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Abstract Anumber of procedures can be cited in the literature to perform stream flow prediction in
an ungauged basin. Stream flow functions as flow duration curve and flood frequency curves can be
obtained by hydrological or statistical models. Also flow regime curves are needed for water
resources assessment: they are complex (non monotonic) functions and require special care in the
parameterization. Here we propose a dissimilarity-based regionalization model to estimate this
particular feature of the stream flow process, as the monthly flow regime. The proposed regional
statistical frame work is based on the measure of the dissimilarity (sometimes also referred to as
distance) between all the possible pairs of flow regimes available in the region. Each regime is
considered as a whole hydrological object and the distance between each pair of regime curves is
computed through a suitable metric in a non-parametric way. Dissimilarity values then compose a
distancematrix which characterizes the variability of the regime shapes in the region of interest. The
prediction of regimes in ungauged basins is obtained by creating corresponding distance matrices of
basin features taken among geographic, geomorphologic and climatic attributes, usually referred to
as descriptors. Suitable basin descriptors are those whose distancematrices are reasonably correlated
to the flow regime distancematrix. This choice allows us to use complex descriptors, like the rainfall
regime curve. Identification of the suitable descriptors is performed through an unsupervised
procedure based on multiple regressions on distance matrices. Once identified the relations, the
candidate descriptors of the ungauged basin can be used to select the most similar gauged basins to
use as neighbours for estimation of the required runoff regime. The procedure is applied to a set of
118 basins located in northwestern Italy. The performance of the regional estimation is assessed by
means of a cross-validation procedure and through comparison with other parametric regional
approaches. Inmost of the cases, the distance-basedmodel produces better estimates of flow regimes
than the “standard” procedure, using only few catchment descriptors, with the advantage of
demonstrating the role of complex basin features, as for instance the rainfall regime curve.
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1 Introduction

The topic of estimation of flow regimes in an ungauged basin has received extensive research
efforts over the last two decades (Blöschl et al. 2013). There are many practical purposes for
which prediction of flow regimes is important, as environmental flow requirements, hydro-
power management, dam storage management for flood mitigation and, of course, irrigation
management. In particular, if one considers the monthly flow regime as generally defined, i.e.,
the curve obtained with the 12 average monthly runoff values in a year, this curve has an
important role in design and management of irrigation systems, as seasonality of average
runoff is an essential requisite for the deficit assessment. The shape and magnitude of flow
regime curves depend on hydroclimatic processes and basin characteristics in a complex way
(e.g., Bower and Hannah 2002). The authors above noticed that the basins associated with
major aquifers within U.K. are characterized by more stable regimes and the variability in
regime shape is a function of seasonal variability and amount of precipitation. They further
stated that double peaks are commonly observed in basins associated with large aquifers,
whereas prevalence of climatological extremes may result in single regime shape dominating
across the entire area.

A number of methods can be cited from literature about flow regime estimation at
ungauged sites (e.g., Hrachowitz et al. 2013; Parajka et al. 2013b; Shoaib et al. 2013;
Kumar et al. 2015). These methods can be theoretically divided according to Parajka
et al. (2013a) into: 1) Process-based methods (e.g., Carrillo et al. 2011) and 2) statistical
methods (e.g., Gallart et al. 2008; Samaniego et al. 2010; De Girolamo et al. 2011;
Renner and Bernhofer 2011; Archfield et al. 2013). The former are fundamentally based
on established physical laws which can capture the underlying dynamics of the water-
shed. However, they are not suitable for the case of ungauged basins, which is the main
goal of the present approach, because they generally require the ‘local’ calibration of the
model parameters. Among statistical methods, is also interesting to cite Olden and Poff
(2003), who provided a statistical framework, called index method, for the characteriza-
tion of hydrologic regimes by focusing on the inter-relationships among hydrologic
indices. In addition, methods based on geostatistics and proximity concepts have been
proposed (e.g., Sauquet et al. 2000, 2008).

