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ABSTRACT 

Assessment of water resources in a region starts with the application of statistical models for 
estimation of annual flow with a given return period, that evaluate the spatial variability of the 
studied variable. The most popular model in regional frequency analysis is the “index-flow”, 
based on the hypothesis that the distributions of the variable are identical in different sites of a 
statistically homogeneous region, with the exception of a scale parameter. 

In this work we discuss an objective method of choice of the best statistical model for 
estimation of the index-flow, selected as the mean annual runoff, in ungauged basins. Special 
attention is dedicated to the selection of meaningful morphological and climatic characteristics of 
the river basins, which behave as prediction variables in the regression model. 

The proposed procedure has been applied to 47 basins in Piemonte and Valle d'Aosta (North-
Western Italy), whose physiographic characteristics vary substantially moving from the alpine 
regions to the more temperate southern basins. 

 

1. INTRODUCTION 

Many practical hydrological problems require reliable models for estimation of mean annual 
runoff in a region. Runoff cannot be interpolated like purely distributed variables, as precipitation 
or temperature, because runoff in a cross section is representative of the whole contributing basin. 
Therefore, usual spatial interpolation methods cannot be used for estimation in ungauged basins. 

As regards the statistical approach, one of the firsts and more popular methods in regional 
frequency analysis is the “index-flood” technique (Dalrymple, 1960). Many Regional Flood 
estimation projects (see e.g. Rossi & Villani, 1995 or Robson & Reed, 1999) are based on 
Dalrymple's methodology, but also flow duration curves can be referred to the index flow method 
(Claps & Fiorentino, 1997; Castellarin et al., 2004). In this work we are interested in the annual 
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flow, that is the amount of water crossing a river section in one year. If compared with 
hydrological extremes, applications of regional analysis to average variables, like the annual flow, 
are much less 
frequent in literature. Vogel & Wilson (1996) present some applications related to the US, while 
in Italy some previous works can be traced back to Ferraresi et al. (1988), Claps & Mancino 
(2002) and Brath et al. (2004). 

The purpose of the Regional frequency analysis of the annual flow is the estimation of its 
probability distribution in basins with few or no data. The fundamental hypothesis of Dalrymple's 
method is that the distribution of a variable in different sites belonging to a “homogeneous region” 
is identical, with the exception of a scale parameter. This latter varies in the region according to 
climatic, morphometric and geologic characteristics of every considered basin. 

In this work we are interested in the regional estimation of the “index-flow” parameter, that 
can be either the sample mean (e.g. Hosking & Wallis, 1997) or the sample median (e.g. Robson 
& Reed, 1999). Viglione et al. (2006) show that, for variables characterized by low skewness 
coefficients, the estimation of the mean is less biased than that of the median. For this reason in 
this work the sample mean is used as the index-flow. 

Many methodological approaches are available for the index-flow estimation, and their 
differences can be related to the amount of information available (see e.g. Bocchiola et al., 2003). 
Excluding direct methods, that use information provided by flow data available at the station of 
interest, regional estimation methods require ancillary hydrological and physical information. 
Those methods can be divided in two classes: the multiregressive approach and the hydrological 
simulation approach. For both of them, the “best” estimator is the one that optimizes some 
criterion, such as the minimum error, the minimum variance or the maximum efficiency. 

Due to its simplicity, the most frequently used method is the multiregressive approach (see e.g. 
Kottegoda & Rosso, 1998), that relates the index-flow to catchment characteristics, such as 
climatic indices, geologic and morphologic parameters, land cover type, etc., through linear or 
non-linear equations. 

In this work, several morphologic and climatic attributes of catchments are selected and 
computed for 47 basins in North Western Italy. Using these descriptors, a comprehensive 
multiregressive approach is established to select the most influential descriptors for this 
geographic context. 

 

2. SELECTION OF MORPHOCLIMATIC BASIN DESCRIPTORS 

Meaningful morphoclimatic descriptors of river basins should have direct connection to the 
hydrological processes taking place in drainage basins. These indices give synthetic information 
on the shape of basin surfaces, the nature of soil and vegetation and its climatic features. Ideally, 
these indices should play a role in the average water balance within the basin, with the 
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morphologic ones related to the hydrologic response, and the climatic ones related to the water 
losses. 

 

2.1 SELECTION OF MORPHOLOGIC PARAMETERS 

In this subsection, some morphometric parameters of drainage basins and river networks are 
described. All of them can be computed automatically using GIS tools, using a procedure that has 
been developed within the “Linux” operating system, using the “bash” language of scripting, to 
exploit together the “GRASS” GIS and the “Fluidturtle” libraries 
(http://www.ing.unitn.it/~rigon/indexo.html). The “R” statistical computing software has 
been also used for the computation of statistical indices. The choice of open source software, 
under the GNU General Public License, has been determined by the fact that all these packages 
are constantly updated and improved by experts of the international scientific community. 
Following this philosophy our script is open, easily customizable, and available at the address 
www.idrologia.polito.it/~alviglio/software/GRASSindex.htm. 

Two different types of morphologic parameters are considered: drainage basin and river 
network parameters. 

 
2.1.1 Drainage basin parameters 

For each drainage basin, morphological parameters were calculated operating on a Digital 
Elevation Model (DEM) with the “Fluidturtle” libraries. These libraries provide tools for DEM 
analysis like the pit removal (to ensure hydraulic connectivity within the watershed), the 
computation of flow directions, the delineation of channel networks and much more (see 
Figure 1).  

