
Journal of Applied Water Engineering and Research, 2016
http://dx.doi.org/10.1080/23249676.2016.1196621

CASE REPORT
Flow duration curve regionalization with enhanced selection of donor basins

Muhammad Uzair Qamara∗, Daniele Ganorab, Pierluigi Clapsb, Muhammad Azmatc, Muhammad Adnan Shahidd and
Rao Arsalan Khushnoode

aFaculty of Agricultural Engineering and Technology, Department of Irrigation and Drainage, University of Agriculture Faisalabad
(U.A.F.), Faisalabad, Pakistan; bDepartment of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy;
cInstitute of Geographical Information Systems (IGIS), School of Civil and Environmental Engineering (SCEE), National University of
Sciences and Technology (NUST), Islamabad, Pakistan; dWater Management Research Center, University of Agriculture, Faisalabad,

Pakistan; eNICE, National University of Sciences and Technology (NUST), Islamabad, Pakistan

(Received 3 March 2015; accepted 27 May 2016 )

A non-parametric regionalization procedure for the assessment of flow duration curve (FDC) at ungauged basins is presented.
This modeling approach is fundamentally based on the quantification of dissimilarity between FDCs, thus allowing the
grouping of most similar basins. An analogous grouping procedure, performed in the space of selected basin characteristics,
allows the estimation of FDCs also at ungauged sites; however, for a fixed set of basin characteristics, some ungauged
basins cannot be properly represented due to the scarcity of close (similar) donor basins. For these cases, the proposed
method allows for the selection of an alternative set of basin characteristics as a support for similarity grouping. The results
of the study show that the statistical error can be significantly reduced by following the proposed methodology. About 10%
of all the basins involved in the analysis can benefit from the model swapping procedure, thus improving the final predicted
curve.
Keywords: non-parametric; regionalization; flow duration curves; distance matrix; ungauged basin; distance-based method

1. Introduction
The data on flows in river, particularly of lower magnitude,
are of great importance to meet the requirements of devel-
opmental projects for the management of water resources.
It is also pertinent to mention that the problem of estimat-
ing hydrological variables in ungauged basins located in
difficult terrain has remained the object of intense research
activity in recent years (Razavi & Coulibaly 2013; Azmat
et al. 2015, 2016). Different methods have been used to per-
form such estimation with the central idea of either extend-
ing or transferring the hydrological data, from gauged to
ungauged sites, by complementing its relationship with
catchment characteristics called descriptors (Botter et al.
2008; Blöschl et al. 2013). Among different statistics used
to represent the low flow (see Smakhtin 2001 for a review),
the flow duration curve (FDC) is a frequently used tool
to represent the water availability at a river section; it
is a cumulative-frequency curve which defines the rela-
tionship between magnitude of stream-flows of a certain
time resolution (hourly, daily or monthly) and frequency
of occurrence in any basin by translating the percentage
of time for which a certain magnitude of flow equals or
exceeds a certain flow value (Vogel & Fennessey1995).

Castellarin et al. (2013) have recently reviewed the cur-
rently used procedures aiming at the evaluation of FDCs in
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data-scarce basins, with a particular focus on the reliability
of such methods in different climatic contexts.

The FDCs can be interpreted in two different ways (see,
e.g. Vogel & Fennessey 1994; Castellarin et al. 2004a,
2004b, 2007): (i) total FDC (or period-of-record FDC), in
which FDC of an individual station is constituted by the
entire flow values occurring at that station and (ii) annual
FDC, a separate FDC is constructed for individual years.
Yokoo and Sivapalan (2011) disaggregated the FDCs into
two components, i.e. slow FDCs and fast FDCs to develop
a conceptual model to reconstruct FDCs, similar to the ear-
lier work of Muneepeerakul et al. (2010) and Botter et al.
(2007).

In practical applications, FDCs are often represented by
a parametric function which is usually a probability dis-
tribution such as the generalized Pareto distribution with
three parameters (Fennessey 1994), the Gumbel distri-
bution (Kottegoda & Rosso 1997), the normal distribu-
tion (Singh et al. 2001) and the two- or three-parameter
log-normal distribution (Fennessey & Vogel 1990; Claps
& Fiorentino 1997), although in the past different non-
probabilistic analytical forms have been popular (Müller
et al. 2014). In more recent times, other distributions have
also been used, for example, the Kappa (Castellarin et al.
2007), the EtaBeta (Iacobellis 2008) and the Burr type XII
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(Ganora & Laio 2015). The choice of the distribution
depends on the ability to adapt to the observed data and
the possibility to estimate parameters in a robust manner.
Parameters (or moments) of these probability distributions
are evaluated in ungauged basin as a function of known
basin characteristics (for instance, longitude/latitude of the
basin centroid or morphologic, climatic and basin-scale
features) (see Yusuf 2008). The hydrological model Mod-
ABa – MODel for Annual FDCs assessment in ephemeral
small BAsins – has also been used recently for the assess-
ment of FDCs by probabilistic characterization of the daily
streamflow (Pumo et al. 2014, 2016). Another approach
involves estimating the single FDC quantiles at fixed
probability levels through independent regression models
(Serinaldi 2011).