Classic regionalization approaches work either on each single monthly value or on a
smaller set of representative regime parameters (e.g., Krasovskaia et al. 1994). In the former
case an individual regional model is to be defined for each month, which produce simple but
cumbersome techniques. On the other hand, using few representative parameters gives the
advantage of requiring fewer regional models (i.e., one for each parameter) but thecurve fitting
procedure can be complicated. A distance-based method, however, overcomes this choice as it
requires only one regional model, defined by a suitable dissimilarity measure, and has no curve
fitting requirements. This method is non-parameteric (see Ganora et al. 2009) and aims to
estimate of the entire curve as a unique variable.

Another relevant application of the dissimilarity framework is reported by Samaniego et al.
(2010) which incorporates copulas to find dissimilarity measures on daily streamflow time
series by using three (dis)similarity measure.
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Ganora et al. (2009) used regression method to predict flow duration curves by linking
descriptors data with hydrological data. To our knowledge no such technique has ever been
proposed for flow regimes (non monotonic functions) estimation at ungauged basins, and the
magnitude and timing of occurrence of flow regime peaks has never been discussed explicitly
earlier.

The dissimilarity-based (or distance-based) method proposed here introduces a new hydro-
logic metric to consider the dissimilarity between the features of two regime curves. The
application of the dissimilarity measure to all the possible combinations of basins, ultimately
generates a distance matrix. This distance matrix can then be related to analogous distance
matrices computed between other basin characteristics for all basin pairs, with the final aim of
using neighbor basins in the space of characteristics to predict the regime curve at an ungauged
catchment. This procedure is delineated in the following Sections 1, 2 and 3.

2 Dissimilarity Between Regimes

The dissimilarity-based method we propose starts from the comparison of the flow regimes of
a pair of stations. For any two flow regimes belonging to the two gauged basins S and R,
constituted by 12 elements each, {q1,S,q2,S,…q12,S} and {q1,R,q2,R,…q12,R} (i.e., the mean
flows of each month), a dissimilarity measure can be defined in different ways. For instance, a
function of point to point (magnitudinal) distance between monthly values can be used.

The magnitudinal dissimilarity used by Ganora et al. (2009) reads

DPtP ¼
X12

i¼1

qi;S−qi;R
!! !!; ð1Þ

where is the monthly mean of the aforementioned stations S or R, DPtP is the point to point
difference and i is the index related to the monthly value.

Although Eq. (1) can be applied to flow regimes, it does not account for the possible
shifting of peak positioning which is an important feature of flow regimes (see Fig. 1). A more
complex definition of distance, accounting for the number and position of local maxima
(peaks) and their position can be considered. We thus propose to add to the point-to-point
difference DPtP a “lateral distancemeasure” (Lsp), which considers the time difference between
the occurence of peaks in the two regimes and a“vertical distancemeasure” (Vsp), which is the
quantitative difference between these peaks. The two measures are then combined in a unique
metric to account for all the main features of the regime, i.e., the total distance between two
curves is the combination of these three modules (DPtP,Lsp,Vsp):

DT ¼ DPtP þ Lsp þ Vsp: ð2Þ

The point to point difference, lateral and vertical separations are sketched in Fig. 1
The vertical distance is assumed as

Vsp ¼ qmax;S−qmax;R
!! !!; ð3Þ

where qmax is the magnitude of the highest peak discharge at stations S or R.
For estimating the lateral separation, we first need to define the number of peaks in flow

regimes. As a starting rule, all the values greater or equal to 0.80⋅qmax are considered to be
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peaks and the lateral separation is computed according to a circular procedure, i.e., the two
regimes are shifted towards each other towards the shortest possible span. The regime shifting
stops when the moving peak overshadows the peak of the reference station. After a shift the
two regimes are referred to be in shifted state, called σ, as opposed to the initial configuration
of regimes, called μ. The lateral separation then reads:

Lsp ¼
X

i
DPtP;μ−DPtP;σi

!! !!; ð4Þ

with i the index of the shifted stated.
As an example, Lsp is computed by considering station # 9 (see Section 2 for reference)

having a peak discharge (S0) in April and station # 79 having a maximum monthly runoff (R0)
in July, as depicted in Fig. 2. The actual state (μ) of flow regimes at these respective stations
refers to the two solid lines. By definition, any of the defined peak (S0orR0) is to be moved
towards the other, along the shortest path. Therefore, the movement through these months is
going to be backward (July→June→May→April). The process of moving peaks towards
each other stops once they are exactly underneath (S0orR3) (see Fig. 2). To obtain the measure
of Lsp we then need to sum three terms, each one representing an absolute difference as in (4).
The first term is the absolute value of the difference between two magnitudinal dissimilarities;
DPtP,μ and μ1=DPtP,σ1, the former related to the initial configuration of both curves, and the

