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ARTICLE INFO ABSTRACT

Rain gauge is the oldest and most accurate instrument for rainfall measurement, able to provide long series of
reliable data. However, rain gauge records are often plagued by gaps, spatio-temporal discontinuities and in-
homogeneities that could affect their suitability for a statistical assessment of the characteristics of extreme
rainfall. Furthermore, the need to discard the shorter series for obtaining robust estimates leads to ignore a
significant amount of information which can be essential, especially when large return periods estimates are

Keywords:

Regional analysis
Annual maxima
Fragmented records
Rainfall extremes

L-moments . . e . . .
sought. This work describes a robust statistical framework for dealing with uneven and fragmented rainfall
Q/I::(;S records on a regional spatial domain. The proposed technique, named “patched kriging” allows one to exploit all

the information available from the recorded series, independently of their length, to provide extreme rainfall
estimates in ungauged areas. The methodology involves the sequential application of the ordinary kriging
equations, producing a homogeneous dataset of synthetic series with uniform lengths. In this way, the errors
inherent to any regional statistical estimation can be easily represented in the spatial domain and, possibly,
corrected. Furthermore, the homogeneity of the obtained series, provides robustness toward local artefacts
during the parameter-estimation phase. The application to a case study in the north-western Italy demonstrates
the potential of the methodology and provides a significant base for discussing its advantages over previous

techniques.

1. Introduction

Probabilistic modelling of extreme rainfall has a crucial role in flood
risk estimation and consequently in the design and management of
flood protection projects (Koutsoyiannis, 2007). The first attempts to
establish a mathematical relation between intensity and frequency of
rainfall goes back to as early as 1932 (Bernard, 1932). Since then, many
studies (e.g., Svensson and Jones (2010)) have been carried out, aimed
at providing the rainfall depths for different return periods and
durations. Complete overviews on the different approaches adopted
from several countries around the globe can be found, e.g, in
Castellarin et al. (2012); Szolgay et al. (2009).

Intensity-Duration-Frequency (IDF) and Depth-Duration-Frequency
(DDF) curves are commonly adopted in water resources engineering for
both planning, designing and operating of water resource projects and
for land and people protection purposes (Koutsoyiannis et al., 1998).
These curves are usually developed considering the historical records
for different durations and adopting the index-rainfall method, in which
the quantile of the extreme rainfall comes as the product of an “index
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value” (i.e., usually the mean) and a growth curve (i.e., the non-di-
mensional inverse of the frequency distribution F(x)).

Two approaches are commonly adopted for fitting a probability
distribution to the series of maxima: (i) the “block” method, that con-
sists in selecting the maximum rainfall occurring over a fixed period
(usually 1 year) and (ii) the “peak-over-threshold” method, in which all
the rainfall data exceeding some pre-specified threshold are considered
(Coles, 2001). The method (i) is widely adopted in Italy for design
rainfall estimation, and a large dataset of annual maxima for duration
1-3-6-12-24 h is available, which dates back to the early twentieth
century.

Due to the significant developments of the theory of extreme value
in the last two decades (Coles, 2001; Reiss and Thomas, 2001) the
methodologies for rainfall frequency analysis are nowadays quite es-
tablished and robust, both at the single-station and at the regional scale.
However, the correct reproduction of complex hydro-meteorological
processes requires not only long, but also serially complete and reliable
observations (Koutsoyiannis, 2004; Pappas et al., 2014) from a dense
and spatially uniform monitoring network. A non-uniform and non-
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continuous dataset can prevent a reliable application of the aforemen-
tioned methodologies at the regional scale leading to inconsistencies.

It is thus evident that, despite the existence of established rainfall
frequency analysis techniques, operational and methodological pro-
blems concerning their applications still arise.

Rainfall time series are often plagued with missing values creating
sporadic and/or continuous gaps in their records. The fragmented be-
haviour traces back to the activation and dismissal of rain gauges, at-
tributable to station relocation, service interruptions, replacement/re-
newal of the sensor, changes in the ownership of the station, etc. The
characteristics of the stations (location and elevation, type of sensor,
etc.) may also change before and after the interruptions, with con-
sequent problems in attributing the data to a unique homogeneous
sample. Despite these problems are quite common, even in developed
countries, many practical applications and statistical methodologies
have little or no tolerance to missing values (Pappas et al., 2014;
Teegavarapu and Nayak, 2017)

The treatment of gaps in the records or relocation of rain gauges,
especially when dealing with large databases, requires the set-up of
specifically-conceived methodologies aimed at bypassing or reconciling
the inconsistencies (Acquaotta et al., 2009). Two approaches can be
adopted for dealing with non-uniform sets of records: (i) a precau-
tionary approach, that consist in assuming a minimum acceptable
threshold of record length and discard the series shorter than the
threshold and (ii) a preservative approach, focused on the identification
of methodologies aimed at extracting all the available information even
from the shorter records. While, on the one hand the approach (i) can
discard important information hidden in the shorter records, affecting
the results of the regional rainfall frequency analysis, the approach (ii)
turns out to be complex, computationally demanding, and can lead to
errors when based on non-robust assumptions (Teegavarapu and
Nayak, 2017).

A number of procedures for recovering information from short re-
cords can be found in the literature. Various authors propose the
adoption of interpolation techniques along the time-axis, to estimate
the missing data of environmental series (linear or logistic regression,
polynomial or spline interpolation, inverse distance weighting, or-
dinary kriging, etc. - see, e.g., Koutsoyiannis and Langousis (2011);
Maidment et al. (1992)). The statistical techniques available include
also artificial neural networks and nearest neighbours (Elshorbagy
et al., 2002; 2000), approaches based on Kalman filters (Alavi et al.,
2006), non-linear mathematical programming (Teegavarapu, 2012b)
and normal-ratio and inverse distance weighting methods
(Teegavarapu and Chandramouli, 2005).

