum Likelihood method [Martins and Stedinger,

2001].

The comparison of different estimation methods is a very delicate problem

that goes beyond the scope of the paper: see Madsen et al. [1997] or Martins

and Stedinger [2001] for examples of such comparisons. Preliminary analyses

on the dataset used in our application, however, have shown that the choice

of the estimation method seems to be of secondary importance with respect to

the choice of the peak selection procedure or of the correct truncation level.

We therefore decided to concentrate on the latter problems, and to use Maxi-

mum Likelihood estimators for α and k, obtained with the method reported in

Davison and Smith [1990].

Once an estimate q̂T is obtained, a crucial point, also for meaningful compar-

ison with AMS methods, is the measure of the accuracy of the estimate. This

is often given as the variance of the T -year estimate, var(q̂T ). The variance of
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the estimation of q̂T can be obtained in different ways:

(i) asymptotic formulas, that usually give poor approximations of the actual

variance [e.g. Madsen et al., 1997], due to the markedly non-gaussian form

of the probability distribution of q̂T . An interesting common feature of such

formulas is the fact that var(q̂T ) tends to scale with 1/N for all the estimation

methods. This fact gives a clear clue of the importance of increasing the size of

the available sample.

(ii) Monte Carlo simulations [e.g. Madsen et al., 1997; Martins and Ste-

dinger, 2001], that are very effective for comparing estimation methods from

simulated data, but have a major drawback in the fact that they require sam-

pling from a known distribution while the actual distribution is unknown (at

least regarding the parameter values). Taking the sample parameters as the

true values, or even carrying out a nonparametric bootstrap (with the empirical

frequency distribution as a reference), does not remove the strong assumption

that the finite reference sample is equivalent to the whole population [Fortin et

al., 1997].

(iii) Bayesian inference [e.g., Wood and Rodriguez-Iturbe, 1975; Kuczera,

1999], in which case the estimation itself is bypassed and the probability dis-

tribution of qT , intended as a random variable, can be formally written and

explicitly computed (see Appendix C). Applications of Bayesian inference in

the framework of partial duration series can be found in Rasmussen and Ros-

bjerg [1991] and Madsen and Rosbjerg [1997]. This method does not present

the problems reported above, since it does not require hypotheses of gaussianity
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or uniformity between sample and parent distribution. Moreover, the result of

Bayesian inference is much more informative with respect to other methods,

since it gives the whole pdf of qT , and not only an estimated value and its

variance. The only drawback of the method is a practical one, concerning some

numerical difficulties to overcome, due to the necessity to carry out multidimen-

sional numerical integrations.

In order to compare the accuracy of the quantile estimates obtained with

the PDS and FPOT procedures, we decided to adopt the Bayesian method.

The 90% fiducial limits of qT (see Appendix C) are used as a measure of the

estimation accuracy in Section 5.

5 Application

33 time series of daily runoff are analyzed to compare the efficiency of PDS

and FPOT methods. Drainage basins are located in the North-West of Italy, in

the Piemonte region (about 30000 Km2). The morphology and climate of the

Alps influence the majority of basins in the considered group, but some basins

are located in a different (Apennine) environment. The basins analyzed cover

a variety of climatic and geologic features. As such, this database represents

a significant starting point with regard to the analysis of daily runoff time

series. We report in Table 1 some characteristic features of the drainage basins

and of their daily runoff time series. From Table 1 it can be observed that

the drainage areas A range within more than two orders of magnitude; the
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average elevations hm also cover a wide range of values and refer to basins

where floods are generated directly from rainfall and to basins where snow and

ice melting processes dominate. Record length, t, average daily runoff, µQ,

and the maximum measured instantaneous discharge, Qmax, also show a great

variability. The amplitude of the dataset allows us to compare significantly the

parameters obtained through the PDS and FPOT procedures. In the following

of the Section we summarize the main results of the application.

5.1 Comparison of Threshold Selection Procedures

The two alternative procedures, PDS and FPOT, are compared using the above-

mentioned dataset. The PDS procedure is applied in a classical manner, i.e. by

imposing a value to the threshold qb that, at least in theory, allows the basic

model hypotheses to be fulfilled. In particular, it was chosen to select qb by

imposing qb = µQ +3σQ [as suggested by Rosbjerg et al., 1992], where σQ is the

standard deviation of the daily runoff process. The latter method was chosen

because (i) it does not leave room for the subjectivity of the user, (ii) it does

not disregard the physical properties of the analyzed time series (methods that

fix λ a priori have this drawback), and (iii) it was extensively applied [Rosbjerg

et al., 1992; Madsen et al.; 1997].