The parameters selected with regard to drainage basins are as follows: 

• Area S [km2]: area of the plane projection of the drainage basin (see Figure 2). 

• Centroid Xbar, Ybar [m]/[deg]: position of the centroid of the plane projection of the drainage 
basin (see Figure 2). 

• Perimeter P [km]: length of the contour of the plane projection of the drainage basin (see 
Figure 2). 

• Reference elevations Hmax, Hmin, Hm [m a.s.l.]: maximum, minimum and mean elevation of the 
drainage basin (Figure 1.a) above sea level.  

• Area above 2000 m a.s.l. S2000 [%]: ratio between the area lying above 2000 m a.s.l. and the 
total basin area. 
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Figure 1 - Examples of parameter maps of a drainage basin obtained from the DEM: 

matrix of elevations (a), matrix of slopes (b), matrix of aspects (c), matrix of 
distances to the outlet (d), matrix of pixel distances to the network (e), Horton-
Stralher ordering of the river network (f). 

• Bounding box corners Xmax, Xmin, Ymax, Ymin [m]: coordinates of the rectangle containing the 
drainage basin. It refers to the smallest rectangle which entirely encloses the drainage basin 
(see Figure 2). 

• Length of the orientation vector LOV [km]: length of the segment joining the basin centre of 
mass to the basin outlet (see Figure 2). 

• Main orientation angle OOV [deg]: angle between the orientation vector and the north (see 
Figure 2). 

a) b) 

c) d) 

e) f) 
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Figure 2 - Geographic parameters of the catchment. 

• Northing NORD and Easting EST: cosine and sine of OOV . NORD is 1 if the basin is oriented 
northward, -1 if it is oriented southward. EST is 1 if the basin is oriented eastward, -1 if it is 
oriented westward. 

• Mean small-scale slope pm [%]: average of the slope values associated to each pixel in the 
DEM of the drainage basin (Figure 1.b). 

• Mean large-scale slope Pm [%]:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

S
HH

arctgP med
m

)(2 min  (1) 

where S is the basin area, Hmed the median elevation and Hmin the elevation of the closing 
section. The Pm is a slope measure of a square equivalent basin, and does not account for basin 
shape; its definition is objective, i.e. not affected by the DEM resolution. 

• Mean aspect MA [deg]: geometric (vector) average of the aspect of each cell (Figure 1.c). The 
aspect is the direction towards which a slope faces and is important in hilly or mountainous 
terrain. Here it is defined as the angle of exposure of the cell (computed from the north). 
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• Area-elevation curve (hypsometric curve) h% [m a.s.l.]: the curve represents the portion of the 
basin area located above a given elevation (Figure 3). The curve is represented recording 
elevations corresponding to the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95% and 97.5% of the 
area. 

 
Figure 3 - Area-elevation curve. 

• Circularity ratio Rc: ratio between the basin area and the area of a circle having the same 
perimeter: 

2c
P

S4=R π
 (2) 

where P is the watershed perimeter. 

• Compactness (Gravelius) coefficient Cc: ratio between the perimeter of the basin and the 
diameter of the equivalent circle: 

π/S2
P=Cc  (3) 
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2.1.2 River network parameters 

Selected analyses can be performed on the river network, that is automatically extracted from 
the DEM, using the above-described drainage directions and the following constraints: 

• a pixel belongs to the network if its contributing area exceeds 1 km2; 

• a stream belongs to the network if it is composed of more than one pixel. 

Parameters computed on the river networks are as follows:  

• Length of the main stream LMS [km]: length of the longest series of streams that connects the 
basin outlet to the foremost source point (i.e. the upper stream end). 

• Main stream mean slope MSMS [%]: the mean slope of the main stream is defined as the ratio 
between its total elevation drop ΔH and its length: 

MS
MS L

HMS Δ=  (4) 

• Length of the longest drainage path LLDP [km]: the longest drainage path is the longest path 
between the basin outlet and the most distant point on the basin border, following drainage 
directions. Actually the longest drainage path corresponds to the main stream plus the path on 
the hillslope that connects the stream source to the basin border. 

• Slope of the longest drainage path PLDP [%]: average of the slope values associated to each 
pixel in the longest drainage path. 

• Elongation ratio Ral: ratio between the diameter of a circle with area equivalent to the basin 
area and the length of the longest drainage path:  

LDP
al L

π/S2=R  (5) 

• Shape factor Ff: ratio between the basin area and the square of the longest drainage path 
length: 

2
LDP

f L
S=F  (6) 
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• Width function FA [m]: moments (mean, variance, skewness and kurtosis) and percentiles 
(5%, 15%, 30%, 40%, 50%, 60%, 70%, 85%, 95%) of the width function, which is defined as 
the cumulated frequency of the pixel metric distance from the basin outlet (Figure 1.d). 

• Mean hillslope length MHL [m]: average distance (throughout all the basin) between pixels 
and channel (Figure 1.e). 

• Magnitude M: number of source points of the network. 

• Topological diameter dT: number of links that constitute the main stream, or number of 
confluences to the main stream. 

• Horton-Strahler ordering: number of links, average length, average contributing area and mean 
slope corresponding to every Horton class. These classes form an ordering classification 
system in which channel segments are ordered numerically from a stream's headwaters to the 
basin outlet (Figure 1.f). Numerical ordering begins with the tributaries at the stream's 
headwaters being assigned the value 1. A stream segment that results from the joining of two 
1st order segments is given an order 2. Two 2nd order streams form a 3rd order stream, and so 
on. 