A different technique introduced by Ganora et al.
(2009) grouped similar basins based on a dissimilarity
index calculated between each pair of empirical FDCs. Pre-
diction can be performed in a non-parametric way by aver-
aging the dimensionless FDC of each element belonging
to the cluster. However, this procedure can be non-optimal
when there is no strong homogeneity within each group
(Michele & Rosso 2002).

Whatever the model, regional analyses to estimate
FDCs at ungauged sites are generally based on a few
morpho-climatic characteristics which are not able to
fully describe the complexity of the process, thus dete-
riorating the quality of the predictions (Laaha & Bloschl
2006).

In the present work, a possibility to improve the final
estimate by adding a ‘refinement’ procedure to the first-try
regionalized set is investigated. The analysis follows a pro-
cedure somewhat similar to that of Ganora et al. (2009) to
obtain a first operational model for the whole case study
in a strictly non-parametric way. Afterward, the space of
the selected model is divided into an adequate number of
clusters and models are re-selected for each cluster; a third
step allows one to improve the modeling results by re-
selecting a better model for points not well represented
by the original cluster. This approach is, in particular,
intended for those basins which are located away from
the rest of the basins in the descriptor space; such basins
will be referred to as remotely located basins (RLBs).
For an RLB, any estimation made about their hydrolog-
ical properties based on the neighbors can introduce an
error into final calculations. To deal with these RLBs,
a comparative analysis called model swapping procedure
(MSP) is introduced and is discussed in detail in Section 3
after a general description of the distance-based procedure
(Section 2).

The research work thus aims to investigate the fol-
lowing hypotheses: (i) whether dividing study area into
smaller clusters and selecting separate model for each clus-
ter can improve the results of predictions and (ii) whether
the statistical predictions at RLBs can be improved by
MSP.

2. Methodology
2.1. Data description
The time series dataset of 124 stations in Northwestern
Italy (see Figure 1) has been considered for the appli-
cation, having variable record length from a minimum
of 5 to a maximum of 52 years, with a mean value of
12 years; the flow data are extracted from the publica-
tions of the former Italian Hydrographic Service extended
with the more recent measurements provided by the
Regional Environmental Agency (ARPA) of the Piemonte
Region.

The whole database is described in Ganora et al. (2013)
and is supported by an extensive collection of basin charac-
teristics defined for each gauging station watershed (Gallo
et al. 2013); such features include geomorphological char-
acteristics obtained from the National Aeronautics and
Space Administration Shuttle Radar Topography Mission
(Farr et al. 2007) digital terrain model (pre-processed to a
100 m cell grid), climatic, vegetation and land-use descrip-
tors (including soil characteristics) derived by properly
clipping the thematic maps available for the area of inter-
est. A summary of the range of some of the descriptors
(out of 66 descriptors) used in the present research work is
reported in Table 1.

Annual empirical FDCs have been constructed from the
daily streamflow time series by ranking in the descending
order the observations and associating to each value the
exceedance frequency through the Weibull plotting posi-
tion Fi = i/(N + 1), where i is the index of the sorted value
and N the total number of observations in the year of inter-
est. To allow an easier comparison of the curves in the
dissimilarity-based framework, each yearly FDC has been
resampled in order to have 365 values (see Figure 2 for
sketching a curve with different number of elements resam-
pled with a constant spacing along the frequency axis);
this pre-processing does allow an easier handling of leap
years and curves with missing values (in any case, only
FDC with no more than 3 missing values per year has been
used), while it does not affect the actual shape of the curve.

The final step in the data preparation is the computa-
tion of the average annual FDC, obtained by averaging the
yearly curves at each frequency value Fi, thus obtaining
a single FDC for each station (Vogel & Fenessey 1994;
Mohor et al. 2015). Note that this curve represents a typical
average year and its shape shows the typical within-year
streamflow variability; a possible alternative is the period-
of-record FDC, which accounts for all the available data
and thus represents both the within- and the between-
year variability. This research work focused only on the
mean annual FDC as the time series have quite variable
length (from 12 to 53 years) and records are not always
overlapping. Moreover, for the effective application of the
model, the data are made dimensionless by normalizing
with the average flow value for that site as the focus is
on the ‘shape’ of the FDC (the mean value is in general
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Figure 1. Location of gauging stations used in the analysis.

Table 1. Range of variation of some selected descriptors used in the distance-based procedure.

Descriptors (symbols) Maximum Mean Minimum

Basin area (km2) (A) 25,640 1276.33 22
Maximum elevation of the basin (m) (Hmax) 2750.55 4743 368
Latitude of basin (m) (Ycor) 5,129,050 4,977,667 4,886,350
Longitude of basin (m) (Xcor) 508,450 401,454.8 319,450
Annual Normalized Difference Vegetation Index (NDVI) 0.644 0.451 0.082
Average basin elevation (m) (Hmean) 2682 1306.51 244
Mean annual precepitation (mm) (MAP) 2183.037 1193.34 706.532
Percentage area of the basin as wetlands (clc5) 7.89 0.181 0
Interquartile distance between basin elevation at 25% and 75% of area dominated

by hypsographic curve (deltaz)
1762 695.346 50

Standard deviation of mean annual precepitation (mm) (MAP_std) 372.913 125.927 18.486
Percentage area of the basin which is not vegetated (clc4) 78.68 16.038 0
Coefficient of variation in rainfall patterns (cvrp) 0.455 0.334 0.116
Time interval between maximum and minimum monthly averagesofrains(deltamon) 9 7.056 2
Percentage area of the basin as forests (clc2) 90.56 48.54 6.2
Percentage area of the basin as herbaceous vegetation (clc3) 89.32 33.15 8.57
75th percentile of the hypsographic curve (a75) 2462 941.76 202
Coefficient of rainfall intensity (Cint) 0.036 0.0199 0.011
Standard deviation of exponent of intensity - duration - frequency curve (IDFa−std) 37.88 23.39 11.88
Average values of coefficients of the Fourier series representing rainfall patterns