Fig. 1 Distance between flow regimes in the month of May a point-to-point distance, b vertical seperation of
peaks and c lateral seperation of peaks

Fig. 2 Compared peaks in actual
state (S0,R0) and moving R0 as R1,
R2,R3 towards S0
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latter related to the 1-span shift of one of the two regimes. Consequently, the second and the
third terms are respectively equal to DPtP;μ−DPtP;σ2 and DPtP,μ−DPtP,σ3.

To understand the difference between using the simple DPtP distance and the comprehen-
sive distance DT of Eq. (2), a comparison is drawn between two definitions of distances in
Fig. 3 based on a set of 118 stations records used in our work (see Section 2 for reference).
Their quantitative comparison is done in Table 1,where regimes from three typologies (A, B
and C) are put in evidence.

The selection of regime types is operated in three different areas and their differences can be
appreciated Fig. 4.

Whereas the points on the bisector line in Fig. 3 are representative of peaks of compared
stations that are occuring in the same month (hence no lateral and vertical separation were to be
considered). Let us compare a set of randomly selected regimes in blocks A, B and C of the
Fig. 3, to understand the difference between DT and DPtP (or PtP). In Fig. 4, the regimes have
been actually drawn to further eleborate the difference. The trend (occurence of flow magni-
tude w.r.t time) of the regimes alongside the time of occurence of peaks is taken into account.
In Fig. 4, the regimes in block B are similar to those in A; the reason being small time-scale
difference between the occurence of peaks and almost similar trends of regimes being
compared in both blocks. By the definition of dissimilarity, the distance of both these blocks
should somehow be similar. On the contrary, DPtP distance changes dramatically from A to B
but DT remains consistent. A more simpler case is described in block C, where besides being
more similar in C(i) than in C(ii), DPtP counts larger difference between regimes in former and
less in latter case. Whereas, DT reproduces seemingly more meaninful translation of the results
as shown in Table 1.

3 Study Area

A dataset of time series from 118 stations in Northwestern Italy was considered for the
application. Records have a length varying from a minimum of 5 to a maximum of 52 years,
with a mean value of 12 years; the runoff data was extracted from the publications of the
former Italian Hydrographic Service, extended with more recent measurements provided by
the Regional Environmental Agency (ARPA) of the Piemonte Region. Original data are at the

Fig. 3 Comparison between
Magnitudinal distance method
and the newly developed distance.
The points on the bisector are
representative of cases in which
the peaks of the station pairs are
occuring in the same month (hence
no lateral and vertical separation
were to be considered)
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daily scale and have been aggregated at the monthly scale for the purpose of this study. The
data was made dimensionless by normalizing with the global average monthly runoff for each
station.

For each of the considered basins a number of climatic, geographic and morphological
variables, referred to as descriptors, were taken from the database developed by Ganora
et al. (2013) for the region of interest. The catchment area of the considered basins ranges
between 22 and 7983 km2, and their average elevation ranges from 494 to 2694 m.a.s.l.
Morphometric characteristics of the basin are based on the NASA Shuttle Radar
Topography Mission (SRTM) (Farr et al. 2007) digital terrain model (pre-processed to a
100 m cell grid) using automatic GIS procedures under the Geographic Resources
Analysis Support System (GRASS) GIS environment. Climatic, vegetation and land use
descriptors were obtained by properly clipping thematic maps available for the area of
interest.