• Horton ratios Rhb, Rhl, Rha, Rhs: slope of the interpolation straight line (computed with the 
Ordinary Least Squares method) between the points given by the order and the variable 
(number of links, average length, average contributing area and mean slope) on a semi-
logarithmic diagram.  R.E. Horton applied morphometric analysis to a variety of stream 
attributes and from these studies he proposed a number of laws of drainage composition. For 
instance, Horton's law of stream lengths suggests that a geometric progression exists between 
the number of stream segments in successive stream orders (Rhb).  

• Total network length TNL [km]: sum of the lengths of all stream within the basin. 

• Drainage density Dd [km/km2]: measure of the length of stream channel per unit area of 
drainage basin. Mathematically it is expressed as the total network length divided by the area 
of the drainage basin. The measurement of drainage density provides a hydrologist or 
geomorphologist with a useful numerical measure of landscape dissection and runoff potential. 
On a highly permeable landscape, with small potential for runoff, drainage densities are 
sometimes less than 1 kilometer per square kilometer. On highly dissected surfaces densities of 
over 500 kilometers per square kilometer are often reported. Closer investigations of the 
processes responsible for drainage density variation have discovered that a number of factors 
collectively influence stream density. These factors include climate, topography, soil 
infiltration capacity, vegetation, and geology. 
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2.2 ESTIMATION OF CLIMATIC PARAMETERS 

For a river basin, average climatic features can be considered attributes or “descriptors”, 
similarly to its morphologic parameters. Some scalar indices were considered, that account for 
climatic features related to the average water balance: 

• Mean annual rainfall Am [mm] areally averaged over the catchment; 

• Thornthwaite index IT: a global moisture index that can be estimated, in its simplest form, as 
the ratio 

0

0m
T ET

ETA
I

−
=  (7) 

where ET0 the mean annual potential evapotranspiration on the basin; 

• Budyko index IB: a radiational aridity index expressed as 

m

n
B A

R
I

λ
= , (8) 

where Rn is the mean annual net radiation and λ is the latent vaporization heat. Values assumed by 
IB are lower than 1 for humid regions and greater than 1 in arid regions. 

The computation of the climatic indices proposed by Thornthwaite and Budyko requires the 
estimate of average annual precipitation, temperature, evapotranspiration and net radiation in the 
study area. 

Evapotranspiration and solar radiation are estimated here using the procedures suggested by 
FAO (Allen et al., 1998). In place of the potential evapotranspiration, the reference crop 
evapotranspiration ET0 is computed as a climatic parameter expressing the evaporation potential of 
the atmosphere from a unit surface, under well-watered conditions, cultivated with a reference 
crop with specific characteristics. The only factors affecting ET0 are of climatic nature. 
ET0 has been estimated through the Hargreaves formulation (Hargreaves-Samani, 1982): 

( ) ( ) a
0.5

minmaxmeanH0 RTT17.8+T0.0023=ET ⋅−⋅⋅  (9) 

where Ra is the extraterrestrial radiation, expressed in mm and computed on a daily basis. The 
Hargreaves formula is applied on a monthly basis, using the mean monthly temperature Tmean and 
the monthly averages of daily maximum and minimum temperatures Tmax and Tmin [°C]. Ra [MJ m-2 
day-1] can be easily calculated as a function of latitude and Julian day as: 
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)senωδ+senδsen(ωdR
π

=R ssroa ⋅⋅⋅⋅⋅⋅⋅× coscos6024 ϕϕ  (10) 

with: 

⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅ J

365
2πcos0,033+1=dr  (11) 

⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅ 1,39J

365
2πsen0,409=δ  (12) 

( )δar=ωs tantancos ⋅− ϕ  (13) 

where R0 is the solar constant, that is the radiation reaching a surface perpendicular to the sun's 
rays at the top of the earth's atmosphere (0.082 MJ m-2 min-1), dr is the relative distance between 
the Earth and the Sun, δ [rad] is the solar declination, φ [rad] is the latitude, ωs [rad] is the hour 
angle at sunset and J is the Julian day. To give a monthly balance, J can be determined by the 
relation: 

)15.23M30.42(int=J −  (14) 

where M is the sequential number of the month. 
As regards net radiation Rn, a much more complex procedure is requested for its estimation. As 

the radiation enters the atmosphere, it is partly scattered, reflected or absorbed by the atmospheric 
gases, clouds, aerosols and dust. The amount of radiation reaching a horizontal plane is named the 
solar radiation, Rs. For a cloudless day, Rs is roughly 75% of extraterrestrial radiation. A well-
known method of estimation of Rs [MJ m-2 day-1] is the Angstrom relation (1924): 

as R
N
nb+a=R ⋅⎟
⎠
⎞

⎜
⎝
⎛ ⋅  (15) 

where n is the actual duration of sunshine [hour], N is the maximum possible duration of sunshine 
for any given day [hour] and a and b are regression constants. The daylight hours, N, are given by: 

sωπ
24=N  (16) 
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where ωs is the sunset hour angle in radians given by Equation (13). Depending on atmospheric 
conditions (humidity and dust) and solar declination (latitude and month), the Angstrom 
parameters a and b vary. Where observed solar radiation data are not available and no specific 
calibration has been carried out, the values a=0.25 and b=0.50 are recommended. In Italy we 
suggest the coefficients a=0.33 and b=40, determined by Canova (2003) using a database 
published by ENEA (Petrarca et al., 1999). 