(fourierB1)
49.56 − 7.94 − 56.55

easier to estimate, by using a few years of observations
or simple models) (Smakhtin & Weragala 2005; Poff et al.
2006).

2.2. Selection of relevant descriptors
The first step of the regionalization procedure is analogous
to that adopted by Ganora et al. (2009); a dissimilarity
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Figure 2. Sampling points with original and increased sample
sizes to accommodate leap year values.

matrix is used to store the dissimilarity measure between
all the pairs of FDCs. The dissimilarity between FDCs of
any two stations is calculated by the use of the following
simple equation:

Da =
365∑

i=1

|Qi,s − Qi,r|, (1)

where the value Da is total magnitude of dissimilarity
between FDCs of stations ‘s’ and ‘r’ having flow magni-
tude of Qi,s and Qi,r, respectively, being i the index of the
FDC value.

The descriptors are normalized by using the mean val-
ues of each descriptor for the entire study area (see Reed
et al. 1999; Livneh & Lettenmaier 2013). Afterward, the
distance matrices of descriptors are obtained by calculating
dissimilarity (Dd) between descriptors values (ds and dr) at
two sites; if the descriptor is a single-value number (e.g.
basin area, mean elevation), the dissimilarity is simply the
absolute difference of the descriptors values of the two
basins, i.e. Dd = |ds − dr|; otherwise, if the descriptor is
a curve itself (e.g. hypsometric curve), Equation (1) can
be used (Qamar et al. 2015). The approach has the advan-
tage of enabling the use of the whole curve as a single
variable with respect to represent the curve through fixed
quantiles or parameters of analytical representation. The
FDC distance matrix can be correlated, by means of lin-
ear regression models, to the distance matrices of one or
more descriptors and properly tested to find the signifi-
cant correlations. The complete information regarding the
regionalization procedure is presented in the form of flow
chart in Figure 3.

Since the aim is to convert the descriptors’ data into
hydrological data, therefore the representative descriptors
(dominating descriptors) should be first defined. To start
with, the distance matrices for each descriptor Ddi as well
as for the FDCs DQ are firstly determined.

Figure 3. Schematic diagram representing the steps involved in
the regionalization procedure followed by Ganora et al. (2009).

The dominating descriptors are bracketed by their
relationship with FDCs. The multiregressive approach is
used to assess the relationship between distance matrix
of discharge and descriptors; the statistical model can be
written as

DQ = β1Dd1 + β2Dd2 + β3Dd3 + · · · + βpDdp + C0, (2)

where DQ and Dd are distance matrices of discharge and
descriptors, respectively, unfolded to be represented as
vectors (Lichstein 2007); p is the number of descrip-
tors involved; " are the regression coefficient; and C0 is
residual matrix. The strength of regression is determined
by

R2
adj = 1 − (1 − R2)

n− 1
n− p − 1

, (3)

with n as number of basins and R as the standard coefficient
of determination (e.g. Kottegoda & Rosso 1997).

Due to the large number of regressors, it is lively to find
models with a non-negligible correlation between descrip-
tors. In these cases, the variance inflation factor (VIF)
which measures the undesirability of multicollinearity in
a least-square regression analysis becomes unignorable.
It quantifies, through an index estimation, the inflation
occurred in variance of an estimated regression coefficient.
A cut-off value of 5 is used, beyond which the selected
model is dropped (Montgomery et al. 2001).

Analogously to Ganora et al. (2009), the present
methodology used the procedure defined by Lichstein
(2007), which provides a method for multiple regression
on distance matrices (MRM) and an extension of the Man-
tel test to check the significance of regression coefficients
when working with distance matrices (analogous to the
t-Student test for regular regressions).

Regression models that passed the Mantel test and
VIF test, and having the higher R2

adj values, are used to
implement a cluster analysis procedure in order to pro-
vide adequately homogeneous (in statistical sense) pooling
groups.
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Table 2. Descriptor models for the overall study area and
clusters enlisted in the order of " values (models in italic
font are the selected ones).

