
 

Editors 
 

Goffredo La Loggia 
Giuseppe T. Aronica 
Giuseppe Ciraolo 

CONTINUOUS-TIME MODELLING OF HYDROLOGIC TIME SERIES:  
SHOT NOISE MODELS 

Paola ALLAMANO, Pierluigi CLAPS, Francesco LAIO 



Part 3 - Reservoir Management 

 159

 

CONTINUOUS-TIME MODELLING OF HYDROLOGIC TIME SERIES:  
SHOT NOISE MODELS 

Paola ALLAMANO∗, Pierluigi CLAPS∗, Francesco LAIO∗ 
 
 

ABSTRACT 

To simulate the runoff process at short-term aggregation scale (typically one day) the shot 
noise model has gained considerable reputation. In this paper, the model developed by Murrone et 
al. (1997) is taken as a notable example of physically-consistent framework to discuss the 
different aspects related to the building and estimation of a stochastic tool for time-series 
generation. In particular, applications of the model in various geographic, morphological and 
climatic conditions give the opportunity to present its features, also in relation to an alternative, bi-
variate, model configuration.  

After a general presentation of the model typology and of the literature background, the 
conceptually-based shot noise model framework is briefly resumed, with specific attention to the 
inverse estimation of the effective rainfall and to the assessment of the quality of runoff 
generation. Various issues related to model application in temperate, semi arid and alpine 
watersheds are then presented and discussed. 

Even though additional efforts are required to adapt the conceptualization to alpine 
environments, the shot noise framework demonstrates to be a valid tool, also to accompany 
physically-based modelling or frequency analysis of extreme events, as it reproduces in a treatable 
way the basic mechanisms of runoff formation. 

 

1 SHOT NOISE PROCESSES 

1.1. PROPERTIES 

A shot noise process is a random process in continuous time that considers an event in the 
present time to be the additive result of the effects of antecedent events. 
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The process is completely defined by: 

• the occurrences, i.e. the times at which events take place 
• the pulses, i.e. the event intensities 
• the response function, a continuous function that describes the temporal evolution and 

propagation of the pulse effect. 

Defining X as the variable to describe, its value at time t is produced by: 

( ) ( )∑ τ−⋅=
i

ii thYtX  (1) 

where Yi is the input process and h(.) is the system response function that describes the time 
propagation of the impulse. 
Process (1) is defined according to the following hypothesis: 

• the magnitudes of the pulses are random variables, independent and identically distributed, 
having finite mean and variance 

• the occurrences follow a Poisson process 
• the response function h(.) is continuous, integrable and infinitesimal for ∞→τ− it . 

The process is considered stationary when its origin tends at −∞ . However, under the third 
condition, the contribution to streamflow by very distant inputs in time can be disregarded and the 
response function can be truncated at a finite time origin: 

( ) ( )∑
<<

τ−⋅=
tit0t

ii thYtX . (2) 

In applying this continuous process to streamflow series, that have a discrete nature, it is 
necessary to represent the process in a discrete form, Xt, integrating equation (2) on the sampling 
interval T: 

∫
−

τ⋅τ=
tT

T)1t(
t d)(XX

 (3) 

where the index t describes all the sampling times and X( τ ) has the form (2). Detailed 
representation if the integrated process form  are available in Murrone et al. (1997). 

As will be presented in the next section, literature shot noise models present different input 
processes, response functions and, over all, different identification and estimation phases. 
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2 LITERATURE REVIEW 

In reproducing main features of daily flows the classical ARMA processes (Box and Jenkins, 
1970; Salas et al., 1980) used for time series proved to be unsatisfactory. The reason are the steep 
gradients that produce marked intermittent nature of the process and the high skewness (Lawrence 
and Kottegoda, 1977; Battaglia, 1986). An evolution of the cited category of models is that of 
DARMA processes (Discrete ARMA) (Chang et al., 1987), in which the sequence of dry and 
rainy days is reproduced by a DARMA process combined with a probabilistic model of 
precipitation volumes (e.g. the exponential distribution). The obtained precipitation series is then 
transposed to a runoff series by a linear transfer function, that is completely defined only when the 
characteristics of precipitation are known. This is the reason why these models cannot be applied 
to the univariate processes. 