In Pappas et al. (2014) it is argued that the complexity and the
computational burden associated with these techniques often make
them unsuitable for an application over large scales. This usually leads
to the adoption of conceptually over-simplified approaches (e.g., filling
the gaps with fixed values, often corresponding to the sample average
of the series) not adequate to represent the complexity of the phe-
nomena. The authors propose a simple method based on the analysis of
the auto-correlation structure of the series, amenable for a quick filling
of sporadic gaps. However, the technique is viable if the percentage of
missing values in the time series is limited. When the gaps are frequent
and systematic (e.g., in developing countries Clarke et al. (2009)) and
when data show low auto-correlation in time, this approach is not ef-
fective.

Even when long uninterrupted rainfall records are available, an IDF
relation is basically valid only at the point where it is estimated. Rain
gauges are generally not evenly distributed in space, and they allow
only for a point estimation of the parameters of the rainfall distribution.
To extend estimates to ungauged locations, rainfall data are usually
interpolated, either by considering the distribution parameters esti-
mated at the station location (e.g., Ashraf et al. (1997); Myers (1994)),
or by estimating the IDFs after pooling the available data within
homogeneous areas defined by geographical boundaries, or centred

148

Advances in Water Resources 112 (2018) 147-159

around a location of interest (see, e.g., Hosking and Wallis (1997)). In
the presence of data scarcity, some recent studies also propose to in-
clude external sources of data (e.g., remote sensing data
Qamar et al. (2017)) in the procedure. Regional techniques for rainfall
frequency analysis actually build representative growth curves from
larger samples resulting from pooling. On the other hand, the use of a
regional frequency curve is suitable only when the spatial dependence
is weak enough to enable transferring information to a site of interest
from the surrounding gauged sites (Buishand, 1991). When spatial
dependence is significant, as in the presence of high discontinuity in the
rainfall distribution, or due to different climatic and orographic con-
ditions, different approaches should be preferred. For instance,
Uboldi et al. (2014) propose a statistical approach that involves the
adoption of a bootstrap algorithm aimed at providing complete annual
maxima series at each location, taking into account all data observed at
surrounding stations with decreasing importance when distance in-
creases. This kind of approach allows one to overcome the problem of
data filling, but the bootstrap procedure produces results that deviate
significantly from the sample spatial distribution, ignoring the existence
of long and reliable records at some locations.

In this work, a simple approach able to provide a set of complete
series of rainfall data for each location of the domain under analysis is
proposed. The methodology, described in section 3.1, is summarized in
figure 1. It is based on the sequential application of the ordinary kriging
equation to the values recorded annually in the region of interest. The
so-called “patched kriging” procedure preserves the spatio-temporal
information of the annual maxima recorded by the monitoring network,
“patching” them together, i.e., considering each record just like a point
in the (x, y, t) space (where x and y are the planimetric coordinates and
t is the time).

From an operational point of view, this methodology has a low
computational cost and does not require to work with stationary or
significantly auto-correlated data, as it does not involve any inter-
polation along the time-axis. This feature proves to be particularly ef-
fective when dealing with frequent rain gauge relocations, allowing on
the one hand to maximize the usable information at gauged sites, and
on the other to extend the analysis to the ungauged ones.

2. Data and case study

The region considered for the demonstration of the proposed
methodology refers to the Piemonte region, an area of about
30,000 km? in the North-Western part of Italy, shown in Fig. 2a. The
area is characterized by a very heterogeneous orography, flat or hilly in
the centre, surrounded by the Alps in the North-West and by the Li-
gurian Apennines in the South, with the minimum elevations of the
order of a few tens of meters a.s.l. and the maximum ones exceeding
4000 m a.s.l. Several regional-scale hydrological analyses have been
performed with a focus on this area (e.g. Ganora et al. (2013);
Laio et al. (2011); Qamar et al. (2015)); in all cases, the availability of
accurate extreme-rainfall statistics is an essential prerequisite for ob-
taining consistent results.

A dataset of annual maximum rainfall depths over duration inter-
vals of 1, 3, 6, 12 and 24 h from 1928 to 2010 has been assembled for
this analysis. The data before the ’90s were collected from the pub-
lications of the National Bureau for Hydro-Meteorological Monitoring
(SIMN). After 1987 the network was gradually taken over by the
Regional Environmental Agency (ARPA Piemonte) that removed, sub-
stituted or relocated some of the stations. Gauge data from neigh-
bouring regions has also been considered to limit the edge effects.
Overall, nearly 500 gauging stations have worked for at least one year
in the considered period.

Annual maximum values have been extracted from the original
rainfall series by the competent authorities using sliding time windows
(van Montfort, 1990; Papalexiou et al., 2016). The original series have a
resolution in time varying from 1 h for the oldest stations to 5 min. for
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Fig. 1. Flow chart of the “patched kriging” methodology.

the most recent ones. or replacement/renewal of the instruments. As a consequence, more
Fig. 2b illustrates the data availability over time. It shows how ir- than 50% of the considered rain gauges have series shorter than 20
regular the available database is. This is a rather typical situation in years, as shown in Fig. 2c.
Italy: only very few of the stations have a complete uninterrupted re- In this context it is clear that, despite the large and dense rain gauge
cord, while the large majority has experienced interruptions, relocation network available, a regional frequency analysis in the study area
a) b)
7° 8° 9° 400
13
[0}
El
3 300f
o
(]
2
46° § 2001
o
>
£ 100t
3
c
1930 1950 1970 1990 2010
year
45° c)
| 400 ; ; ; ; ; ; ;
(2]
S 300 1
e
E
Q
44° : 82001 |
o
‘A 8
kM € 100 | 1
| | g
Legend
Elevation (m. asl) - Main city ) o
* Rain gauge B NI I R R S
gl n oM N T S
0 4500 length of the series

Fig. 2. (a) The study area and the location of the available stations. (b) Number of active station per year and (c) number of available series per class of record length in the study area.