Model
vicinity Descriptors (symbols) R2

adj VIF
Delta
factor

Overall clc5,Hmax 0.024 < 5 59.00
ycor, hypsographic curve 0.041 < 5 59.66

Hmax, NDVI 0.030 < 5 60.26
NDVI, deltaz 0.023 < 5 60.48
ycor,Hmean 0.033 < 5 60.82

Cluster-1 MAP_std, NDVI 0.035 < 5 57.33
clc4, cvrp 0.048 < 5 58.85

Hmax, NDVI 0.038 < 5 59.06
clc4, clc5 0.047 < 5 59.74

Hmax, hypsographiccurve 0.049 < 5 59.84
Cluster-2 Hmax, deltamon 0.066 < 5 51.46

clc5,Hmax 0.069 < 5 53.66
Hmax,NDVI 0.065 < 5 56.17
MAP,Cint 0.029 < 5 56.24
Hmax,Cint 0.066 < 5 57.64

For each selected model (within each cluster), each
station is considered, in turn, as ungauged and its FDC
is estimated by the nearest neighbors (NNs) (please refer
to Section 2.3) and then compared to the original empiri-
cal one. The error measure ζ , defined as the dissimilarity
(computed by Equation (1)) between the empirical and the
estimated FDCs, is calculated for each station. The overall
error measure " =

∑n
1 ζ is then used as a comprehensive

performances index of the specific model and used to rank
the different regressions. The best models are the combi-
nations of descriptors which generate the lowest values
of " and comparatively good R2

adj values. The R2
adj values

obtained with regression models with distance matrices are
low, although the descriptors result to be statistically sig-
nificant. Lower R2

adj values arise from simpler models with
only two descriptors, as in Table 2.

The proposed methodology of distance-based measure-
ment is carried out in the R statistical environment (R
Development Core Team 2013), desegregated for Man-
tel test and multivariate regression analysis in the nsRFA
package (Viglione 2007).

2.3. Implementation of the model
Based on the descriptors’ distance matrices selected above,
the empirical FDCs of neighboring basins are used to
execute the FDCs for ungauged basin. There are differ-
ent procedures available in the literature to choose the
neighboring basins, for example formation of fixed regions
through cluster analysis (Hosking & Wallis 1997; Viglione
et al. 2007) or based on region of influence (ROI) (Burn
1990). The present methodology use a combination of clas-
sification techniques grounded on the dissimilarity-based
approach depicted above: cluster analysis, performed on
the basis of dominating descriptors selected in the first step,

is followed by ROI grouping in each cluster to assess FDCs
in ungauged basin. The Ward agglomerative hierarchical
algorithm (Ward 1963) is used as it is able to generate
compact clusters with evenly distributed basins in each of
them. In this work, the stations are clustered on the basis
of dominating descriptors and each cluster is treated as
a separate entity (no reallocation or homogeneity test for
cluster independence is considered). The number of clus-
ters (two macro sub-regions) is selected by using NbClust
package in the R statistical environment, which provides
best clustering scheme by observing the results obtained
by varying the number of clusters, distance measurement
and clustering technique (Charrad et al. 2014). The aim of
doing cluster analysis is to select a model for each region
executed by dividing the entire study area purely on the
descriptors values to reduce the error magnitude resulting
from the extension of single model over the whole study
area (Laaha & Bloschl 2006).

However, the definition of the optimal number of clus-
ters is a difficult task because one looks for a few homo-
geneous groups with a large number of elements; these
conditions are rarely obtained as homogeneity tends to
increase with decreasing number of elements within the
cluster (and thus with increasing the number of clusters).
The rationale of this work is to accept clusters even if they
are slightly non-optimal (thus avoiding complicated pro-
cedures such as reallocation of elements between clusters)
and move the optimization step to the second phase of the
procedure.

The methodology is applied to the basins with areas
varying from 22 to 25,640 km2. For the sake of simplic-
ity in interpretation of results, the basins are classified on
the basis of their areas. The basins with an area less than
500 km2 are considered small; medium-sized basins have
their areas ranging between 500 and 1000 km2 and those
which surpass 1000 km2 are classified as large basins.

The results generated by the proposed model for the
entire study area are tested by using a cross-validation pro-
cedure. It is done by considering one station as ungauged,
removing it from the whole database and estimating FDC
for that station with the proposed approach. For prediction,
the models with two descriptors are preferred because of
their higher robustness and for an ease of comparison with
geographical distance method (explained in Section 4.2),
which is also a combination of two descriptors (latitude
and longitude). The process is repeated for all the stations
and the errors are measured between estimated FDCs and
empirical FDCs.

3. Model swapping
Whatever the method adopted to group basins, in any
descriptor space constituted by the selected variables, the
stations located away from the rest of the basins may not be
well represented in terms of neighbors; these are the RLBs,
and an example is reported in Figure 4 (red dot). When
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Figure 4. Station represented by red dot is located remotely
(S3

NN/TDn = 2.849 > 1.50) and the one in green is located in
comfortable zone (S11

NN/TDn = 0.68 < 1.50), in space of any
selected model (xK , yK ).

hydrological data are assessed at RLBs, there is always a
considerable amount of error in the final calculation due
to scarcity of data, which prevents the usage of standard
models (Pellicciotti et al. 2012). In the space of dominat-
ing descriptors, there can be stations having rather different
descriptors values from the rest of the sample and since the
values of descriptors directly affect the hydrological prop-
erties of basins, therefore the assessment made on their
hydrological properties from its neighboring basins can
introduce a reasonable amount of error (Pechlivanidis et al.
2014). Hence, it can be concluded that the selected model
is good for the majority of basins, but it is likely to be not
representative of the remote ones.