Filtered Poisson processes were first investigated by Bernier (1970), who was followed by 
Weiss (1977). Weiss considered runoff to be the additive result of two different physical 
processes: the surface runoff and the aquifer contribution, each modelled as a linear system having 
its own input process and its own response function. The representation, in continuous time, is the 
filtered Poisson process: 

( ) ( )( )
∑
−∞

τ−−=
tN

)(N

itb
ieYtX  (4) 

where N(t) is the counting function of the Poisson process and Y is an exponentially distributed 
random variable. 

This runoff model has six parameters, three for each process considered. Parameter estimate is 
made by comparing first and second order model statistics, expressed in the daily discrete form 
(3), with the corresponding values of sample statistics. Series seasonality is taken into account by 
separately estimating the parameters for each month of the year. The model does not provide any 
information about the inputs structure, since the estimate of the relative input series is not carried 
out. 

In the same year Treiber and Plate (1977), and later Kron et al. (1990), proposed a daily runoff 
model based on a shot noise process. The watershed is considered as a deterministic system, 
represented by an impulsive response function h(.), subject to a stochastic input, i.e. the pulses 
process, that gives the occurrence and intensity of the rainfall events. The estimation procedure 
determines the input series and the system response function, given the runoff observed series. 
The pulses, that are rigorously defined only under the hypothesis that h(.) monotonically 
decreases, occur in correspondence of positive flow variations. 

A preliminary estimate of the response function is obtained applying the shot noise property: 
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( )
( ) ( )

( )∫

∫
∞+

+∞

⋅

⋅+⋅
=

0

2

0

dtth

dtsthth
sK  (5) 

that relates h(.) and the process autocorrelation K(.). The least-squares estimate of the pulses 
intensities is obtained by imposing the non-negativity condition on the pulse value. Parameters of 
h(.) are estimated by introducing a dependency on the runoff value, in order to account for the 
presence of non-linearity in the daily runoff process. Final estimates come from the alternative 
optimization of the pulses and of h(.), by minimizing the residuals sum of squares. Precipitation 
seasonality is accounted for by estimating the stochastic parameters month by month. The 
autocorrelation structure of the pulses is reproduced by a two-parameters Markov model. The 
model has 67 parameters, of which 62 are referred to the effective precipitation process. 

A bivariate model, based on the analysis of physical processes of the rainfall-runoff 
transformation, was introduced by Koch (1985). The impulsive response function (IUH) of the 
watershed is a combination of the responses of two linear storages, that represent the surface and 
the aquifer runoff. Precipitation is reconstructed according to a process with rectangular pulses of 
random length and intensity and Poissonian occurrence. A continuous representation following a 
filtered Poisson process is obtained, analogously to the Weiss model. The advantage of this 
approach is the possibility to assign a physical meaning to the stochastic parameters, but the 
problem of parameters estimates is not handled directly, making the model application impossible 
for operative purposes. 

Battaglia (1986) proposed an original inference procedure referred to the standard shot noise 
models. He transposed expression (2), valid for a stationary process, to the discrete form: 

∑
+∞

=
− +⋅=

0k
tktkt EZhX  (6) 

where Et is the minimum threshold representing the factors and components that influence 
additively the process but cannot be described by the shot noise mechanism. The following 
hypothesis were assumed: 

• the hk series is quadratically convergent, with h0=1; 
• Zt is a stationary white noise with positive mean and finite variance; 
• Et is a stationary process with non negative mean and finite variance; 
• Processes Et and Zt are uncorrelated. 