149



A. Libertino et al.
a)
300 T T T T '
[ J
250 1
200 1
€
£ 150 1
J ® ®
< 100g k|
I PY L] |
50 PY
0 . . . . .
2004 2006 2008 2010
t (years)
b) 7.01° 8.30°
45.70°
35 290 mm
| —
]
CASELLE
°
e o
[} ® Py
[ ] °
o {
0 25 50 km
[ |
44.80°

Fig. 3. (a) Annual maxima for the 24 h duration series of the “Caselle” rain gauge
(45.19°N, 7.65°E, WGS84). The line shows the median of the series. (b) Annual maxima
for the 24 h duration recorded during year 2008 at a sub-sample of the database.

would require a preliminary work aimed at tracking the modifications
in the network and harmonizing the whole database.

Numerous examples of gap-filling techniques for time series (see
e.g., a review in Teegavarapu (2012a)) and of space-time interpolation
of rainfall data over relatively coarse grids (e.g., Haylock et al. (2008);
Isotta et al. (2014)) are available in the literature. Less attention has
been paid to the treatment of discontinuous records coming from a
network of rain gauges with spatially varying positions. In these cases
the usual approach is to exclude the series shorter than a given
threshold, setting a minimum length suitable for the statistical analysis.
However, this leads to exclude a large potential of information, af-
fecting the robustness of the results. Consider, e.g., a station where less
than 20 years of data have been recorded before being relocated few
kilometres apart and that, after the relocation, has recorded an addi-
tional series shorter than 20 years. Setting a minimum length of the
series equal to 20 would lead to lose almost 40 years of data.

The information content of the short series can be significant,
especially in the presence of intense and localized rainfall events.
Fig. 3a shows the available series of 24 h annual maxima for the
“Caselle” rain gauge (45.19°N, 7.65°E, WGS84). During year 2008 a
severe localized thunderstorm occurred in the area, with the rain depth
approaching 300 mm in 24 h. In that year, only the “Caselle” rain gauge
recorded such a large rainfall amount, as shown in Fig. 3b. All the in-
formation related to this severe rainfall event is contained in a 7-years
long time series, that would be ignored in many of the traditional fre-
quency analysis techniques. In the following sections we describe how
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the proposed methodology allows at preserving this kind of information
while maintaining a set of robust statistical procedures for the estima-
tion of the design rainfall at a generic location.

3. Methods
3.1. The patched kriging technique

The proposed approach, called “patched kriging”, allows one to
produce regular spatial datasets by analysing the available rainfall data
year-by-year, assuming that spatial gradients can act as a proxy for
temporal gradients (Singh et al., 2011). In this procedure, each mea-
surement is considered a point in the three dimensional (x, y, t) space.

The “patched” procedure is amenable for application with any
spatial interpolation method (e.g., Inverse Weighted Distance, etc.). In
this work, we propose the use of the kriging interpolation method
(Journel and Huijbregts, 1978), because it can provide useful in-
formation on the estimation uncertainty at each location. Various kri-
ging methods (i.e., simple kriging, ordinary kriging, universal kriging,
etc.) have been developed based on assumptions about the model. At
this stage, we have not found any significant advantage in choosing a
particular kriging method. Therefore, for the sake of simplicity, or-
dinary kriging is considered. Detailed description of the ordinary kri-
ging algorithms is available in the geostatistical literature (e.g.,
Isaaks and Srivastava (1990)).

Ordinary kriging assumes that the spatial variation of data is sta-
tionary and ergodic across the domain (Oliver and Webster, 1990).
Kriging relies on the assumption that all the random errors are second-
order stationary. This means that the covariance between any two
random errors depends only on the distance and, possibly, on the di-
rection that separates them, not on their exact locations. This leads to
the need to analyse and remove the possible correlation between
rainfall and elevation, especially in areas characterized by a complex
orography (Phillips et al., 1992). The analysis of the correlation with
topography also allows one to compensate for the lack of information at
the small scale, improving the global performance of the method
(Prudhomme and Reed, 1999). Various approaches have been adopted
in the literature for dealing with this problem: among the others (Chua
and Bras, 1982; Dingman et al., 1988) propose to perform linear re-
gression on precipitation vs elevation, subtract the regressed elevation
effect and perform the kriging on the elevation-adjusted data. The same
approach has been adopted with positive outcomes in
Allamano et al. (2009) for the Alpine area. Similarly, in this work the
relation between hy (mm), i.e. the annual maximum precipitation with
duration d (h), and elevation z (m) is assumed to follow the equation:

(€8]

where m is the slope of the regression line, my (mm) is the intercept and
g4 (mm) the residual. The logarithm of elevation is adopted as an in-
dependent variable, in order to limit the weight that linear interpola-
tion would attribute to the stations placed at low altitudes. The re-
gression procedure takes into account the values recorded at all the
stations in all the years simultaneously. This stems from the assumption
that the relationships between precipitation and elevation is invariant
over time.

Once assessed the regression significance, de-trended at-station
precipitation values hy o (mm) are computed for all the durations by
removing the elevation effects from the observed value hg.