Table 1 Qaulitative comparison of absolute distance method and new method

Stations Area (km2) Mean elevation (m.a.s.l) Region in fig (3) DT DPtP

84, 89 250, 949 2082, 520 A 20.37 14.23

15, 27 2594, 581 440, 1739 B 20.20 10.09

71, 43 7685, 43 1571, 1655 C 3.01 3.01

71, 41 7685, 1322 1571, 1899 D 6.39 2.80

Fig. 4 Examples of regime couples put in comparison so to allow for sensitivity check for dissimilarity methods
at various stations
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4 Regional Model

The implementation of the regional procedure for regime estimation at ungauged sites is based
on the idea that similar hydrological behavior is related to basin similarity in a subset of
descriptors. In a Nearest Neighbor approach, similar basins are usually pooled together by
proximity in the descriptors space and the average value of hydrological properties, e.g., the
flow regime, is taken as valid for the whole group.

Based on the definitions of dissimilarities given in Section 1, one is expected to find low
dissimilarity values on descriptors for the basins with “similar” hydrological properties. The
simplest descriptors are basin elevation, basin area etc. and the dissimilarity can be computed
simply as the absolute difference of the values. When the descriptor is represented by a
monotonic function (as the hypsographic curve) the dissimilarity can be computed as the
point-to-point distance as in Eq. (1). For more complex descriptors (in this case the rainfall
regimes) the DT dissimilarity is appropriate. Computation of these distances leads to a
descriptors dissimilarity matrices.

Only a small subset of descriptors is expected to be representative of the hydrological
variability. As there is no prior information about this subset, it is defined through a statistical
procedure which looks for the descriptor distance matrix that displays the highest correlation
with the distance matrix of the hydrological regime.

The correlation between distance matrices is investigated through the Mantel test (Mantel
and Valand 1970). In its simple version, it is used to evaluate the significance of the linear
correlation between two distance matrices.

The relation between the discharge distance matrix, defined as MH, and various
combinations of the distance matrices of descriptors (MD) is in general more interesting
than the relationship with one single descriptor. To evaluate this kind of multiple relation-
ship, a linear multiregressive approach has been adopted. We started considering a simple
linear model,

MH ¼ β0 þ β1 MDð Þ1 þ⋯βn MDð Þp þ ε; ð5Þ

with p as number of descriptors selected among the whole set of available characteristics, βi as
the generic regression coefficient and ε is the residual element of matrices, “unpacked” to
vectors as described by Lichstein (2007). In this case, the Mantel test is extended to multiple
linear regression models as Eq. (5) as described by Lichstein (2007), who gives details about
test implementation. Smouse et al. (1986) also provide useful information for the extension of
the simple Mantel test.

Several combinations of models were investigated using linear regression. They were built
using all the possible combinations of descriptors distance matrices, based on one to three
descriptors at a time. The regressions were first tested for significance with the multiple Mantel
test, with a significance level of 0.05.Models passing theMantel test were then ranked according
to the adjusted coefficient of determination defined as (e.g., Kottegoda and Rosso 1997):

R2
ad j ¼ 1− 1−R2

" # n−1
n−p−1

; ð6Þ

In the above Eq. (6), p stands for the number of descriptors, n is the total number of
basins and R2 defines the standard coefficient of determination, which alongside
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regression coefficients was computed in a standard way, defined by Legendre et al. (1994).
As the distances inside a distance matrix are not mutually independent, it is advisable to
use all the n values instead of classical n n−1ð Þ=2 values. Furthermore, a test against
multicollinearity has been performed in order to exclude variables with redundant infor-
mation in the descriptors.

The Radj
2 values observed with distance matrices of regression models are very low

(always jaunted between 0.20 and 0.55), although the results are significant, statistically.
Which is to say that regressions are only used to select dominating descriptors and not
for any direct estimation. This statistic is used to rank the models, but cannot be used to
quantify the variance explained by the linear model as in classic regresions due to the
mutual correlation of the values in the distance matrices. Besides Radj

2 it is of great
importance to investigate also the behavior of the residuals along the regression line and
its development with time (HP Training Module 2002), which is very difficult to
interpret.

To check the quality of model output, we used a cross validation procedure. In this
procedure, one station at a time is considered ungauged and its data (hydrological and
descriptors) are removed from the database. Afterwards, the models are recalibrated and the
‘unknown’ flow regime is estimated and compared to the real one. The full scale model
validation can be extremely time consuming, depending on the size of dataset and on the
complexity of the model, in terms of number of descriptors.