A finite memory process is considered for the inference, with the summation term in (6) 
truncated at the finite value q, representing the maximum lag when the autocorrelation of the 



Part 3 - Reservoir Management 

 163

sample is found to be significatively positive. The occurrences are identified as the days when the 
following condition is verified: 

Lxx 1tt +≥ −  (7) 

being L  the value of the threshold that optimizes the model fitting to the data and to the series of 
differences 1ttt xxZ −−= . The definitive estimate of parameters values of the model is obtained 
by iterating the following steps: 

• given the initial series Zt, the sum of the squares of the residuals, with respect to the unknown 
quantity hk, is minimized; 

• given the estimate of the weights of the response hk, the minimizing procedure is applied to Zt, 
for the instants in which the events occurred; 

• the iteration procedure goes on until the value of the sum of the squares of the residuals can be 
considered stable. 

The procedure suggested by Battaglia (1986) was retained in the model by Murrone et al. 
(1997) and represents, as will be explained in the following, a significant advance in the 
identification of a realistic input process. 

 

3 SHOT NOISE MODELS OF DAILY FLOW TIME SERIES 

The model by Murrone et al. (1997) is based on a conceptual watershed scheme, composed by 
three linear reservoirs in parallel, with storage constants ki, plus a sub-daily-lag bypass channel 
(Figure 1). This configures a multiple shot noise model with the above conceptual elements: 

• surface runoff having sub-daily lag time, with the lag depending on the watershed size 
• interflow runoff with over-day storage 
• contributions from seasonal aquifers, with over-month storage 
• deep aquifer components with over-year storage  
 

The effective rainfall represents the input process and is partitioned according to the recharge 
parameters ci, that respect the continuity condition 1=∑ ic . The basin response to an input 

represented by a unit Dirac pulse is a linear function and derives from the combination of the 
individual responses of the above components. In the most general form it can be written as: 

( ) 3210

3

3

2

2

1

1

0

0 k
t

k
t

k
t

k
t

e
k
ce

k
ce

k
ce

k
cth

−−−−
+++=              at 0tt ≥  (8) 
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in which it must be considered that:  

( ) 0=th  at 0tt <  (9) 

and that the term 0

0

0 k
t

e
k
c − , representing the instantaneous unit hydrograph (IUH) of the surface 

runoff, reduces to c0 at aggregation times greater than the surface IUH base-width (tb). 

EFFECTIVE RAINFALL
Yt

c0Yt c1Yt c2Yt c0Yt

DEEP Aquifer
k3

RUNOFF
Xt

SEASON Aquifer
k2

INTERFLOW
k1

 
Figure 1 - Conceptual scheme proposed by Murrone et al. (1997) for the multiple shot 

noise model. 
 
In fact, for Ttb << , being T the data aggregation time scale, the surface component recession 

period is less than the interval T, and the surface runoff process can be reasonably assimilated to 
the response of a linear channel with a zero-lag response. For a daily time scale, this condition is 
true for small and medium size basins. For large basins the above condition is valid only 
considering T > 1 day. 

On the basis of the above assumptions, in the following  eq. (8) will reduce to 
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( ) ( ) ∑
=

−
+=

3

1
0 0

i

k
t

i

i ie
k
ccth δ  (10) 

Under the hypothesis of linearity, streamflow X at time t is the additive result of the individual 
responses (Figure 2).  

 
Figure 2 - The graph is an example of the weak influence of remote events (as Yi+2) on the 

runoff formation at time t (from Giordano, 2004). 
 
The number of events is given by the counting function N(t), that is 1 when the event occurs: 

( ) ( )
( )

( )
∑
+∞

∞−
τ−⋅=

N

N
ii thYtX . (11) 

The above relation does not have an operational connotation for the following reasons: 

• it has infinite memory, since the cumulative sum of the terms formally expands from −∞  to 
the time t; 

• it describes a continuous process, while data is available at discrete times. 

To overcome the problems due to the model’s infinite memory it is necessary to know the 
runoff entity ( )00 tXX =  in correspondence of the initial time t0. Given 0X , the equation (11) can 
be written as a piecewise function: 

( ) ( )
( )

( )
∑ τ−⋅+=

tN

0tN
ii0 thYXtX  (12) 
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with the term: 

( )
( )

( )
∑

∞−
τ−⋅=

0tN

N
ii0 thYX  (13) 

representing the runoff generated by events occurred in the interval ]t:( 0−∞ . The effects of the 
choice of 0X  are limited in time; therefore, its selection can be quite practical (see Giordano, 
2004). 
 