When n is unknown, the ratio n/N can be estimated using the cloudiness fraction mc with: 

cm1=
N
n −  (17) 

A considerable amount of solar radiation reaching the earth's surface is reflected. The fraction, 
αs, of the solar radiation reflected by the surface is known as the albedo. For the green grass 
reference crop, αs is assumed to have a value of 0.23. The net shortwave radiation Rns [MJ m-2 day-

1] is the fraction of the solar radiation Rs that is not reflected from the surface: 

)α1(R=R ssns −  (18) 

The solar radiation absorbed by the earth is converted to heat energy. The earth’s surface both 
emits and receives longwave radiation. The difference between outgoing and incoming longwave 
radiation is called the net longwave radiation, Rnl [MJ m-2 day-1] that can be estimated as (see e.g. 
Allen et al., 1998): 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅−⋅

⎥
⎥
⎦

⎤

⎢
⎢
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⎡
⋅ 0.35

R
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1.35e0.140.34
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s
a

4
Kmin

4
Kmax

nl  (19) 

where k is the Stefan-Boltzmann constant [4.903 10-9 MJ K-4 m-2 day-1], TmaxK and TminK are the 
maximum and minimum absolute temperatures during the 24-hour period [K = °C + 273.16], ea is 
the actual vapour pressure [kPa] and Rs/Rs0 is the relative shortwave radiation [MJ m-2 day-1] (Rs is 
the measured or calculated (Equation (15)) solar radiation and Rs0 is the computed clear-sky 
radiation). The actual vapour pressure ea has been estimated assuming the minimum daily 
temperature as a good estimation of the dew-point temperature (see e.g. Allen et al., 1998) using 
the expression  ea = 0.611 exp[17.27 Tmin/(Tmin+237.3)]. 

The net radiation Rn [MJ m-2 day-1] is the difference between incoming and outgoing radiation 
of both short and long wavelengths: 

nlnsn RR=R −  (20) 
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Rn represents the balance between the energy absorbed, reflected and emitted by the earth's 
surface. It is normally positive during the daytime and negative during night time. The total daily 
value for Rn is almost always positive over a period of 24 hours, except in extreme conditions at 
high latitudes. 
 

3. METHODS FOR THE ESTIMATION OF THE MEAN ANNUAL RUNOFF 

Many of the morphometric and climatic parameters described in the previous sections can be 
used in regional frequency analysis, in particular for the multiregressive estimation of the mean 
annual runoff. In this section, some methodological aspects concerning mean annual runoff 
estimation are discussed.  

In the following, the population mean for a given gauging station is indicated as Dm, the 
sample mean as mD~  and the estimated mean as mD̂ . Our aim is to build a model that relates Dm 
to some morphoclimatic descriptors, starting from the available information in a group of gauged 
basins. This can be achieved using multilinear regression techniques. Different types of linear 
models have been investigated: 

ε+Mβ++Mβ+Mβ+β=D 1p1p22110m −−…  (21) 

ε⋅⋅⋅⋅α= −β
−

ββ 1p
1p

2
2

1
1m M...MMD  (22) 

ε+Mβ++Mβ+Mβ+β=D 1p1p22110m −−
λ …  (23) 

where Mi are morphoclimatic descriptors and βi are regression coefficients. Equation (22) can be 
linearised and trasformed in the Equation (21) using a logarithmic transformation. For the 
estimation of the coefficients βi in Equations (21)-(23) the Ordinary Least Squares technique (e.g. 
Montgomery et al., 2001) has been used. 

For all regression models, a combination of all morphoclimatic variables has been attempted, 
for a total of k·2h model forms (where k is the number of forms, as expressed in Equations (21)-
(23), and h is the number of candidate regression parameters). In this work, we consider 4 types of 
regression (Equation (21), Equation (22) and Equation (23) with exponent λ=1/2 and λ =1/3) 
along with 14 morphoclimatic variables (see Section 4) and a logarithmic transformation of 4 of 
them (Am, S, Hm and Pm, see Section 4), for a total of over 1 million of models. 

All the models for which at least one of the independent variables resulted to be non-
significant according to the Student t test at a 95% significance level (e.g. Montgomery et al., 
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2001) have been discarded. The descriptive power of each regression has been assessed through 
the adjusted determination coefficient R2

adj, defined as (e.g. Montgomery et al., 2001): 

∑
∑

=

=

〉〈−−

−−
−=

n
1i

2
mi,m

n
1i

2
i,mi,m

adj
2

)D~D~()pn(

)D̂D~()1n(
1R  (24) 

where n is the number of considered stations, p the number of estimated coefficients, i,mD~  and 

i,mD̂  are the measured and estimated mean annual flow at the i-th site, and 〉〈 mD~  is the average 

of the mean annual flows for all the considered stations.  
The determination coefficient R2

adj is useful to choose the best model among the ones 
belonging to a given class (Equation (21) or (22) or (23)) but cannot be used to compare models of 
different nature. To this purpose a cross-validation method has been carried out, computing the 
RMSE (Root Mean Square Error) on the residuals i,mi,m D~'D̂ − , where i,m'D̂  is the estimated 

value of the i-th dependent variable obtained using a model estimated with all the observations 
except the i-th one. The RMSEcv is defined as: 

∑ −=
n

1

2
i,mi,mcv )D~'D̂(

n
1RMSE  (25) 

Five multiregressive models for each class (Equation (21), Equation (22) and Equation (23) 
with exponent λ=1/2 and λ=1/3) have been chosen, based on the best performances in terms of 
their R2

adj. Among them, two models have been selected: the model with lower RMSEcv (the best 
model), and the model that uses the most commonly-available parameters (the simplest model). 