In hydrological modeling, the relationship between
descriptors and hydrological data is generally considered
through R2

adj, which represents the quality of fit for the
model (e.g. Heerdegen & Reich 1974; Mimikou & Gordios
1989; Post & Jakeman 1996, 1999; Tung et al. 1997; Sefton
& Howarth 1998; Pandey & Nguyen 1999). This selection
criterion is backed up with the " factor, which indi-
cates the overall error magnitude produced by the model.
Based on the model selection criteria defined in section 2.2
(R2

adj and "), the hypothesis is that for any RLB (say X )
in the selected model space having certain R2

adj and " fac-
tor values can be replaced by another model with similar
performances, but where X is in a more desirable position
among its neighbors (e.g. arranged approximately in the
middle of the cluster of stations), called comfortable zone
(see blue dot in Figure 4).

The definition of comfortable zone comes from Korn
and Muthukrishnan (2000), who are the first to study
reverse k NNs (R kNNs) queries. The R kNN of any query
point (say P) executes the objects in the database which
have P as their NN. Later, Stanoi et al. (2000) solved the

R kNN queries by partitioning the whole space around
the data point into six equal regions (each of 60◦). The
same concept is used in defining the confidence zone of
an unknown data station in the present work with a slight
modification, i.e. instead of finding all the stations that
have unknown data station (P) as their NN, the NNs of
P are found because the former can result in only a limited
or no NN (in case of an RLB) leading to oversimplified or
no result, respectively.

The MSP assumes that each NN contributes equally to
the hydrological data of ungauged basin. The hydrological
dissimilarity between two basins is proportional to the dis-
tance between them in the selected descriptors model space
(Ganora et al. 2009). Therefore, theoretically, the best loca-
tion for an ungauged basin is to be in the middle of its
neighbors because only then, each station is at an equal dis-
tance from the unauged basin and is contributing equally.
The efficient estimations are acquired if the hydrological
average of the NNs of ungauged basin on descriptors space,
which hypothetically locates ungauged basin at the cen-
troid of NNs, is also matched by the location of ungauged
basin in descriptors space among its neighbors.

The MSP developed here is a comparative analysis and
is valid only for the stations which are remotely located.
No mathematical definition of RLB is present in the liter-
ature for this kind of application. In the present work, the
following procedure is used to define an RLB:

(1) A comparison of station-neighbors distance for
any selected station, say X, with station-neighbors
distances of rest of the stations.

If SXNN is the sum of station-neighbors distances for the
basin X , then for more general case of n number of basins,
it can be written

TDn =
∑n

i=1(S
i
NN)

n
, (4)

where TDn is average station-neighbors distance for the
entire basins in the study area. The basin X can be rea-
sonably considered an RLB if SXNN > 1.5 · TDn.

The multiplication factor of 1.5 is used to relate SNN
and TDn. The threshold is carefully selected among a num-
ber of available options (e.g. 1.10, 1.25, 1.50, 2.00, and 3).
The lower threshold (e.g. 1.10) substantially increased the
number of RLBs, thus undermining the importance of ini-
tially selected model. Moreover, RLBs should have a clear
dissimilarity magnitude in terms of descriptors values from
remaining basins in the study area. For lower threshold,
this pattern may not be achieved due to smaller difference
between the values of SNN and TDn. On the contrary, the
higher threshold (e.g. 2 or 3) executes only a limited or at
times no RLB.

(2) Observing the neighbors in six sectors around the
station (Stanoi et al. 2000).
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Generally, due to the unique position of remote basin
in the study area, its NNs are either concentrated in one of
the six regions around it or basin is not covered from all
sides (see Figure 4). The swapped model should increase
the covering of basin by its neighbors.

Practically speaking, referring to Figure 4, the orien-
tation of NNs for station # 11 (blue filled point) is more
desirable than that of station # 3 (red filled dot). Therefore,
the statistical estimates of station # 3 can be improved by
MSP.

It should be noted that the selection of model to bring
an RLB in a comfortable zone is done by swapping it with a
model having similar " and R2

adj values, on the exact same
procedure as discussed in previous section for the selection
of model for each cluster.

After performing statistical tests, the models with two
descriptors for clusters and overall study area are selected.
Ideally, each descriptor value of each station should be uni-
formly scattered over the entire space of a selected model.
The present methodology employed the use of density
plots to measure the ‘degree of scatter’ of each descriptor
values.

The difference between " values of the original and
the swapped models should be as lower as possible (not
greater than 5% in the present methodology) in order to
consider the two models showing similar performances;
higher the difference between the delta values, higher
will be the error in the swapped model space. The

higher error in the swapped model will obviously make
its prediction more unreliable even with the increased
coverage.

To clarify the concept of MSP to have better spatial
coverage around the ungauged data point, an example is
reported. The statistical results of the NN analysis, for sta-
tion # 4 (represented with red filled dot in Figure 5) and
station # 45 (represented with red filled dot in Figure 6),
before and after improving the spatial coverage of neigh-
bors (represented with green filled dot) are compared. The
selected five models for overall study area and selected
clusters are enlisted in Table 2, which carries " values
and R2

adj of the models. The outputs of originally selected
and swapped models in terms of root mean square error
(RMSE), Nash–Sutcliffe efficiency (NSE) and mean abso-
lute error for the considered station are represented in
Table 3.