4 EFFECTIVE RAINFALL IDENTIFICATION 

In building shot-noise models to represent daily streamflows, the choice of the probability 
distribution FY(Y) of the random marks Yi, and the definition of the shape of the response function 
are required. The random occurrence times { }iτ  are assumed to form a Poisson sequence, i.e. the 
number of occurrences Nt follows a Poisson distribution with rate λ . 
The input amount FY(Y) can be assumed to be exponential, with mean value α : 

( ) α

α

y

Y eyf
−

⋅= 1
. (14) 

The above corresponds to using a Poisson-Exponential (PE) model to simulate the effective 
rainfall input Yt. Estimation of the PE model parameters was devised by Murrone et al. (1997) in 
four steps: 

• The effective rainfall occurrences are identified in correspondence to the days when the 
streamflow increases; the magnitude of these events is initially taken equal to the amount of 
discharge increment, and the parameters of the PE model ( α  and λ ) are estimated using the 
method of moments. This procedure is called "discharge increments pulses", or DIP, approach. 

• Once the effective rainfall sequence is reconstructed, the parameters of the response function 
h(t) are found by minimizing the sum of squared distances between observed and reconstructed 
data 

• A new pulse series is inversely estimated through deconvolution of the observed discharge 
time series and the estimated response function 

• The second and third steps are repeated until convergence, that means stable Y(t). and h(t) 
estimates. 

This approach allows one to clearly separate the estimation of the stochastic component 
(effective rainfall) from that of the deterministic one (response function). 
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Although quite efficient, the DIP approach presents some drawbacks and difficulties of 
application: first, the presence of measurements noise can produce small rises in discharge that 
should not be mistaken for effective rainfall events to avoid distortions in the modelling results. In 
fact the DIP procedure tends to produce pulse sequences with very large λ  values (figure 3a) , 
sometimes greater than the average number of rainy days in a year. 

Secondly, the basic hypothesis that the pulses are Poisson-distributed, and that they are 
mutually independent, are often not respected by the estimated sequences. In fact more complicate 
models have been proposed which account for the mutual dependence of peaks (e.g. Markov-
chain models) and for the clustering of rainy days (Neymann-Scott models or similar). However, 
the increased complication of such models can hardly be properly supported, mainly due to the 
reduced length of the available time series. This make the simpler, yet possibly imperfect, Poisson 
independent model represents a good choice in many cases. 

A method to derive a potentially more appropriate pulse sequence is the one based on the work 
by Claps and Laio (2003), in which the pulses can be identified by following a filtered peak over 
threshold (FPOT) procedure. The FPOT is summarized as follows: 

• The peaks events are found in correspondence to all of the local maxima of the daily discharge  
time series. 

• A sequence of filtered peaks (FP) is obtained by subtracting from each peak the discharge 
measured at the first minimum preceding the event. A similar approach to the selection of 
pulse intensities was used by Pegram (1980). 

• A threshold filter is applied to the FP sequence to retain only the significant peaks. 
• The appropriate threshold (s) that filters out noisy peaks is selected by testing the 

independence of the peaks in the sample (Kendall's τ  test) and the distribution of occurrences 
(Cunnane test for the Poisson distribution). The threshold is gradually increased until the two 
test are jointly met. The convergence towards independence for large s values can be attributed 
to the increase of the distance between subsequent peaks. Analogously, when the threshold is 
increased the numbers of crossing of s in disjoint time intervals tend to become independent 
random variables, and this guarantees the asymptotic convergence towards Poissonianity 
(Claps & Laio, 2003). 