The degree of spatial dependence in the kriging approach is ex-
pressed using a sample variogram given by:

1
= m z (Oti - ij)z

Ly

]’ld = WI'll’l(Z + 1) + my + &4

V(L)
2)

where V(L) is the variance, which is defined over observations a; and q;
lagged successively by lag-distance L, with n(L) representing the
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number of pairs of the sample separated by lag L (Teegavarapu, 2012a).

De-trended values are therefore used to define the annual sample
variograms. For each year Y in the observation interval, the annual
sample variogram Vy(L) is computed according to Eq. (2). A global
sample variogram is obtained averaging the annual sample variograms,
each weighted by the number of active stations in the considered year.
The sample variogram is then converted to an analytical function, i.e.,
the theoretical variogram, y(L). Generally, several variogram models
are tested before selecting a particular one. In this study the four most
widely used variogram models (i.e., spherical, exponential, Gaussian
and circular) have been considered (Teegavarapu, 2012a). After a vi-
sual analysis of the empirical variograms for the considered durations
and some preliminary first-attempt fits of the models to the data, the
exponential form is adopted:
Y@ =c+ (1 — eHe2) 3)
where L (m) is the lag-distance, c; (mm?), c5 (m), c5 (m) are the sill, the
range parameters and the nugget of the variogram, respectively
(Gelfand et al., 2010). The nugget effect is neglected by setting c3=0,
considering the rain gauge records not affected from measurement er-
rors. This is a strong assumption, but as the work deals with annual
maximum values, the impact of the instrumental error can be con-
sidered not significant for the aim of the analysis at this stage. The other
variogram parameters are fitted to the data by minimizing the root
mean square error.

We work on a gridded 250 m x 250 m domain that is set equal to
the resolution of the Digital Terrain Model used, after considering a
reasonable balance between the topographic detail and the station
spatial density. If more than one rain gauge falls in the same cell, the
largest measured value is considered.

Ordinary kriging equations are applied independently in each year.
For each location, the values recorded at the nearest gauged cells are
weighted according to the variogram and used to estimate the local
value. Since we have neglected the nugget effect, measurements in
gauged cells are automatically preserved.

According to the literature, the number of nearest gauged cells to be
considered is arbitrary and depends on the sampling pattern and on the
covariance matrix structure (Olea, 2000). While, on the one hand, using
the whole sample for applying the kriging equations could grant shorter
computational cost, as the estimation domain is the same for all the
cells of the grid, on the other hand, smaller neighbourhoods are pre-
ferred when there is the need to represent small-scale variability.
Moreover, some authors (Heinrich, 1992) underline that the use of
large neighbourhoods does not lead to a significant increase in the ro-
bustness of the estimation, as the weight associated to a distant ob-
servation quickly tends to zero (Olea, 2000). Therefore, usually, only
the stations in a neighbourhood of the estimation point are considered.
Some authors suggest to consider a number of stations around 10-20
(Kolov and Hamouz, 2016), even though the size of the neighbourhood
should be selected according to the c, parameters of the variogram. In
this work, the significant variations of both the number and the spatial
distribution of the stations along the time axis leads to the need of
summarizing the spatial information in a weighted mean variogram.
Considering the value of the range of this variogram for assuming the
width of the estimation domain could affect the results, specially in
years and in areas with a low density of information, leading to con-
sider an insufficient number of rain gauges. After a preliminary sensi-
tivity analysis, aimed at preventing the flattening of the estimated va-
lues on a global regional mean, the estimation domain is therefore
limited to the nearest 10 rain gauges, for all the cells, for all the years.

Sequential kriging application leads to the development of a set of
grids (as many as the considered years), containing the estimated values
of precipitation maxima for each location of the study area, configuring
a “cube” of rainfall data in the (x, y, t) space (Fig. 4a), which will be
referred to as the “rainfall cube”. The ordinary kriging equation
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Fig. 4. (a) The “rainfall cube” obtained with the “patched kriging”. (b) Example of the
extraction of a “cored series” from the “rainfall cube”.

provides also a “variance cube”, containing the kriging variance for
each cell in each year. The kriging variance is a measure of the un-
certainty of the estimation for the values predicted by kriging.

“Coring” the “cube” along the t-axis (i.e., extracting a complete
series, once fixed a pair of x and y coordinates, by varying t) one can
obtain complete “cored series” (i.e., complete series extracted from the
cube) for each x — y pair (Fig. 4b). Each uninterrupted annual maxima
series, related to a generic cell in the considered domain, is associated
to a series of kriging variances, informing about the uncertainty of each
data. The length of all the series equals the length of the considered
time period.

3.2. Application

The “patched kriging” technique is applied to the study area in
Piemonte. Annual extremes for each duration d are considered as se-
parate series, so as to obtain 5 different series per rain gauge, leading to
5 rainfall and variance cubes.

Regression of rainfall depths with the logarithm of elevation has
been carried out, considering Eq. (1) for the 5 durations. Results are
reported in Table 1. The trends significance is evaluated with a Stu-
dent’s t test with an acceptance level a = 0.05.

Referring to the coefficients in Table 1, the maximum annual pre-
cipitations of duration 1 and 3 h show a declining trend with elevation,
which loses significance for the duration 6 h and becomes a positive
trend for the durations of 12 and 24 h. This justifies the absence of the
expected increasing trend of the intercept of the regression lines with
the duration, and is consistent with the findings of (Allamano et al.,
2009) that relate the different behaviour with the nature of the events
typical of the different durations (mostly convective for shorter
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Table 1
Parameters of the regression Eq. (1) for precipitation versus elevation, for different
durations (* indicates a significant trend at a 5% level).

d(h) m mo (mm)
1 — 3.56* 48.73
3 — 2.57* 55.72
- 0.32 54.59
12 3.52* 49.08
24 8.34* 44.54
Table 2
Estimated parameters for the theoretical exponential variograms.
d (h) ¢; (mm?) ¢z (m)
1 142 6709
3 334.7 8798
6 574.2 10,240
12 1051 11,520
24 2028 13,650

durations, stratiform for longer ones).