Those two selected models have then been checked with respect to the assumptions underlying 
the regression analysis. These assumptions are that the relationship between the dependent 
variable and the regressors is linear, at least approximately, that there is no linear relationship 
between the regressors (absence of multicollinearity) and that the residuals satisfy some 
requirements. In particular, it is required that their mean is zero (that is guarantee by the OLS 
procedure), their variance is constant (homoscedasticity) and that they are uncorrelated and 
normally distributed. Gross violations of the assumptions may produce an unstable model, in the 
sense that a different sample could lead to a totally different model. 

Usually, departures from the underlying assumptions cannot be detected by examination of the 
standard summary statistics as t or R2. Multicollinearity affects the OLS procedure determining 
large variances and covariances for the least-squares estimators of the regression coefficients. A 
simple statistic to measure the presence of multicollinearity is the Variance Inflation Factor (e.g. 
Montgomery et al., 2001): 
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( ) 12
jR1VIF

−
−=  (26) 

where R2
j is the coefficient of determination obtained when the independent variable Mj is 

regressed on the remaining p-1 regressors. Practical experience indicates that if any of the VIFs 
exceeds 5 or 10, this is an indication that the associated regression coefficients are poorly 
estimated because of multicollinearity. 

Heteroscedasticity (no constancy of variance) of residuals, determines that the OLS procedure 
is not the Best Linear Unbiased Estimator (BLUE) of the model coefficients. In that case it would 
be better to use the Weighted (WLS) or Generalized (GLS) Least Squares procedures. To detect 
heteroscedasticity, we plot the residuals against the fitted values in order to recognize if they 
display particular patterns, and we perform the Harrison-McCabe (1979) homoscedasticity test. 
The Harrison-McCabe test statistic is the fraction of the residual sum of squares that relates to the 
fraction of the data before a chosen breakpoint (e.g. in our case the fraction of the residual sum of 
squares that relates to the first half of the ordered data). Under the hypothesis H0, the test statistic 
should be close to the size of this fraction, e.g. in our case close to 0.5. The null hypothesis is 
rejected if the statistic is too small. 

Normality of residuals is required for hypothesis testing (the significance t test) and for 
confidence/prediction interval estimation. To detect non-normality, residuals are plotted on a 
normal probability paper and a normality test, the Anderson-Darling (e.g. Laio, 2004) test, is 
performed. The Anderson-Darling test is an EDF (Empirical Distribution Function) omnibus test 
for the composite hypothesis of normality. The test statistic is: 

( ) ( ) ( )[ ]∑
=

+−−+−−−=
n

1i
)i1n()i( p1lnpln1i2

n
1nA   (27) 

where ( )( )s/xxp )i()i( −Ψ= . Here, Ψ is the cumulative distribution function of the standard 

normal distribution, and x  and s are mean and standard deviation of the data values.  
 

4. APPLICATION 

The methodology described in the previous section has been applied to Piemonte and Valle 
d’Aosta, two contiguous regions in the North-West of Italy. This territory is characterized by a 
marked heterogeneity. In this relatively small region, very different orographic and climatic 
conditions coexist: in few hundreds kilometres the climate changes from the appenninic-
mediterranean one in the south-eastern hills to the alpine-continental one in the mountainous Valle 
d'Aosta, passing from all the intermediate conditions. For this reason, a regional frequency 
analysis in this territory is both complex and interesting. 
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Figure 4 - Closing sections of the Piemonte and Valle d’Aosta catchments considered in the 

study. 
 

Mean annual rainfall Am and runoff Dm have been extracted from the technical report 
“Pubblicazione n. 17” of the Italian hydrographic service for 47 gauging stations (Table 1 and 
Figure 4). This publication contains characteristic data for the Italian main rivers until 1970.  

The morphometric and climatic descriptors (Table 1) have been derived for all these river 
basins (Figure 4) that have been used to calibrate the multiregressive model of estimation of the 
mean annual runoff. 
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4.1 ESTIMATION OF MORPHOLOGIC PARAMETERS 

The automatic procedure described in Section 2.1 has been applied on a DEM (Digital 
Elevation Model) of the North-Western Italy (Figure 5), with pixel resolution of 250 m. In Table 
1, morphometric parameters considered in the regional analysis of Dm are shown. 

 
Figure 5 - DEM of Piemonte and Valle d’Aosta used in the study (cell size = 250 m) 
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Table 1 - Catchment characteristics: code used in Figure 4 (cod), measured mean annual 
runoff mD~  and morphoclimatic parameters for the 47 river basins of Piemonte 
and Valle d’Aosta used in the multiregressive analysis. 

 cod   nome   Dm   Am   S  Hm  Pm  LLDP  PLDP  S2000  EAST  NORTH Rc   Xbar   Ybar   IT  IB  

   [mm]   [mm]   [km 2]  [m slm]  [%]  [km]  [%]  [%]      [deg]   [deg]    
 1   Toce a Cadarese   1571   1457   190  2137  22.10  31.6  18.20  66.0  −0.29  −0.96  0.52   8.397   46.375   1.52   0.65  

 2   Toce a Candoglia   1382   1519   1540  1674  7.70  82.4  10.20  36.4  0.63  −0.78  0.31   8.225   46.149   1.31   0.63  

 3   Niguglia a Omegna   1353   1901   122  637  4.80  16.0  8.30  0.0  0.33  0.94  0.41   8.384   45.821   1.28   0.51  

 4   Ticino a Miorina   1395   1695   6692  1286  2.60  168.1  7.80  20.2  0.00  −1.00  0.30   8.652   46.169   1.32   0.56  