In our work, to reduce the computational burden, the regression models having good R2

values, filtered through mantel test and VIF test are used to execute the regional regimes and
that executed regime is then compared with the empirical regime in DT space. This means that
the error ς, defined as the dissimilarity DT computed between the empirical and the estimated
regime curve is computed for every single station. The model producing least overall error (∆),
between actual and regional regimes was selected, defined asΔ ¼ 1

n∑ς where n is the number
of stations.

The proposed methodology of distance-based measurement was carried out in the R
statistical environment (R Development Core Team 2007), desegregated for Mantel test and
Multivariate Regression Analysis in nsRFA package (Viglione 2007).

Once the distance-based model is estimated, we find the distance matrices of descriptors in
the selected model according to the type of the descriptors (scalar or monotonic). After
normalizing them by average distance and then summing them up to find the single represen-
tative distance matrix for finding the nearest neighbors (NN) of ungauged basin; considering
the minimum value of the distance relative to the stations from the distance matrix of
descriptors. The beauty of this technique lies in the ease with which a non monotonic function
(complex descriptor) like rainfall was introduced with a scalar descriptor to define an appro-
priate space for the neighbor selection.

Another important step is to determine the optimum number of neighbors of an
ungauged basin. Since too few neighbors resulted in over simplification of the results
and in some cases even counter intuitive; whereas, too many neighbors may cause
considerable error in the final results. In the present work we used cross-validation
procedure to set the number of neighbors and after scrutinizing from 1 to 9, we finally
found reasonable results with 5 neighbors.

The best models obtained by one, two and three descriptors are only considered. The best
five models constituted by 1, 2 and 3 descriptor(s) against their respective Radj

2 and ∆ values are
ordered according to Radj

2 values in Table 2.
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The best results are obtained with three descriptors model (Land use Index (Wetlands),
Annual NDVI and Rainfall Regime) due to its higher Radj

2 value (0.500) and lower ∆ value
(2.658) but since the simpler model with two descriptors (Annual NDVI and Rainfall Regime)
has comparable Radj

2 (0.494) and ∆ (2.720) values, therefore considering together three
representation of models; the model constituted by Annual NDVI and Rainfall Regime is
selected.

The adoption of these two descriptors is coherent with the typology of investigated basins.
In fact, since we are considering mainly mountain basins, the annual NDVI descriptor is
expected to be relevant because of its strong relation to snow accumulation and snowmelt
mechanisms. Similarly, the rainfall regime provides a synthetic description of flow pattern. The
ranges of some dominating descriptors are enlisted in Table 3.

Table 2 Models with 1, 2 and 3 descriptors enlisted in the order of Radj
2

Model Descriptors Overall error (∆) Radj
2

1 Annual NDVI 3.539 0.484

1 Hypsographic Curve 3.862 0.424

1 Mean Basin Elevation 4.067 0.374

1 Max Basin Elevation 3.884 0.216

1 Rainfall Regime 4.044 0.014

2 Fourier Coefficient, Annual NDVI 3.149 0.517

2 Annual NDVI, Rainfall Regime 2.720 0.494

2 Hypsographic Curve, Rainfall Regime 3.018 0.437

2 Mean Basin Elevation, Rainfall Regime 2.940 0.391

2 Land use Index (Non-vegetated area), Rainfall Regime 2.960 0.314

3 Precipitation Intensity Coefficient, Annual NDVI, Rainfall Regime 2.759 0.531

3 Land use Index (Non-vegetated area), Annual NDVI, Rainfall Regime 2.798 0.515

3 Land use Index (Wetlands), Annual NDVI, Rainfall Regime 2.658 0.500

3 Basin Area, Annual NDVI, Rainfall Regime 2.759 0.495

3 Rainfall intensity Duration Curve, Annual NDVI, Rainfall Regime 2.736 0.494

Table 3 Range of variation of descriptors used by the distance-based model

Descriptors Maximum Mean Minimum

Land use index (Wetlands) 7.890 0.190 0

Rainfall intensity duration curve 37.88 23.40 11.88

Basin area 25640 1330.11 22

Maximum basin elevation 4743 2750 368

Rainfall regime Regime Regime Regime

Mean basin elevation 2682 1323.17 244

Hypsographic curve Curve Curve Curve

Y-coordinate 5129050 4977667 4886350

Land use index (non-vegetated area) 78.68 16.03 0

Annual NDVI 0.644 0.447 0.082

Fourier coefficient 49.563 −8.161 −56.554
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The methodology can be summarized in the following steps:

1) Calculate the monthly mean discharge at each station.
2) Identify the variable needed to calculate dissimilarities.
3) Compute dissimilarities between stations by using specified techniques (point-to-point,

lateral and vertical).
4) Select best descriptor models by observing least∆ values andMultivariate regression analysis.
5) On the Descriptors space find the NN of missing data station and by using those NN

compute the estimation of the regime for that station.

4.1 Alternative Regional Models

4.1.1 Parametric Representation of the Regime

The dissimilarity-based approach was compared with a more traditional regional model based
on the parametric representation of the regime curve, which were calibrated on the same set of
basins. In contrast to the dissimilarity-based approach which aims at considering the regime as
a whole element, here the shape of monthly averaged hydrological regimes is represented by
using certain of number of parameters. This parameterization is based on the Fourier harmonic,
and its form reads:

f tð Þ ¼ A0 þ A1cos
2πt
τ

þ φ1

$ %
þ A2cos

4πt
τ

þ φ2

$ %
; ð7Þ

where the harmonics represent the 1-year-scale and the 6-months-scale fluctuations of the
hydrologic regime. This analytical model to represent the regime has 5 parameters, among
which A0 can be neglected as the mean values is not considered in this work. Phase shifts φ1

and φ2 are circular variables so large values may be very close to small values, which on
transformation can be sparse apart (e.g., 10* π

180 and 364
0* π

180). Therefore, in order to estimate
them with a regional procedure, it is better to resort to a different representation

f tð Þ ¼ A0 þ A1cos
2π
τ

t
$ %

:cos φ1ð Þ−A1sin
2π
τ

t
$ %

:sin φ1ð Þ

þ A2cos
4π
τ

t
$ %

:cos φ2ð Þ−A2sin
4π
τ

t
$ %

:sin φ2ð Þ; ð8Þ

by separating the variables that do not depend on time t

θ1 ¼ A1cos φ1ð Þ; θ2 ¼ A2cos φ2ð Þ;

θ3 ¼ −A1sin φ1ð Þ; θ4 ¼ A2sin φ2ð Þ;

and those which depend on t

X 1 tð Þ ¼ cos
2π
τ

t
$ %

; X 2 tð Þ ¼ cos
4π
τ

t
$ %

;
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Y 1 tð Þ ¼ sin
2π
τ

t
$ %

; Y 2 tð Þ ¼ sin
4π
τ

t
$ %

;

Eq. (8) now reads (neglecting A0):

f tð Þ ¼ θ1:X 1 tð Þ þ θ2:Y 1 tð Þ þ θ3:X 2 tð Þ þ θ4:Y 2 tð Þ; ð9Þ

whose parameters can be easily fitted to a real dimensionless regime f(t) made of 12
observations by the least squares method (see Fig. 5), where the vectors X1, X2, Y1 and Y2
are calculated using t=1,2,3……,12 and τ=12

After the fitting procedure of the θ parameters has been extended to all the 118 observed
regimes, we proceeded to the regionalization phase. Each parameter θj is related to the
catchments’ descriptors d by a linear model of the form

θ j ¼ a0 þ a1:d1 þ a2:d2 þ⋯an:dn þ ε; ð10Þ

where a1 are regression coefficients and ε is residual vector. The choice of a suitable regional
model is an important step in the estimation of generic parameters at an ungauged basin. Many
linear models of the form of Eq. (10) were considered and validated with a Student t test with a
significance level of 0.05 followed by a multicollinearity (VIF>5) test and subsequently
ordered by their values of Radj

2 (e.g., Montgomery et al. 2001).
The leave-one-out validation scheme was used for evaluating the amplitudes and phases of

the harmonics and reconstructing the regime. The predicted regime in an ungauged basin is
evaluated by combining the basis (X1,X2,Y1 and Y2) to the estimated θj obtained by using the
related descriptors. The best models for each θ are;