Using the coefficients reported in Table 1, the de-trended pre-
cipitation (hy, o) is obtained. For d=6, we set hgoy = hg, due to the lack
of significance of the hypothesis m = 0.

We then proceed with the definition of the sample and theoretical
variograms according to Eq. (3). Annual sample variograms (not
shown) are characterized by a large annual variability, partially as-
cribable to the low data density in the first analysed years, that leads to
sample variograms with large variance. To avoid loss of robustness, as
previously noted, the annual variograms are weighted according to the
number of annual active stations. Table 2 reports the coefficients of the
obtained theoretical variograms for the different durations.

With the application of the ordinary kriging equations, as described
in Section 3.1 a set of 5 “rainfall cubes” (one per duration) with the
related “variance cubes” is obtained.

3.3. Weighting the L-moments

In order to guarantee a robust data-based approach, the proposed
methodology aims at preserving as much as possible the statistics of the
original series in the cored ones. This operation should be treated with
caution, considering the different length of the original series
(Teegavarapu and Nayak, 2017) (e.g., extracting the characteristics of a
80 years long series from a subset of 10-20 data can lead to large bias,
as the characteristics of the sample can be not consistent with the
characteristics of the corresponding complete series). The “patched
kriging” technique helps to increase the robustness of the operation. It
allows one to preserve the recorded data, filling in the gaps with spa-
tially estimated values.

In order to take into account the different nature of the data (i.e.,
part of the core is measured and part is estimated by kriging) differ-
ential weight is given to each value in the evaluation of the char-
acteristics of the cored series (i.e., more weight is given to the measured
values and to the values estimated in years with more observations).
The kriging variance is then considered to weight the contribution of
each value to the estimation of the sample L-moments of the series. The
kriging variance is a measure of the uncertainty of the estimation: it is
larger in cells far from gauged locations and, for a fixed cell, it in-
creases/decreases when the number of annual available stations in its
proximity decreases/increases. For instance, in Fig. 5a the fast increase
of the kriging variance when getting far from the stations is shown.
Moreover, considering the northern part of the study area, for year
1987 (Fig. 5a above), when it totally lacks active stations, the variance
reaches very large values while it shows generally lower values (around
1700 mm?) for year 2010, when a dense network is available.
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In the detail, for evaluating the sample L-moments of a cored series,
a weight w; = 02,,/0? is assigned to the i-th value of the series, char-
acterized by the of kriging variance (with o2,, = max(c?) for the
considered series). Further details are available in the Appendix A.

As an example, the “Caselle” station, mentioned in Section 2, was
installed in 2004. The cored series of the annual maxima for 24 h
duration of the cell related to its location is reported in Fig. 5b. The
mean of the cored series (i.e., the red dashed line) turns out to be sig-
nificantly lower than the one of the original series of 7 data (i.e.,the
yellow line). Analysing the series of the kriging variance of the
“Caselle” location (Fig. 5c) one can note the sensitivity of this para-
meter to the number of globally available stations: as previously men-
tioned, the kriging variance increases/decreases with the decrease/in-
crease of the number of active gauges. It drastically decreases in year
2004, when the station has been activated.

From Fig. 5b we can also observe that the weighted mean, evaluated
with the weights reported in Fig. 5d (left axis), is almost equal to the
mean related to the period 2004-2010. When a station is located in a
previously ungauged cell, the kriging variance decreases drastically and
this leads to give virtually zero weight to all the previously kriged va-
lues. Considering the lack of reliability of L-moments estimated on short
series, this phenomenon should be avoided, as this would undermine
the benefit of the “patched kriging” methodology. A maximum
threshold wy,.x is therefore set. For w; > Wyax, W; = Wpax 1S con-
sidered. After some sensitivity analysis, aimed at giving large enough
weight to the measured values without denying the contribution of the
reconstructed ones, we set Wy, = 10. The final weights adopted for the
“Caselle” cell are reported in Fig. 5d (right axis), and the resulting mean
values is shown in Fig. 5a with a black line.

4. Analysis and validation of the patched series
4.1. Series validation

At first, in points where sample data are available, the cored series
are validated by comparing their L-moments with those of the measured
series. L-moments have been considered for evaluating the quality of
the results, as they provide information on the underlying probability
distributions.

Given the lack of significance of the shorter series from a statistical
point of view (i.e., as previously mentioned, the L-moments estimated
from short fragmented series can be not-consistent with the real char-
acteristics of the related uninterrupted series) the validation is re-
stricted to the series with more than 20 years of data. Fig. 6 reports the
comparison between 7, 73 and 74 (i.e., the coefficient of L-variation, L-
skewness and L-kurtosis respectively (Coles, 2001)) of the measured
versus the estimated series for the five durations mentioned above.

The comparison demonstrates the ability of the methodology to
preserve the L-moments, except for a slight underestimation of the z of
the cored series, as seen in panel (a) in Fig. 6 that compares the mea-
sured with the cored series for all the durations.

To assess the performance of the methodology even in cells without
sample data, or with a number of data that does not allow for a robust
estimation of the sample L-moments, the clouds of the sample L-mo-
ments of the cored series in the L-moments ratio diagrams (Hosking and
Wallis, 1997) are compared with those of the original series with more
than 20 years of data, considering all the durations together (Fig. 7a-b).