 5   SBernardino a Santino   1730   2113   119  1251  17.90  22.6  26.30  2.4  0.51  −0.86  0.53   8.456   46.035   1.92   0.45  

 6   Mastallone a PonteFolle   1600   1936   147  1319  12.60  23.8  22.60  6.3  0.53  −0.85  0.49   8.206   45.888   1.69   0.50  

 7   Cervo a Passobreve   1461   1803   75  1490  20.20  14.4  22.90  13.5  0.70  −0.71  0.62   7.978   45.679   1.49   0.54  

 8   Sesia a Campertogno   1275   1427   170  2112  19.80  21.8  26.10  57.4  0.90  −0.44  0.49   7.936   45.838   1.10   0.77  

 9   Sesia a PonteAranco   1428   1735   703  1491  8.30  62.2  16.20  21.9  0.75  −0.66  0.47   8.091   45.833   1.04   0.68  

 10   DoraBaltea a Tavagnasco   918   949   3311  2090  6.60  110.9  10.80  58.1  0.85  −0.52  0.39   7.395   45.728   0.50   1.04  

 11   Orco a PonteCanavese   1034   1263   615  1924  12.10  47.9  18.60  46.7  0.93  −0.36  0.43   7.425   45.470   0.98   0.79  

 12   SturaLanzo a Lanzo   1090   1296   577  1773  10.60  40.3  21.00  37.4  0.99  −0.17  0.54   7.287   45.290   0.90   0.77  

 13   Chisone a SoucheresBasses   819   966   92  2222  15.40  17.0  17.60  73.3  0.25  0.97  0.49   6.938   44.974   0.48   1.06  

 14   Chisone a SMartino   694   1058   581  1730  11.20  56.6  13.70  36.9  0.87  −0.49  0.49   7.084   44.963   0.48   0.96  

 15   Chisone a Fenestrelle   654   910   157  2144  15.90  26.6  15.30  64.5  0.88  0.47  0.41   6.965   45.001   0.37   1.12  

 16   DoraRiparia a Oulx   663   851   254  2165  13.20  34.9  16.80  63.9  −0.09  1.00  0.46   6.851   44.932   0.24   1.20  

 17   DoraRiparia a SAntonino   591   841   993  1867  9.90  78.0  11.80  46.3  0.99  0.16  0.24   6.912   45.070   0.16   1.20  

 18   Po a Crissolo   1254   1271   38  2261  28.80  8.4  29.30  73.7  0.97  0.25  0.74   7.115   44.693   1.03   0.83  

 19   Po a Moncalieri   507   952   5032  924  0.80  114.0  5.40  14.5  0.61  0.79  0.39   7.398   44.736   0.18   1.10  

 20   Grana a Monterosso   811   1135   103  1565  15.00  19.0  19.50  20.5  0.99  0.13  0.54   7.240   44.403   0.67   0.93  

 21   SturaDemonte a Pianche   925   1112   180  2074  17.30  26.8  16.10  61.8  0.83  −0.55  0.47   7.007   44.356   0.76   0.96  

 22   RioBagni a BagniVinadio   1241   1398   62  2138  19.10  9.7  26.00  66.6  0.72  0.70  0.73   7.053   44.267   1.25   0.77  

 23   Vermenagna a Limone   1128   1364   57  1677  17.60  10.7  23.10  20.9  0.06  1.00  0.56   7.576   44.178   1.09   0.79  

 24   RioPiz a Pietraporzio   1272   1273   21  2194  38.70  8.3  24.70  71.5  0.42  0.91  0.55   7.018   44.311   1.06   0.84  

 25   SturaDemonte a Gaiola   1011   1219   560  1814  10.20  55.3  12.10  43.1  1.00  0.09  0.41   7.137   44.316   0.85   0.88  

 26   GessoValletta a SLorenzo   1384   1392   110  2105  22.30  17.1  19.50  61.2  0.79  0.61  0.59   7.277   44.212   1.28   0.77  

 27   GessoEntracque a Entracque   1404   1468   157  1894  17.00  16.9  23.80  44.4  −0.10  0.99  0.61   7.407   44.182   1.31   0.73  

 28   Tanaro a Montecastello   501   997   8024  651  0.80  209.8  6.40  6.0  0.75  0.66  0.28   8.064   44.548   0.18   1.07  

 29   Tanaro a PonteNava   1030   1281   148  1576  11.30  19.5  23.80  17.6  1.00  −0.04  0.50   7.771   44.124   0.90   0.84  

 30   Tanaro a Nucetto   902   1233   376  1222  7.20  55.4  16.10  7.8  0.60  0.80  0.28   7.901   44.179   0.65   0.87  

 31   Tanaro a Farigliano   776   1120   1516  938  2.70  93.2  12.30  5.2  0.17  0.98  0.54   7.852   44.298   0.47   0.96  

 32   Corsaglia a Molline   1068   1366   89  1513  17.80  18.8  20.60  17.0  0.17  0.99  0.58   7.828   44.226   1.19   0.79  

 33   Scrivia a Serravalle   827   1389   616  688  3.50  51.9  8.10  0.0  −0.80  0.60  0.51   9.040   44.628   0.77   0.76  

 34   BormidaMallare a Ferrania   965   1228   50  602  5.90  18.0  9.60  0.0  0.26  0.97  0.39   8.300   44.297   0.38   0.87  