θ1 ¼ 4:069*10−1−6:961*10−5 HypsographicCurveð Þ þ 8:795*10H−4 AverageAspectð Þ;ð11Þ

θ2 ¼ 1:298*101−1:073*10−2 clc4ð Þ þ 2:528*10−6 BasinLatitudeð Þ; ð12Þ

θ3 ¼ −1:025þ 2:779*10−5 HypsographicCurveð Þ þ 1:206*10−2 cn3ð Þ; ð13Þ

θ4 ¼ 3:5917þ 0:1473 cn2ð Þ−0:1684 cn3ð Þ; ð14Þ

Fig. 5 Fitted regimes over original regimes with parametric models
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Where clc and cn are corine land cover and soil curve number respectively (for details see
Ganora et al. 2013). The error measurement between predicted and actual regimes was
obtained by comparing RMSE and NSE values.

4.1.2 Regionalization by Geographical Proximity

The dissimilarity-based approach was also tested against the geoghraphical distance norm
which is used to measure the closeness (or dissimilarity) of basins in geoghraphical space. For
the sake of simplicity, Euclidean norm was used to find the NN of an ungauged basin. The
efficiency of output was tested within a leave-one-out cross-validation scheme.

5 Results and Comparison

The three regional procedures presented in Section 2 provide three different ways to estimate
the dimensionless montly regime at ungauged sites. All the methods have been extensively

Table 4 RMSE, NSE and DT obtained in the various basins using three types of methods

Basin Area (km2) New method Euclidean Parametric model

Stations codes RMSE NSE DT RMSE NSE DT RMSE NSE DT

3 41 0.265 0.918 2.752 0.528 0.675 5.665 0.439 0.775 4.503

6 262 0.382 0.713 4.408 0.483 0.542 8.559 0.462 0.582 5.254

14 127 0.238 0.861 2.301 0.389 0.630 4.144 0.394 0.619 4.692

21 75 0.353 0.820 4.087 0.461 0.692 5.501 0.678 0.334 8.433

28 152 0.145 0.912 1.642 0.388 0.369 7.017 0.373 0.417 6.945

37 106 0.317 0.719 3.246 0.483 0.350 6.323 0.429 0.485 6.864

45 212 0.216 0.900 2.590 0.243 0.873 5.613 0.778 −0.305 13.216

47 102 0.081 0.991 0.814 0.497 0.660 6.185 1.207 −1.008 17.114

48 160 0.251 0.854 4.430 0.445 0.541 5.620 0.770 −0.376 10.089

54 333 0.205 0.605 2.392 0.412 −0.595 4.370 0.448 −0.885 5.409

55 131 0.210 0.729 2.119 0.289 0.486 3.079 0.718 −2.182 9.254

63 838 0.211 0.925 6.855 0.329 0.818 7.378 0.854 −0.228 12.103

70 38 0.157 0.932 1.537 0.390 0.581 4.807 0.532 0.221 7.532

72 25640 0.223 0.664 2.353 0.349 0.173 4.665 0.346 0.186 3.637

82 82 0.198 0.965 2.298 0.525 0.753 6.019 1.387 −0.724 20.012

99 44 0.171 0.750 1.845 0.241 0.501 2.845 0.455 −0.770 4.729

104 249 0.144 0.936 1.302 0.271 0.773 2.904 0.252 0.804 2.913

116 57 0.216 0.899 1.669 0.299 0.807 2.286 0.315 0.786 3.585

Table 5 Comparison of
magnitudes of different errors (ζ)
with corresponding Standard
deviations (δ)

Model ζ (RMSE,δ) ζ (NSE,δ) ζ (DT,δ)

New method 0.230 (0.091) 0.812 (0.293) 2.578 (1.309)

Geographical method 0.280 (0.11) 0.735 (0.346) 3.363 (1.682)

Parametric method 0.500 (0.221) 0.273 (0.595) 6.370 (3.860)
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applied to the 118 basin dataset of Italian catchments described above and are compared in the
present section.