A significant underestimation of the second order L-moment (7) is
evident from the analysis of panel (b), while a slight underestimation of
the 73 and 74 values appears from panel (a); this implies that the cored
series denote smaller variability along the time axis than the original
ones. This is an expected drawback when applying a spatial interpola-
tion technique, and is consistent with what emerges from the analysis of
the gauged cells in Fig. 6a. As the underestimation of 7 leads to un-
derestimation of the design rainfall, a correction procedure has been
developed, as described in the following section.
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Fig. 5. (a) Map of the kriging variance for year 1987 (above) and year 2010 (below). The red cross shows the location of the “Caselle” rain gauge (45.19°N, 7.65°E, WGS84), installed in
2004. (b) Cored series of the “Caselle” rain gauge for 24 h duration. The dots mark the recorded values. All the other values are estimated with the “patched kriging” technique. The mean
of the series, the weighted mean and the weighted mean with wy,., threshold are also shown. (b) Kriging variance series for the “Caselle” location (left axis) related to the number of
active gauge per year (right axis). (c) Series of the weights related to the “Caselle” series (left axis). The right axis refers to the same series, after correcting it, by setting wy.x = 10.
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Fig. 6. (a) 7, (b) 73 and (c) 74 of the measured (i.e., orig) versus the cored (i.e., cor) series
for all the durations. The chromatic scale refers to the length of the series.

4.2. Correction of the bias in the variance

By construction, a weighted average of identically distributed
random variables has a different statistical distribution than the vari-
ables themselves. The “patched kriging” technique involves merging
the locally observed values and the interpolated ones, which can
therefore have different statistical distributions. This operation can
potentially introduce bias and, in particular, lead to reduce the coeffi-
cient of variation of the estimates. To correct this behaviour a bias-
correction procedure is proposed, conceived at increasing the variance
of the cored series.

Consider a situation when a series x;(t) is obtained from the “pat-
ched kriging” methodology. The temporal average is X; and, as shown in
Fig. 7b, the x;(t) values are underdispersed around X;. A natural way to
avoid the underdispersion would be to inflate the distance from the

mean through multiplication by a factor Ko:
Xi(6) = % = Ko-(xi(t) — %) ()]

with Ky, > 1. However, Eq. (4) can lead to negative rainfall values, that
are obviously not acceptable. Eq. (4) is thus applied to the logarithms of
the variables, leading to:

_ InG() — In(x)

 In(q () - In(w) ®)
the correction equation then reads:
K
X = fi(Xi_(t)) .
i (6)
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Fig. 7. L-moments ratio diagrams (a),(b) before and (c),(d) after the correction considering all the durations. The greyscaled cloud of points represent the cored series. The greyscale is
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For calibrating the K coefficient we start from the heuristic ob-
servation that the distance of the analysed location from the closer
gauged cells is one of the main determinants of the bias. Cells far from
gauging stations are expected to be more affected by the smoothing
effect of the interpolation and thus to show less variability around the
average. Hence:

o If the target point is close to a gauging station, the distribution of the
cored series will likely be very similar to the one of the original
series, and then correction should be very limited.

® When the target point moves further away from the gauging sta-
tions, the smoothing effect becomes very relevant and the correction
becomes essential.

We therefore expect the correction factor K to be an increasing
function of the distance from the rain gauges, i.e.

K =f(Dy) )

where Dj is the distance, f is an increasing function and f(Ds; = 0) = 1.
The distance from the rain gauges is computed as follows. For each
year we assign to each cell a Dy (km) value, representing the inverse
average distance of the cell from the nearest 10 gauged cells (the ones
considered when the kriging equations are applied), evaluated as:

1

Ly (L
10 &j=1\ §;

D, =
®

with §; being the distance of the cell from the j-th closest gauged one.
We consider the inverse average distance (and not the standard average
distance) in order to assign a D, value approaching zero when the cell
coincides with a gauged cell.

In order to estimate the dependence of K on D;, we take the average
of Eq. 5, conditioned on D;. We note that, on the right-hand side of
Eq. 5, we have at the numerator a variable which is independent of Dj,
by definition (otherwise the correction would not be effective). The
average thus reads:

A(D; 1
@) _ g - =fDs)
ao G (1)) — InG)l |, ©)
where B[ — 1 __ ‘ ] is the average, conditioned on a specific D;
1In(xi (1)) = InG&)! | g

In practice, the A(D;) value is estimated separately for each dura-
tion. For each year, we build equally consistent D; classes to compute
A(Dy), considering all the cells belonging to each class. The (A(Dy), D;)
pairs belonging to all years are then pooled together and the median
value for each D class is considered. They are represented as dots in
Fig. 8.

The increase of A(Dy) with increasing distance is clear for all dura-
tions, for D values up to 25 Km, which confirms our hypotheses on the
influence of the distance on the distribution of the bias. Furthermore, it
emerges from Fig. 8 that in this range the relation between D and A can

value, and qo =
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Fig. 8. Median value of A(D) for equally spaced D; classes. Regression lines refers to the
[0, 25] km range.

be approximated with a linear equation:

A(Ds) = ag + a-Dy (10)

with a; (km™!) representing the slope of the regression line. Combining
Eq. 10 with Egs. 9 and 7 we obtain:

K(Ds) =1+ B-Ds 11D

with g = Z—l (km~1). For D, > 25km the behaviour becomes less con-
sistent, probably due to the small number of stations with large Dj
available: due to the difficulty of calibrating a proper relationship, K is
kept constant in this range. Considering that, as previously mentioned,
the slope of the regression line changes for the different durations, the
final correction factor reads:

1+ B(d)-Ds Dy <25,

K(D;, d) = {1 + B(d)-25 Dy > 25.