 35   Erro a Sassello   882   1200   83  605  5.30  17.6  6.40  0.0  0.00  1.00  0.36   8.458   44.447   0.30   0.88  

 36   Bormida a Cassine   510   971   1542  481  1.80  131.1  5.80  0.0  0.50  0.87  0.35   8.322   44.500   0.04   1.09  

 37   Borbera a Baracche   779   1220   202  867  6.40  25.3  13.40  0.0  −0.80  0.61  0.57   9.112   44.668   0.57   0.86  

 38   Vobbia a Vobbietta   835   1461   57  727  9.70  14.9  14.90  0.0  −0.81  0.58  0.55   9.046   44.605   0.88   0.72  

 39   DoraRhemes a Pelaud   1453   1041   54  2743  24.00  12.6  19.60  97.8  0.36  0.93  0.57   7.091   45.514   1.09   0.97  

 40   GrandEyvia a Cretaz   1109   940   179  2593  17.10  15.3  25.80  86.4  −0.60  0.80  0.53   7.377   45.584   0.75   1.06  

 41   DoraBaltea a Aosta   898   952   1824  2267  8.40  55.7  15.40  67.9  0.99  0.11  0.29   7.177   45.718   0.60   1.04  

 42   Lys a Gressoney   1357   1191   91  2625  24.90  16.4  22.50  84.2  −0.03  −1.00  0.59   7.830   45.855   1.23   0.83  

 43   Rutor a Promise   1648   1314   46  2512  31.10  10.8  27.30  89.7  −0.19  0.98  0.53   6.970   45.672   1.26   0.75  

 44   Artanavaz a StOyen   1023   1283   71  2229  22.30  11.9  22.10  71.8  0.98  −0.19  0.59   7.151   45.828   1.15   0.76  

 45   Evancon a Champoluc   977   1048   105  2631  20.20  15.1  21.20  88.6  −0.31  −0.95  0.54   7.742   45.872   0.96   0.94  

 46   Ayasse a Champorcher   1258   1179   41  2352  30.40  12.4  17.90  82.4  0.98  0.19  0.56   7.559   45.613   0.95   0.84  

 47   Savara a EauRousse   1079   987   84  2723  22.90  11.5  28.30  95.8  0.10  1.00  0.60   7.206   45.523   1.11   1.02   
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4.2 ESTIMATION OF CLIMATIC PARAMETERS 

The climatic parameters used in the regional analysis of Dm are Am, IT and IB (see Section 2). 
As presented in Section 2.2, the calculation of the two climatic indices needs an estimation of 
evapotranspiration (ET0) and net radiation (Rn) over the catchments. The minimal data requirement 
for the estimations of ET0 and Rn are position, elevation, mean monthly cloudiness and the 
maximum, minimum and mean daily temperature at the average monthly scale. All those variables 
are determined in the grid referred to the GTOPO30 DEM (USGS, 1996) available in geographic 
coordinates and with 30 arc seconds (roughly 1 km) resolution. Temperatures belong to databases 
from ENEA (Petrarca et al., 1999) (68 stations) and Regione Piemonte (Bellardone et al., 1988) (3 
stations).  

 

 
Figure 6 - Cloud cover map from the NASA (New et al., 2000) database. 

 
For cloudiness, we use a NASA database (New et al, 2000) freely available at 

http://www.daac.ornl.gov/. This database contains global data for many climatic variables 
as wind speed, mean temperature, air humidity, cloudiness etc. Data coming from many scattered 
stations are available as interpolated on a 0.5 degrees grid, as represented in Figure 6. 

ET0 and Rn have been estimated for the above mentioned 71 climatic stations and areally 
determined for the entire Piemonte and Valle d’Aosta region. For this second analysis, 
temperature and cloudiness data have been spatially distributed, and the evapotranspiration has 
been determined on every cell of the GTOPO30 DEM by applying the procedure descripted in 
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Section 2.2. Temperatures (monthly mean of minimum and maximum daily values) have been 
estimated by linear regression with elevation, then interpolating the residuals through the inverse 
distance squared weighting method (e.g. Neteler et al, 2004). Average monthly cloudiness of each 
pixel of the NASA dataset (Figure 6) has been assigned to its centre, and a spatial interpolation 
has been again conducted by the inverse distance squared weighting method. 

The Thornthwaite and Budyko indices have been computed using Equations (7) and (8). All 
the results are reported in Table 1. 

 

4.3 ESTIMATION OF THE MEAN ANNUAL RUNOFF 

All the possible linear regression models described in Section 3 have been considered between the 
47 mean annual flows mD~  and the morphoclimatic variables. Results are reported in Table 2, 
along with R2

adj, RMSE and RMSEcv statistics. On the basis of the criteria discussed in Section 3, 
the best regression obtained is: 

Bmm INORDHD ⋅−⋅⋅+⋅⋅+= −− 69.11022.71091.286.7)ˆln( 24  (28) 

The above model is characterized by a determination coefficient R2
adj=0.900 and by a 

RMSEcv=110.5 mm (referred to the non-transformed variable Dm). As we have shown in Section 
2.2, the Budyko Index IB is difficult to compute, as it depends on the average net radiation Rn over 
the basin (Equation (8)) which, in turn, requires estimations of spatial distribution of temperatures 
and cloudiness. For this reason we also consider the most efficient simple model among the ones 
reported in Table 2. Using only Am and Hm we selected the model: 

m
3

m
3/1

m H10)Aln(37.47.22D̂ ⋅+⋅+−= −  (29) 

characterized by a determination coefficient R2
adj=0.883 and by a RMSEcv=115.8 mm (referred to 

the non-transformed variable Dm). An analogous relation has been used in the regionalization of 
the annual flow in Basilicata region (Claps et al., 1998). 