Among all the possible models ranked by the distance-based approach, the model containing
two descriptors, namely annual NDVI and rainfall regime, was selected for its good global
performance in cross validation. More descriptors can be used as well to obtain an enhanced
estimator, however increasing the number of descriptor might make themodel less robust. For the
purposes of this work, the use of only two descriptors is shown to be effective, with performances
overtaking those of other regional approaches based on two or more descriptors (Table 4).

A proper metric to quantify the quality of fitting is not trivial to find, for the purpose of
comparing the different models. Generally, the metrics are used to compare estimated and
observed values (single value comparison), whereas, we need to compare a non monotonic
function with a special emphasis on the peak discharge position. It’s better to use different
metrics to see the goodness of fit of each model by observing the fitting quality of models at each
station and ultimately globally. We decided to use RMSE, which is one of the most commonly
used error index statistics, andDT since we are also interested in determining peak flow position.

Fig. 6 Comparison between original and simulated regimes at selected stations
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On average the distance-based model (DBM) has smaller error (ζ) than parametric
(PM) and geographical proximity (GM) as shown in Table 5. Although performances
quantified with the DT metric are expected to favor the distance-based approach, due to
peak-shift consideration, the distance-based approach prevails over other models even
when RMSE was used for its evaluation.

The newly developed non parametric distance based approach executed, by far, good
results compared to those of parametric and geographic proximity models as shown in

Fig. 7 Error comparison of distance based model in RMSE and DT enviroments compared with a the
Geograhical method and b the Parametric method
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Fig. 6. The Table 4 illustrates a comparison of DT, RSME and NSE values among Parametric
model, Geographic proximity and Distance-based approach. It was observed that each para-
metric model was able to execute good results for a certain subset of basins, but not, when
tested on the whole dataset. The graphical representation of errors (ζ) obtained in different
environments (DT and RMSE) are shown in Fig. 7, where the distance between the empirical
regime and the estimated one, is reported in the scatterplot for each considered basin. The solid
line represents the ratio 1:1 between the errors, while dashed lines delimit the areas where
errors for the distance-basedmodel are twice the parametric ones and vice versa. Points above
the solid line represent regimes better estimated by the distance-based method; points above
the top dashed line represent regimes much better estimated by the distance-based method. The
total magnitude of error over the entire sample and standard deviation of errors (δ) are enlisted
in Table 5.

From these results it can be concluded that the present method led to the most suitable
results for flow regimes prediction in most basins with respect to RMSE and DT. Though the
new model performed generally well in all types of catchments, it presented some slight issues
of magnitudinal differences between observed and simulated flow regimes for basins with
extremely large (≥1000km2) or small areas (<100km2). The model predicted peaks of each
regime correctly with slight variation in flat peaks but even in those cases the magnitude of
discharge is very close to that of original peak discharge (Fig. 8).

6 Conclusions

The dissimilarity technique between the flow regimes has been revisited in this paper. It has
been shown that a good amount of information can be lost by considering, only, magnitude
differences (e.g., the monthly-difference of streamflow data) between the flow regimes. While
several authors contributed on the identification of the main parameters affecting the shapes of
flow regimes, to our knowledge this is the first study which actually tries to integrate all those
parameters into a dissimilarity measurement. This measure between regimes is used to account
for both the magnitude and the position of the peaks, thus allowing one to quantitatively
compare any couple of regimes. This concept is extended to the basin descriptors, so that a
dissimilarity index between two sets of basin characteristics can be computed as well.

Fig. 8 Estimation of regime in
case of flat peak
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Information on both flow regime and basin descriptors have been combined to calibrate a
regional model: the value of a vegetation index and the average rainfall regime of an ungauged
basin are used to identify a set of gauged basins similar to the ungauged one. These are
grouped together, and their streamflow records are used to predict the regime at the ungauged
site.

The results made available by our distance-based model are comparable and are reasonably
better than what we obtained by using other traditional approaches. Moreover, the ability of the
modelhere proposed in prediction of complicated annual regimes can be achieved by using
only two descriptors.

This approach demonstrates also that is possible to exploit the information of “complex”
descriptors, in this case the average rainfall regime, without requiring any kind of parameter-
ization and thus making the prediction procedure easily applicable.
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