12)

B(d) values for the different durations are reported in Table 3.

Once assigned to each cell of each year a suitable correction factor
(Eq. 12), all the “rainfall cubes” are corrected according to Eq. 6 and the
L-moments ratio diagrams are re-computed. Results are reported in
Fig. 7. Comparing the diagrams of the corrected values (panels (c) and
(d)) with those of the original cored series (panels (a) and (b)), it is
evident that the correction procedure works correctly, making the z and
73 values of the cored series consistent with the L-coefficients of the
observed ones. Considering the position of the centroid of the cloud of
the cored series and comparing it with the one of the data, it is indeed
clear that, after the correction, the methodology is able to provide
unbiased results.

For further assessing the quality of the obtained results, for each
duration, the 26 series with more than 50 years of data are considered

Table 3
Coefficients f3 of the correction function K(D;, d)
for the different durations d.

d (h) B (km™1)
1 0.034
3 0.020
6 0.015
12 0.013
24 0.010
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Fig. 9. Comparison between the annual maxima for the different durations of the series
with more than 50 years of data and the corresponding cored values, estimated with the
“patched kriging” technique in a cross-validation environment. The colourscale is pro-
portional to the density of the points.

for carrying out a leave-one-out cross-validation procedure. The limit of
50 years of data has been selected for limiting the computational
burden of the operation, that would be extremely large if considering
the whole dataset. Leave-one-out cross-validation is a special case of
cross-validation where the number of folds equals the number of in-
stances in the dataset (Sammut and Webb, 2011). The whole “patched
kriging” technique is then performed leaving one of the series out at-a-
time, obtaining interpolated values year by year, and correcting those
values with Eq. 6. Fig. 9 compares each recorded annual maximum
value with the corresponding cored one, obtained from the cross-vali-
dation procedure. The shape of the scatter suggests that the “patched
kriging” technique is able to provide not only patched series with L-
moments consistent with those of the original ones, but also to re-
construct reliable annual maxima at ungauged areas.

4.3. IDF Curves

By considering the cored series, the coefficients a and n of the
average IDF in the commonly adopted form h = ad" are estimated for
each cell in the study area.

Fig. 10a-b shows the parameters distribution over the study area.
To assess the validity of the results, the relative differences between the
values of the parameters evaluated with the original series and the ones
estimated with the cored ones is considered. The maps of the spatial
distribution of the differences (omitted) shows that no particular spatial
clustering can be observed. Significant differences between the two sets
of parameters are mainly related to the length of the original series, as
shown in Fig. 10c-d. Comparing the differences with the length of the
series, a decreasing trend with the length of the series is obtained, as
explainable from the sampling variance theory. The “patched kriging”
allows for a robust data-based spatial estimation of the IDF curves by
increasing the robustness of the estimation at gauged sites, by filling the
gaps in the series with data spatially consistent with the surrounding
stations, and by allowing for the spatialization of the parameters to
ungauged areas.

5. Frequency analysis at ungauged sites

In order to estimate the design rainfall for a given return period for a
generic point in the domain under analysis, it is necessary to identify a
probability distribution representing the annual maxima. It would be
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then possible to estimate the rainfall depth I/Atd,T related to a duration d
and a return period T, using the average IDF curve previously identified
and the growth factor Kr:
har = ad"Kr 13)
Different probability distributions have been used in the literature to
statistically represent the growth factor. Even if the identification of the
best probability distribution lies beyond the scope of this work, in this
section we illustrate a preliminary analysis of the distribution of the
considered dataset, aimed at showing the potentiality of the “patched
kriging” in providing a spatially consistent frequency analysis.

Fig. 11a shows the points and curves representing different dis-
tributions commonly used in the analysis of extreme values. Plotting the
L-moments of the cored series allows one to visually evaluate the global
behaviour of the samples.

The diagram confirms that the Gumbel distribution is a good can-
didate to represent extreme precipitations at the regional scale, despite
the centroid of the cloud of points is slightly shifted towards larger 73
values. To identify the amount of variability due to the sample size with
a Monte Carlo procedure, 25,000 series with a length of 72 year have
been randomly extracted from a Gumbel distribution with scale and
position parameters set to 1. This allows one to build a region in the (z3,
74) space occupied by parameters resampled from the original Gumbel
function. In this region it is easy to delimit the 90% and 95% accep-
tance areas, that have been overlapped to the points estimated from the
actual samples (see Fig. 11a). Most of the actual points fall into the
domain of the Gumbel distribution. For the series characterized by
larger skewness and kurtosis values the GEV distribution can be a viable
alternative, despite the use of distributions with three parameters in-
creases the uncertainty associated to the estimates. This uncertainty
depends on the inherent difficulty in estimating the shape parameter of
the distribution, especially in the presence of short and unevenly dis-
tributed records.

Fig. 11b shows the spatial distribution of the cells whose L-moments
fall inside the theoretical acceptance area of the Gumbel distribution.

As expected, a regular pattern of Gumbel and non-Gumbel cores can be
hardly defined, due to the complex topography and to the different
characteristics of the events generating annual maxima for different
durations at the regional scale (Szolgay et al., 2009). The mixture of
scales involved in data generation (local and synoptic scale events) and
the effect of orography on storm generation (particularly significant in
the north-western Alpine and south-eastern Appenninic areas) does not
allow the identification of a unique regional probability distribution. In
addition, boundaries effects may occur at the edge of the analysed
domain.