As for the FPOT approach, an example of application of the procedure

is presented in Figure 2, where the threshold is called s (as in Figure 1b) to

point out that it does not represent an absolute discharge value. The example

demonstrates the effect of a variation in the threshold s on the mean annual
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number of occurrences, λ, and on the test statistics: Kendall’s τ (Appendix A),

dispersion index Id (Section 3.2), and the Cramer - Von Mises W 2 (Appendix

B).

The statistics τ and W 2 assume very high values for low thresholds and

have a rapid decrease as threshold rises. This behavior is common to all the

analyzed time series, and it is a clear symptom that, for very low s values, the

selected peaks are numerous, mutually correlated (large τ values), and with a

strong noisy component (large W 2 values). By increasing s, the decrease of

the number of selected peaks is quite steep (Figure 2d) and the null hypotheses

of independence and GPD of the peaks comes to be verified (the dashed lines,

representing the 95% acceptance limits, are downcrossed by the continuous lines

representing the test statistics). Note that, as mentioned in Section 2.2, the

events we are considering are actual discharge peaks (AP sequence). If FP events

were considered, the independence test would be passed at lower thresholds,

because the filter partially removes the correlation induced by the base-flow

component. However, the estimation of the T-year flood would become in this

case the sum of the T-year FP ordinate and the T-year base-flow, thus increasing

the overall complexity of the procedure.

The dispersion index of the occurrence process, Id, is scarcely correlated with

s. Moreover, in most cases the sample value lies inside the 95% acceptance limits

for all thresholds. The Poisson distribution is therefore a good approximation

of the occurrences distribution, also when λ is very high.

The FPOT peak selection procedure is completed by choosing a threshold s
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that allows the above three tests to be jointly met. Among all the thresholds

which fulfil the above three conditions, the lower one is chosen in order to have

the higher acceptable λ value. In case of Figure 2, a threshold s = 35 m3/s is

selected, corresponding to λ ∼= 6.5 events per year.

As a further test of the accuracy of the GPD hypothesis, we report in Figure

3 an overall measure of the discrepancy between the sampling and hypothetical

frequency curves. The Figure is constructed as follows: for each of the available

33 time series, the selected peaks are ranked, obtaining the order statistics q(j),

j = 1, .., N . A return period Tj is then assigned to each q(j),

Tj =
N

λ(N + 0.5− j)
(6)

where the Hazen plotting position is used to evaluate the empirical frequency

curve. Tj defines the abscissa of each point in Figure 3, while the correspond-

ing ordinate represents the relative error between empirical and theoretical fre-

quency curves, namely

Er,j =
ˆqTj − q(j)

q(j)
· 100, (7)

where ˆqTj is obtained from Equation (5). The procedure is repeated for the

33 time series to obtain the cloud of points in Figure 3. Note that positive

and negative errors are nearly equiprobable, showing that the GPD gives a

substantially unbiased fit, also for large return periods. A second important
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indication of Figure 3 is that, apart from some outliers, for all the points the

relative error lies in the range ∓60%, showing an overall good fit of the GPD to

the data.

5.2 Analysis of the Annual Average Number of Floods

We have applied the PDS procedure to the 33 series of our dataset, obtaining

estimates of λ that are reported in Figure 4 (dashed line). These values fluctu-

ate around ∼ 2 events per year, consistently with the results usually reported

in the literature. Note that the result does not change significantly when dif-

ferent peaks selection procedures are applied within a PDS approach (see for

example Davison and Smith [1990] or Lang et al. [1999]). Much higher values

are obtained for most of the series with the FPOT procedure (continuous line

in Figure 4). Despite the fact that lower λ values are usually obtained with

the PDS approach, in two out of 33 cases the Kendall’s τ independence test

is not passed by the PDS peaks and the Cramer-von Mises test for the GPD

hypothesis is not passed for 8 stations.

It is also interesting to discuss the role played by each of the imposed condi-

tion on the definition of λ within the FPOT procedure. We have thus reported

in Figure 4 (as a dotted line) the λ values one had obtained by considering only

the independence condition in the selection procedure: for half of the basins the

dotted and continuous line coincide, which means that the selection of peaks

is principally controlled by the independency requirement. In the other cases

it is instead the GPD requirement or, very rarely, the Poisson condition, that
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determines the λ value. An example of this second situation is given in Figure

2, where a threshold of 25 m3/s would be sufficient to meet the independency

condition, while s = 35 m3/s is necessary in order to respect the Cramer-von

Mises test.