To summarize, the complete procedure for the evalua-
tion of FDCs requires: (1) the computation of the distance
matrix of the FDCs; (2) the computation of the distance
matrix of each descriptor; (3) the " and MRM will give us
operational models for the overall study area, (4) the space
of the selected model for the overall study area is divided
into smaller cluster, (5) based on the previously defined
procedure of model selection, model is selected for each
smaller region, (6) RLBs are shifted to comfortable zone
by utilizing MSP, and (7) the regional dimensionless FDCs
are estimated by NN method.

Figure 5. (a(i)) Basins arrangement in the space of selected model; (a(ii)) detailed view of selected basin and its neighbors; (b(i) and
b(ii)) swapping model to give better neighbor coverage and its detailed view, respectively.
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8 M.U. Qamar et al.

Figure 6. (a(i)) Basins arrangement in the space of selected model; (a(ii)) detailed view of selected basin and its neighbors; (b(i) and
b(ii)) swapping model to give better neighbor coverage and its detailed view, respectively.

Table 3. Results generated by original and swapped model in terms of RMSE, NSE and Da.

Basin number Cluster number Original model RMSE NSE Da Swapped model RMSE NSE Da

4 1 MAP_std, NDVI 0.144 0.960 34.071 Hmax, NDVI 0.075 0.989 21.492
45 2 Hmax, NDVI 0.214 0.949 59.600 Hmax,Cint 0.155 0.973 41.972

4. Alternative methods
The proposed procedure has been applied to the Italian
case study and compared to the results produced by other
regional approaches, to verify the suitability of the results.
The alternative methods used in the comparison are a para-
metric model and a non-parametric approach based only on
the geographical proximity of the donor stations.

4.1. Parametric model
For comparison, the results obtained from a regional
model, based on the Burr distribution, developed (fitted to
observed data and predicted at ungauged stations) over the
same dataset of this study (Ganora et al. 2013) are used.
The parametric model provides the FDC at ungauged sites
according to the quantile equation of the Burr, which reads

x(P) = a

(
(1 − P)−b − 1

b

)1/c

, (5)

where a is the location parameter, while b and c are
the two shape parameters. For particular conditions, the
Burr becomes a two-parameter Weibull (b → 0), or a
two-parameter Pareto (b → −∞ and c → ∞ jointly).

Fitting of the model is performed by first computing
sample L-moments for all the available mean annual FDCs.
L-moments are widely used statistics that, analogously to
ordinary moments, contain information about the average,
the variability, the skewness, etc., of a distribution. For fur-
ther details about theory and application of L-moments,
the reader is referred to Hosking and Wallis (1997) and
references therein. To evaluate the set of L-moments in
ungauged basins, Ganora and Laio (2015) used multi-
ple regressions based on catchment descriptors adequately
selected among a wide database of basin characteristics.
The choice of the ‘best’ models is performed by check-
ing all the possible regression models with a combination
of 1–4 descriptors: first, the models are tested for sig-
nificance (t-Student test) and multicollinearity (VIF test);
then, the models are sorted according to their prediction
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performances. Final model reads:

Y = −7.3605 · 102 + 1.2527 · MAP

+ 3.2569 · 10−1 · Hmean + 5.2674 · fourierB1

− 6.7185 · clc2, (6)

LCV = −2.896 · 10−1 − 2.688 · 10−3 · clc3

+ 9.643 · 10−5 · a75 + 1.688 · 10−4 · MAP

+ 2.941 · 10 · cint, (7)

LCA = 4.755 · H−0.2702
max · IDF0.06869

a_std · cv0.2106
rp , (8)

where Y is the mean annual runoff in mm, L-CV is the
L-coefficient of variation and L-CS is the L-coefficient of
skewness. The descriptors used in Equations (6)–(8) are
defined in Table 1, while details about descriptors can be
found in the original publication (Ganora & Laio 2015).
However, it is recalled that Hmean,Hmaxanda75 are mor-
phological indexes; MAP, fourierB1,Cint, IDFa−std and cvrp
refer to climatic features at the basin scale; and
clc2 and clc3 are land-use characteristics.

The FDC prediction in ungauged basins is finally per-
formed by computing the L-moments on the basis of the
descriptors of the target basin through Equations (6)–(8),
and thus calculating the parameters a, b and c of Equation
(5) from the L-moments. Relationships between param-
eters and L-moments are not reported for brevity, but
numerical methods as well as approximate formulas can
be found in Ganora and Laio (2015).

This regional approach can be interpreted, following
the classification of Wagener et al. (2007), as a ‘mapping
function’ as it does not require homogeneous regions but
only an interpolating function (the regression in this case)
that is assumed valid over the whole case study areas (see
also Laio et al. 2011 for an application of the same idea to
flood frequency analysis).

4.2. Geographical distance method
An alternative non-parametric method to regionalize the
FDC is the selection of NNs according to the geographi-
cal distance. It is assumed that the stations having similar
hydrological properties are located closer to each other in
the geographical space and hence it is reasonable to asses
hydrological properties of ungauged catchments based on
spatial proximity (Blöschl 2005). The Euclidean distance
norm is generally used to calculate distance between a pair
of catchment centroids and is adopted for this study.

A preliminary processing (not shown) has reported that
average of the nearest (in geographical space) five neigh-
bors provides better prediction performances for the case
study.