Figures 7 and 8 reproduce some diagnostic graph derived by the regression results. Proceeding 
by rows, the first graph represents the correlation matrix between the independent variables of the 
model. In order to check for multicollinearity, the VIF factor (see Section 3) has been computed 
for all the regressors: for Regression (28) the values of the factor is 1.15 for Hm, 1.33 for NORD 
and 1.34 for IB; for Regression (29) the values of the factor is 1.09 for both Hm and ln(Am). In all 
cases VIF is much below 5, value indicating possible multicollinearity. 

The second graph represents the residuals plotted versus the respective estimated values. It is 
useful to investigate if residuals are affected by heteroscedasticity (diversity in variance) using the 
probability “p-omosk” associated with the Harrison-McCabe (1979) homoscedasticity test (see 
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Section 3). We decided that if p-omosk<0.05 the hypothesis of homoscedasticity should be 
rejected. The residuals of the two models can be considered homoscedastic, being the values of   
p-omosk 0.74 and 0.70 for Regression (28) and (29), respectively. 

 
Table 2 - Best regressions obtained between Dm (Dip = dependent variables) and 

morphoclimatic variables (Ind = independent variables) with R2
adj, RMSE and 

RMSEcv indices. 

Dip Ind R 2
adj RMSE RMSE cv

Dm S2000 ln(Am) 0.877 108.7 116.6
Am S2000 0.876 109.3 116.9
Hm ln(Am) 0.865 114.1 122.2
S2000 ln(IB) 0.862 115.2 123.0
NORD Ybar ln(Am) ln(Hm) 0.862 112.9 127.8
NORD ln(Am) ln(Hm) ln(Ybar) 0.861 113.0 127.9

Dm1/2 S2000 ln(Am) 0.888 106.0 113.5
Hm NORD ln(IB) 0.887 104.5 114.6
Hm ln(Am) 0.880 109.2 116.6
Hm IB 0.875 112.8 120.3
Am S2000 0.874 110.5 118.5
S2000 IB 0.870 116.0 124.2

Dm1/3 S2000 ln(Am) 0.888 105.7 113.1
Hm NORD ln(IB) 0.888 104.7 114.9
Hm ln(Am) 0.883 108.5 115.8
Hm IB 0.879 111.9 119.2
S2000 IB 0.873 116.0 124.1
Am S2000 0.870 111.8 120.3

ln(Dm) Hm NORD IB 0.900 101.8 110.5
Am Hm NORD ln(Xbar) 0.888 102.1 116.2
Hm NORD ln(IB) 0.884 107.3 118.1
S2000 ln(Am) 0.884 106.2 113.5
Am S2000 ln(IT) 0.883 104.6 114.2
Hm ln(Am) 0.883 108.7 116.2  

 
The third graph is the representation of residual in normal probability paper. The complement 

to 1 of the probability associated with the Anderson-Darling test of normality (Laio, 2004), 
indicated with “p-norm”, is reported in the graph. We decided to reject the hypothesis of normality 
of the residuals if p-norm<0.05. In this case p-norm is 0.12 for Regression (28) and 0.10 for 
Regression (29). 

The fourth graph represents the result of the cross-validation: the estimated annual flow for 
each basin is obtained after excluding it from the calibration of the regression; the dotted lines 
represent the 95% prediction intervals (e.g. Montgomery et al., 2001), that is the band in which the 
95% of the estimations should lie if the regression model hypothesis are respected. Results of this 
check are positive for both regressions. 
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Figure 7 - Diagnostic plots of Regression (28). Clockwise from upper left: correlation 

matrix between the independent variables of the model; residuals as a function 
of the estimated values; result of cross-validation and normal plot of residuals. 
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Figure 8 - Diagnostic plots of Regression (29). Clockwise from upper left: correlation 

matrix between the independent variables of the model; residuals as a function 
of the estimated values; result of cross-validation and normal plot of residuals. 
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5. CONCLUSIONS 

In water resources assessment plans, it is of primary importance to transfer hydrological 
information from gauged to ungauged watersheds. This task is heavily based on a proper selection 
of climatic and morphological catchment descriptors. These parameters can drive the transfer of 
information when they demonstrate to connect physical and hydrological similarities among 
different basins. In this paper, the average annual runoff, considered as the index parameter within 
an index-flow statistical method, is examined with regard to its estimation in ungauged basins 
within the Piemonte and Valle d'Aosta region (Northern Italy).  

Selection of meaningful parameters is usually performed through multiple regression. In this 
case, an objective method of choice of the best multiple-regression model for estimation of the 
index-flow is devised. The method examines in a comprehensive way all possible combinations of 
sets of a great number of catchment descriptors, using different data transformation, within a 
multiple regression framework. Thorough testing of the quality of results for each of the over 1 
million models examined was performed to select the meaningful morphoclimatic variables.  

In the considered region, mean basin elevation, main basin orientation and Budyko aridity 
index demonstrate to be the most significant variables for the transfer of hydrological information 
regarding mean annual runoff. A much simpler two-variable model, referring just to mean annual 
rainfall and mean basin elevation, was also found quite efficient. 

Results of this procedure can ensure complete control of the quality of estimates obtained with 
regression models based on different kinds of descriptors. Procedures related to the estimation of 
the entire probability distribution of annual runoff in ungauged basins can also benefit from this 
kind of analysis. 
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