5.3 Comparison of T -year Flood Estimates

The last point regards the efficiency of the T -year estimates obtained with the

PDS and FPOT methods. The case T = 100 years is taken as a reference in the

following and the probability distribution of q100, fQ100(q100) is found by means

of Bayesian inference (see Appendix C). An example is reported in Figure 5

for a test station. The pdf’s found for the different stations with the FPOT

procedure (continuous line) usually have a sharper maximum, and span over a

smaller range of q100 values with respect to the corresponding PDS estimates.

The two pdf’s are markedly skewed, due to the heavy right tail of the GPD: for

measuring the efficiency of the estimates the 90% fiducial limits are therefore to

be preferred to the variance of q100 .

We report in Figure 6 the upper and lower 90% fiducial limits, q±100 (see

Appendix C) for the 33 time series, normalized with respect to the maximum

likelihood estimate of the 100-year flood, q̂100, for facilitating the comparison.

In 30 out of 33 cases the FPOT procedure produces a narrower fiducial interval

with respect to the PDS procedure, with the distance q+
100 − q−100 reduced of a

factor up to 3. q+
100 undergoes great variations from station to station, ranging

from 1.5 · q̂100 to 8 · q̂100. This great variability is mainly due to the differences in
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the record length t (see Table 1) and to the skewness of the sampling distribu-

tion of the flood peaks. A further point of interest is that, even when the FPOT

procedure is chosen, the fiducial interval for T = 100 years is rather large for

some of the stations. This is a well known drawback of the GPD [e.g. Martins

and Stedinger, 2001], a distribution that accompanies a great versatility to a

rather low efficiency of the estimates. Other distributions, or the GPD distribu-

tion bounded by imposing a prior distribution to the parameters [Martins and

Stedinger, 2001], can be more efficient in terms of variance of estimates, but this

gain is usually paid with a worst fit and an increase of the bias.

6 Conclusions

In flood frequency modeling, the partial duration series procedure is a valid al-

ternative to the usual analysis of annual maximum series. The basic idea is to

increase the available information by using more than one flood peak per year.

However, in the practical applications ambiguous criteria for peak selection af-

fect the efficiency and the practicality of the method. An evolution of the PDS

method, named Filtered Peaks Over Threshold (FPOT) is proposed here, aimed

at a more efficient exploitation of the potential that the analysis of continuous

streamflow data have for the statistical modeling of floods. Firstly, an objective

procedure for peaks identification is introduced, that overcomes some problems

arising with the more usual upcrossing method. Secondly, the conditions gov-

erning the choice of the threshold are reconsidered, taking into account updated
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tests for independence and goodness-of-fit to the common Poisson-Pareto model.

This allows us to set objective criteria for threshold definition.

Results obtained analyzing 33 time series of average daily discharge are dis-

cussed with regard to the estimate of the mean annual number of flood events,

λ. In the classical PDS method this parameter tends to assume values around

2-3, that are not in agreement with physical and statistical considerations. Ad-

ditional comparisons are made between PDS and FPOT procedures in terms

of efficiency of estimation of flood quantiles. A method based on Bayesian in-

ference is used for obtaining fiducial intervals independently of the parameter

estimation procedure. Results obtained for our dataset demonstrate the sys-

tematically higher efficiency of the FPOT procedure.

Appendix A: Kendall’s τ Test of Independence

We summarize here some basic information regarding Kendall’s τ test of in-

dependence, referring to Kendall and Stuart [1967, pp. 473-83] for a detailed

treatment of the argument, and to Ferguson et al. [2000] for an application

to the detection of serial dependence. Consider a sequence q1, ..., qN of peak

values selected from the daily discharge time series, and their associated ranks

R1, ..., RN . Kendall’s τ test of independence applied to the detection of first

order serial dependence is based on the comparison among the pairs

(R1, R2), (R2, R3), ..., (RN−1, RN ). (8)
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In particular, Kendall’s statistics is defined as

τ = 1− 4Nd

(N − 1)(N − 2)
, (9)

where Nd is the number of discordances, i.e the number of pairs (Ri, Ri+1) and

(Rj , Rj+1) that satisfy either Ri < Rj and Ri+1 > Rj+1, or Ri > Rj and

Ri+1 < Rj+1 [Ferguson et al., 2000]. Nd can be defined as

Nd =
N−1∑

i=1

N−1∑

j=1

I[Ri < Rj ; Ri+1 > Rj+1], (10)

where I[·] represents the indicator function of the set {Ri < Rj ;Ri+1 > Rj+1},

i.e. a function that equals 1 when Ri < Rj and Ri+1 > Rj+1, and equals 0 in

the reverse case.