5. Result
Before presenting the results of the study, it is worth com-
menting that only a few of the many parameters available
to describe the basin morphology and climate are required
by distance-based method for efficient estimation of FDC
in an ungauged basin. Figure 7 reports the actual and pre-
dicted FDCs in cross-validation. It can be observed from
Figure 7 that the agreement between actual and predicted
FDCs is well established in case of the proposed method
when compared to the other methods.

As performance indexes, RMSE, Da and NSE are
evaluated. These performance indexes for the four consid-
ered procedures (proposed model, geographical distance
method, parametric model and by the usage of single
model for entire study area) are listed in Table 4 for some
randomly selected basins, while a complete comparison is
shown in Figure 8. The solid line, in Figure 8, represents
the ratio 1:1 between the errors, while dashed lines delimit
the areas where errors for the proposed method are twice
the parametric ones and vice versa. Points above the solid
line represent FDCs better estimated by the distance-based
method; points above the top dashed line represent FDCs
much better estimated by the proposed method.

Since large number of basins in Figure 8 are located
above the solid black line, it can therefore be interpreted
that the proposed methodology works better than the other
comparative methods.

The newly developed method, in which models are pre-
dominately constituted by climatic descriptors due to better
global performance, out-performed the other methods in
medium- and large-sized basins but in some of the small
basins the error magnitude is comparatively large. The
results are in line with the major finding of the Land-Ocean
Interaction in Coastal Zone research which states that due
to modulation capacity of larger rivers the influence of
climatic descriptors affects the smaller basins more dramat-
ically than larger basins (Crossland et al. 2005). Generally,
the proposed model performs well for the majority of
basins in the study area.

The latter part of the work involves the identification
of the basins which are located away from the rest of the
basins. By using set criteria (Equation (4) and NNs in six
sectors), some of these basins are identified as RLBs. It is
for these basins that MSP is introduced. Of the entire basins
used in analysis; 10% basins are found to be remotely
located whose prediction is improved using the MSP (see
Figure 9).

Figure 9 shows that the statistical error of estimation
is significantly reduced by swapping the initially selected
model with another model, based on set criteria.

The methodology is served well by the models con-
stituted by the climatic-geomorphological characteris-
tics, while certain land-use characteristics (e.g. clc5) and
extended information from rainfall pattern (e.g. deltamon)
produced, comparatively, less appreciable results. The

D
ow

nl
oa

de
d 

by
 [P

ol
ite

cn
ic

o 
di

 T
or

in
o]

 a
t 1

1:
47

 0
8 

O
ct

ob
er

 2
01

7 



10 M.U. Qamar et al.

Figure 7. Comparison of simulated FDCs with actual FDCs at selected stations.

Table 4. RMSE, NSE and Da obtained in the various basins using different methods.

New method

Euclidean
(geographical)

distance method
Parametric

(Burr) model
Single model for
entire study areaBasin

Station
codes

Area
(km2) A RMSE NSE Da RMSE NSE Da RMSE NSE Da RMSE NSE Da

1 204 0.050 0.995 13.370 0.077 0.098 23.401 0.734 0.087 78.307 0.121 0.975 38.135
2 382 0.190 0.862 42.825 0.297 0.667 73.827 0.950 − 2.40 128.99 0.264 0.735 63.378
4 69 0.075 0.989 21.492 0.182 0.936 56.814 0.3116 0.815 63.079 0.204 0.921 65.797
7 350 0.240 0.965 33.921 0.459 0.873 79.694 0.884 0.530 80.096 0.254 0.961 43.354
13 496 0.101 0.996 12.690 0.066 0.996 12.700 0.445 0.821 64.498 0.132 0.984 22.845
15 2594 0.119 0.983 27.609 0.257 0.921 44.320 0.874 0.089 93.425 0.251 0.924 61.291
27 154 0.123 0.975 23.373 0.287 0.866 40.990 0.428 0.703 59.176 0.120 0.966 26.682
48 91 0.209 0.910 61.102 0.499 0.491 84.939 1.146 − 1.682 190.120 0.735 − 0.103 122.20
60 147 0.162 0.938 34.744 0.164 0.936 36.585 0.278 0.933 56.426 0.370 0.678 73.693
69 953 0.268 0.944 65.428 0.257 0.948 69.384 0.455 0.840 109.697 0.364 0.898 94.980
76 25,640 0.161 0.886 40.613 0.486 − 0.029 93.630 0.297 0.877 41.215 0.329 0.526 82.503
88 122 0.212 0.956 45.702 0.316 0.903 84.129 0.659 0.580 66.379 0.274 0.927 80.897
92 560 0.190 0.901 40.000 0.192 0.902 41.963 0.439 0.485 50.929 0.228 0.861 69.134
105 233 0.117 0.983 34.424 0.210 0.948 65.967 0.456 0.757 70.506 0.251 0.926 72.625
109 249 0.051 0.994 9.763 0.130 0.966 37.304 0.501 0.504 78.204 0.153 0.954 43.982
112 375 0.182 0.900 38.240 0.274 0.773 67.418 0.365 0.782 63.615 0.272 0.778 59.710

apparent reason seems to be the difficulty in nominating
the unique NNs of ungauged basin due to the lower degree
of scatter of the descriptor values in the space of selected
model (i.e. many basins with exact same descriptor val-
ues). Figure 10 reports the density plots of two descriptors

NDVI and deltamon (left and right, respectively). The plot
of NDVI is uniformly scattered with each basin having a
unique descriptor value, whereas the plot of deltamon shows
that the stations are clustered at a particular section of the
descriptor space and a number of stations have similar
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Figure 8. Comparison of RMSE and Da of distance-based model, geographical method, parametric model (Burr distribution) and single
model for overall study area.

descriptor values, making it difficult to differentiate the
basins. Therefore while applying this method, it is advis-
able to use those basin characteristics, which allow easy
identification of unique NNs of ungauged basin.