The growth factor of the GEV distribution can be expressed for a
given return period T by the equation (Jenkinson, 1955):

* _ —63
KT=1—6—2[F(1—63)—(—1n(T 1)) ]
6 (14
with 65 = % where u is the mean, 6, > 0 as the scale parameter and 65

as the non-dimensional shape parameter. When 05 =0, the GEV reduces
to the Gumbel distribution (Koutsoyiannis, 2007):

)

with yg as the Euler-Mascheroni constant.

We estimate the parameters of the distributions for each cell of the
grid, both with the constraint 65=0 (forcing the use of a Gumbel dis-
tribution) and letting the shape parameter be freely estimated.

For the parameter estimation of both the distributions we adopt the
L-moments methodology (Hosking and Wallis, 1987). In detail, we use
the average weighted L-moments among the different durations for
estimating the dimensionless parameters of the Gumbel and GEV dis-
tribution. Maps of the estimated parameters are reported in Fig. 11,
panels (c),(d) and (e).

The “patched kriging” allows not only for a consistent spatialization
of the local information to ungauged areas but, as it emerges from the
maps, to pursue a more robust estimation of the distribution

T-1

Kr=1+6)|-y— ln(—ln(
T 2[ Ve 1s)
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Shape parameter (63) of the GEV distribution.

parameters. For instance, the shape parameter of the GEV distribution,
estimated with the original series, takes on values between — 1 and 6.
However, the shape parameter usually assumes values in a much nar-
rower range, smaller or larger values being ascribable to an excessive
sampling variability in small samples (see Fig. 11e). Moreover, negative
shape parameters of the GEV distribution may be just an artefact of the
data, attributable to bias in the estimation of the sample L-moments
(Hosking and Wallis, 1995; Papalexiou and Koutsoyiannis, 2013). In
this study we obtain values in the [- 0.2, 0.4] range, with the large
majority of data cores providing a 63 > 0 value.

6. Conclusions

We propose a methodology for estimating rainfall extremes at un-
gauged sites in the presence of short and fragmented records, providing
the basis for a spatially homogeneous and reliable frequency analysis of
rainfall extremes on wide areas.

Treating each recorded annual maximum like a point in the (x, y, t)
space, the “patched kriging” technique allows one to overcome the
problems concerning the filling and merging of fragmented records,
exploiting in the same time all the available information from the
measurements, providing series consistent with the available mea-
surements. Once a suitable correction factor for increasing the varia-
bility of the obtained series is applied, the “patched kriging” technique
is able to reconstruct reliable annual maximum values also in ungauged
areas.

The “rainfall cube” produced by the “patched kriging” technique
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provides greater robustness during the distribution estimation phase
than other available procedures. The information concerning the esti-
mation uncertainty is carried out thanks to a “variance cube” assembled
with the estimation variance, per location, per year.

The “best” probability distribution can be therefore estimated at
each location in the gridded domain. Despite a complete frequency
analysis is beyond the aims of this paper, a exploratory methodology
aimed at defining the global behaviour of different distributions at the
regional scale is also proposed. Referring to the Piemonte region case
study, the methodology confirmed good performances of the Gumbel
distribution at a regional scale. As the procedure provides specific
patterns of the areas of acceptability of the different distributions, ap-
plication results allow for more in-depth meteorological and morpho-
logical analyses aimed at explaining the spatial variability of extreme
rainfall.

From this perspective, the proposed methodology offers a powerful
and expeditious procedure, suitable to grant an at-site evaluation of the
best distribution and of the related quantiles, in the framework of a
regional frequency analysis always consistent with the available data.
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Appendix A. Weighted L-moments

Given a sample with size n sorted in ascending order: x., < %.;, < ...<X,.,, and considering:

_oaw (=-Di-2.G-r
br=nt 3 =D =2 (n—r) "

i=r+1 (A~1)
the sample L-moments can be written as:
ll = b()
lz = 2b1 - b()
l3 = 6b2 - 6b1 + b()
and, in general:
r
v = . Db
k=0 (A.2)

_ YR+ k)
T kN2(r-k)! T

In order to take into account the different nature of the data each value is weighted according to the estimation variance associated with it. In the
detail, to the i-th value of the considered cored series, characterized by of estimation variance, is assigned a weight w; = o2, /o?, with

with r=0,1,... ,n-1 and p;"‘k

02, = max(c?) for the considered series. Once defined W, = Zj{zl w;, each cored series (all characterized by the same length n) acquires an effective
length m = W,,. Concretely, the weighting procedure inserts a number of virtual ties, aimed at giving more weight to some values than to others, so
the effective length of a cored series equals the sum of its weights. Considering the y;. ,, elements of the series series including the virtual ties, sorted

in ascending order, the equivalent of Eq. A.1 for the weighted series can be written as:

G-DG-2-G-n
(m = 1D(m — 2)..(m — r)7™

b, =m™! i

Jj=r+1

with Yo = X for1+ W_1<j<W.

(A.3)

Evaluating Eq. A.3, the L-moments weighted on the estimation variances can be obtained from A.2. For simplicity we report in the following the

explicit form of A.3 for r = 1, 2, 3, 4, used in this study.

1 n
b() = — Z Wix(i)
mia (A.4)
1 C 1
by=—— ), wixg W_+—w-—1)
1 m(m—l); i (1)( i—-1 2( i ) (AS)
1 < 1 2
by= ——— ), wix (—w.2 +w (W — 1D+ = —2Wi + Wz_l)
m(m—l)(m—Z)l.:Zl O n 3 ! ' (A.6)
bs 1 Zn: lwix(i) W + w2(AW_, — 6) + w(6W2, — 18W_; + 11) + 4W> | — 18W2, + 22W_;, — 6))
m(m —1)(m - 2)(m — 3) & 4 e ‘ ‘ ‘ (A7)
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