Under the null hypothesis of independent subsequent peaks and with N > 10,

τ approximates a normal random variable with mean

E(τ) = − 2
3(N − 1)

, (11)

and variance

var(τ) =
20N3 − 74N2 + 54N + 148

45(N − 1)2(N − 2)2
, (12)

[Ferguson et al., 2000]. When positive dependence is suspected, the one-sided
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95% test based on τ rejects the null hypothesis of independence when the sample

τ exceeds the critical level τ0.95, defined as

τ0.95 = E(τ) + 1.65
√

var(τ), (13)

where 1.65 is the value of the standardized normal variate with 95% non-

exceedance probability.

Appendix B: The Cramer-von Mises Test

A powerful test that a dataset is compatible with being a random sampling

from a given distribution is based on the so called Cramer-von Mises statistics

[D’Agostino and Stephens, 1986],

W 2 = N

∫ ∞

0

[S(q)− FQ(q)] fQ(q)dq, (14)

where S(q) is the empirical cdf of the variable q. W 2 is a measure of the mean

square displacement between the empirical and hypothetical cdf’s, and it is

usually calculated as [Choulakian and Stephens, 2001]

W 2 =
N∑

i=1

[
FQ(q(i))−

2i− 1
2N

]2

+
1

12N
, (15)

where q(i) is the i-th order statistics of the empirical sample. When the distribu-
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tion parameters are estimated from the sample the test is not distribution-free,

i.e. the acceptance limits of the test need being evaluated for each distribu-

tion. In particular, when FQ(q) is a GPD with the parameters estimated by the

Maximum Likelihood method, the appropriate acceptance limits of the test for

different significance levels are tabled in Choulakian and Stephens [2001].

Appendix C: Bayesian Inference for the Poisson-

Pareto model

Bayesian inference lays its foundations upon the idea that parameters should be

treated as random variables, whose probability density depends upon the chosen

model, possible prior information, and empirical data [Wood and Rodriguez-

Iturbe, 1975]. Leaving aside the possible availability of prior information, we

consider the case when the model is described by Poisson distributed occurrences

with associated Pareto distributed marks, and the available data are qi, i =

1, .., N , discharge peaks in t years.

The probability distribution of λ is obtained by first considering the joint

probability, f(n1, ..., nt), of having n1 occurrences in the first year, n2 in the

second, etc ... Under the hypothesis of independence in the occurrence process,

f(n1, ..., nt) is obtained from Equation (2) as

f(n1, ..., nt) =
t∏

i=1

e−λλni

ni!
= e−λtλN

t∏

i=1

1
ni!

. (16)
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f(n1, ..., nt) can also be interpreted as the probability distribution of λ given

that we measured ni occurrences in the i-th year, i = 1, .., t (a multiplication

constant is necessary to have a proper pdf). The resulting pdf of λ is therefore

fΛ(λ) = C1λ
Ne−λt (17)

where C1 is a constant of integration that makes the integral of fΛ(λ) over the

whole range of λ values equal to one. Equation (17) is a classical result in

Bayesian analysis [e.g. Wood and Rodriguez-Iturbe, 1975].

A completely analogous procedure can be followed to find the joint distribu-

tion of α and k from Equation (4),

fA,K(α, k) = C2
1

αN

N∏

i=1

(
1− I

[
k > 0; qi − q0 >

k

α

])(
1− k(qi − q0)

α

) 1−k
k

,

(18)

where C2 is a constant of integration with the same role of C1 in Equation (17),

and I[·] is the indicator function defined in Appendix A, which is needed for

properly taking into account the upper bound of the GPD for k > 0. The joint

probability of λ, α and k is simply fΛ,A,K(λ, α, k) = fΛ(λ)fA,K(α, k), since λ is

independent of the other parameters [e.g. Madsen et al., 1997].

Equation (5) provides a functional relationship between qT and the param-

eters λ, α and k. The pdf of qT , fQT (qT ) can thus be obtained as a derived

distribution of fΛ,A,K(λ, α, k)
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fQT
(qT ) = C1C2

∫ ∞

0

dα

∫ ∞

−∞
dk

N∏

i=1

(
1− I

[
k > 0, qi − q0 >

qT − q0

1− (
1

λT

)k

])


1−

(
1− (

1
λT

)k
)

(qi − q0)

qT − q0




1−k
k

e−λt

(
λ

qT − q0

)N
(

1− (
1

λT

)k

k

)N−1

(19)

The multidimensional integrals in Equation (19) are solved numerically in the

Mathematica(R) software using an adaptive Genz-Malik algorithm. The upper

and lower 90% fiducial limits for qT , namely q−T and q+
T , are finally found from

the implicit relations

FQT (q∓T ) =
1∓ 0.9

2
. (20)
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Captions

Table 1. Characteristic features of the 33 drainage basins considered in the

application. Drainage area A, average elevation hm, record length t, average

daily discharge µQ and maximum measured daily discharge Qmax are reported

for each station.