The size of the " factor value is constrained in MSP
(i.e. the value should not exceed 5% of the initial model
selected for the cluster) because larger " value differences

exaggerate the error magnitude in the space of selected
model, making the executed results for any station unre-
liable.

The comparison in Table 5 shows that the performance
of a model is considerably enhanced (in terms of RMSE,
NSE and Da) by dividing the study area into clusters and
selecting individual model for each of it.
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12 M.U. Qamar et al.

Figure 9. Comparison of error magnitude between originally
used model and swapped model.

6. Discussion and conclusion
The linear regression models are applied for the predic-
tion of FDCs in ungauged basins due to the simplicity in
application and requirement of less data when compared to

the non-linear regression models. This allows us to obtain
a more robust model even if the final performance may
be less optimal. Moreover, it is important to recall that
the regressions have been applied to the distance matri-
ces, thus requiring the application of the Mantel test to test
the significance of each regressor. The current implemen-
tation of the Mantel test works in a linear context, while
applicability to non-linear regression is yet to be investi-
gated; therefore the method is applied to the linear models
only. The simplicity of the proposed procedure makes it a
valuable tool for the assessment of FDCs in an ungauged
basin.

The procedure is applied to 124 basins in North-
ern Italy. The basins used in the analysis present dif-
ferent hydrological behaviors and cover a wide range
of descriptors (area, elevation, etc.). The methodology
is largely centered around the execution of dissimilarity
between FDCs in raw (non-logged) space. The dissimi-
larity matrix is thus generally less sensitive to low flows.
The choice of raw versus transformed space depends
on the scope of the work (Ganora et al. 2009). In the
present work, Equation (1) to compute dissimilarities is
applied on non-logged space because the aim is to pro-
vide a full representation of the FDC, in order to evaluate

Figure 10. Density plots of some selected descriptors (NDVI and clc5).

Table 5. Comparison of magnitudes of different errors (ζ ) with corresponding standard deviations (δ).

Model ζRMSE(δ) ζNSE(δ) ζDa(δ)

New method 0.271(0.264) 0.863(0.210) 53.721(37.698)
Geographical method 0.310(0.266) 0.783(0.470) 62.735(38.750)
Parametric method 0.535(0.240) 0.327(0.240) 83.465(35.490)
Single model method 0.301(0.268) 0.798(0.482) 60.112(38.953)
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overall volumes rather than just the low-flow tail of the
curve.

The discharge distance matrix is linked to the basin
descriptors’ distance matrices through regression; later the
selected descriptors space (obtained from the best regres-
sion model) is divided into different clusters and the best
models are found for each cluster.

The method also proposed a comparative method called
MSP, which provides an opportunity to improve the esti-
mates for RLBs. For an RLB, it is allowed to search
the operational model among a set of models with sim-
ilar global performances but based on the different sets
of descriptors with respect to the original model. Alterna-
tive models are swapped, searching for the better statistical
estimates which can be obtained when the new model bet-
ter represents the ‘location’ of the basin in the descriptor
space, i.e. the basin is no longer remotely located (or its
‘remoteness’ is reduced) and the estimation of the design
variable is based on a more representative set of donors.
This two-step approach allows the global model, which
provides the best predictions ‘in average’, to be more flex-
ible by providing alternative predictions only where the
global estimates are less reliable.

The distance-based model proposed here is able to
reproduce the unknown FDCs in an efficient way as
compared to the geographical distance method and the
parametric model. The mean statistical error (in terms of
RMSE, NSE and Da) generated by proposed model is less
than the alternative methods (see Table 5). Moreover, the
set hypotheses about the ability of proposed procedure
(including MSP) to better predict FDCs are further sta-
tistically tested. A non-parametric Mann–Whitney U-test
is used to evaluate the null hypothesis that the difference
in the median of error generated by proposed model and
alternative methods is not significant. A probability level
of < .05 is used to test the null hypothesis, which con-
cluded that the proposed model can reproduce the FDCs
by generating lesser magnitude of error.

The present work also covered some of the short falls
in previous work done by Ganora et al. (2009): (1) a fixed
number of neighbors is not necessarily the best approach in
case of RLBs, the model is changed to eliminate remote-
ness, (2) since the basins are scattered over a wide range
of descriptors values, therefore using only a single model
for the whole study area is oversimplification. The issue is
addressed by dividing the whole study area into smaller
clusters and a separate model for each cluster is found,
(3) reallocation procedure might be complicated in the
case of many clusters whereas no reallocation procedure
is required in the proposed methodology. On the contrary,
cluster analysis is only done on the descriptor space in the
present procedure.
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