Figure 1. Example of the PDS and FPOT peak selection procedures: in

(a) the continuous discharge time series is reported, along with two possible

threshold values qb1 and qb2. The arrows indicate the selected peaks when the

threshold qb2 is used, while the open squares and circles correspond to the local

minima and maxima of the time series, respectively, to be used in the FPOT

analysis. In (b) the AP and FP series are reported as black and white bars,

respectively, and the arrows indicate the peaks selected with the threshold s.

Figure 2. Example of application of the FPOT procedure. In (a), (b), and

(c), the test statistics τ , Id, and W 2 are reported as functions of the threshold

s (continuous lines), along with the 95% acceptance limits of the tests (dashed

lines). In (d) the average number of events per year, λ, is plotted as a function

of s.

Figure 3. Relative errors Er (see Equation (7)) between empirical and GPD

frequency curves, plotted versus the return period T .

Figure 4. Average number of peaks per year for the 33 stations in the dataset.

Figure 5. Probability distributions of the 100-year flood estimate, q100, for

station n. 32 (river Borbera at Baracche); the value estimated with Maximum
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Likelihood, q̂100, and the fiducial intervals are also reported in the upper part

of the figure.

Figure 6. 90 % fiducial limits of q100 (the 100-year flood estimate) normalized

with respect to the Maximum Likelihood estimates, q̂100, for the 33 considered

stations (the horizontal dotted line with ordinate 1 can be used as a reference

for the q̂100 value).
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Name A [Km2] hm [m a.s.l] t [years] µQ [m3/s] Qmax [m3/s]

1 Ticino at Bellinzona 1515 1615 10 62.3 808

2 Toce at Candoglia 1532 1641 21 63 1400

3 Ticino at Sesto Calende (Miorina) 6599 1283 26 296.3 1960

4 Mastallone at Ponte Folle 149 1350 22 7.2 484

5 Sesia at Campertogno 170 2120 7 6 304

6 Sesia at Ponte Aranco 695 1480 9 28.2 1710

7 Rutor at Promise 50 2616 20 2.5 15

8 Dora Baltea at Aosta 1840 2270 10 48.4 280

9 Artanavaz at St. Oyen 69 2206 16 2.2 21

10 Ayasse at Champorcher 42 2392 22 1.7 27

11 Lys at Gressoney St. Jean 91 2615 7 3.4 31

12 Dora Baltea at Tavagnasco 3313 2080 21 96.4 1260

13 Orco at Pont Canavese 617 1930 29 19.2 530

14 Stura di Lanzo at Lanzo 582 1751 32 19.3 696

15 Dora Riparia at Oulx (Ulzio) 262 2169 10 5.0 80

16 Dora Riparia at S. Antonino di Susa 1048 1613 10 18.8 139

17 Chisone at Soucheres 94 2233 12 2.7 29

18 Chisone at Fenestrelle 155 2169 8 3.1 43

19 Chisone at S. Martino 580 1751 29 12.6 400

20 Po at Crissolo 37 2235 28 1.5 81

21 Grana at Monterosso 102 1540 32 2.6 114

22 Rio Bagni at Bagni Vinadio 63 2124 11 2.1 58

23 Stura di Demonte at Pianche 181 2070 14 4.6 95

24 Stura di Demonte at Gaiola 562 1817 11 16.4 141

25 Corsaglia at C. Molline 89 1530 18 2.8 69

26 Tanaro at Ponte Nava 148 1623 31 4.8 174

27 Tanaro at Nucetto 375 1227 29 10.4 461

28 Tanaro at Farigliano 1522 938 34 37.8 1490

29 Tanaro at Montecastello 7985 663 37 127.8 2690

30 Erro at Sassello 96 591 16 2.7 81

31 Bormida at Cassine 1483 493 12 24.0 1022

32 Borbera at Baracche 202 880 14 5.3 228

33 Scrivia at Serravalle 605 695 14 15.0 328
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Figure 5: Claps and Laio [2002]
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Figure 6: Claps and Laio [2002]
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