The adoption of the FPOT approach allows one to avoid the deconvolution step in the peaks 
identification procedure, with substantial advantages in terms of simplicity and robustness of the 
procedure. Moreover, the method allows one to obtain a pulse sequence which automatically 
meets the independence and Poissonianity requirements. However, the number of selected peaks is 
reduced to 5-20 per year (figure 3b). This can result in a underestimation of the actual number of 
effective rainfall events. Since this result is obtained on a large number of runoff series, it can be a 
clue of the inadequacy of the Poisson independent model in the correct reproduction of the 
effective rainfall behaviour. 
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Figure 3 - Comparison of estimated effective rainfall sequences with the DIP (a) and FPOT 

(b) approaches. The example is relative to river Tanaro at Nucetto (from Claps 
et al. (2005)). 

 
In order to estimate the response function coefficients, the determination of the full IUH base-

width (tc) is required, with  tc representing the time interval after which the input effects disappear. 
The procedure proves to be extremely conditioned by the value of the parameter tc, and to define a 
unique base-time valid for the different basins is almost impossible. Therefore a control procedure 
is implemented by Claps et al. (2003a) to identify the optimal tc for each basin. 
The procedure evaluates the parameters for each linear reservoir using tc = 50 days as first 
approximation. Then the impulse response h(t) is evaluated and the following condition is 
verified: 

∑
=

≥
ct

1i
i 999.0h  (18) 

If the condition is satisfied the current tc is adopted; in the other case, the procedure is repeated 
with an increased tc until convergence. No particular control is exerted on the response function 
parameters, except the condition (18). The number of identified reservoirs conditions the 
convergence of the procedure and, more in general, the convergence of the global procedure for 
estimation of parameters. Once the model structure is set, the values of estimated parameters can 
be validated with ancillary information and provide insights in the process features, as will be 
discussed in the applications. 

 

5 ASSESSMENT OF MODEL RESULTS 

The value of a stochastic model for data generation can be defined from its ability to correctly 
reproduce the statistical features of the observed records. Generally this ability is evaluated by 
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comparing the moments of the observed and simulated series at different aggregation scales (e.g. 
Weiss, 1977) or, in some cases, the full probability density functions (e.g. Vandewiele and Dom, 
1989) or, qualitatively, the flow duration curve. 

Some confusion in the assessment procedures of model performances can derive from the use 
of both the reconstructed and the generated time series as possible terms of comparison with the 
real observations. The reconstructed time series is obtained from the convolution of the estimated 
input pulse sequence with the system response function. Reconstructed and observed series are 
easily compared using any measure of reciprocal distance between the two signals. However, the 
real value of the model must rather be judged by comparing observed and generated sequences: 
the time correspondence of the peaks of the two series is obviously lost in this case, and the 
distance between contemporary values becomes meaningless. 

In this latter case, a better option is to consider the reciprocal distance between the observed 
and synthetic cumulative distribution functions, represented as flow duration curves. In order to 
build the flow duration curves, the observed discharge dataset of size n is sorted in ascending 
order, and an empirical frequency of occurrence ( ) ( )1n/iF i +=  is assigned to the ith order statistic 

in the sample, )F(YY )i(o)i(o = . The same procedure is followed for the generated sample, whose 

size N is much larger than n, producing ( ) ( )1n/jF j +=  and )F(YY )j(g)j(g = . The flow duration 

curves are given by the F(i) and F(j) values plotted versus Yo(i) and Yg(j); the curves are not 
graphically represented in the following, because the resulting real and generated graphs are 
nearly indistinguishable. 

To evaluate the distance between these curves, a value of generated discharge with the same 
frequency of occurrence as Yo(i), namely Yg(F(i)) need to be found. Yg(F(i)) is the empirical quantile 
corresponding to F(i), i.e. the jth order statistic in the generated sample, with ( ) ( )1n/1Nj ++=  (j 
can be conveniently approximated to the closer integer because of the large sample size N). 

The mean squared distance between the two flow duration curves (‘‘model error variance’’) is 
then evaluated as 

[ ]
n

)F(Y)F(Y
s

n
1i

2
)i(g)i(o2 ∑ = −

= . (15) 

In order to facilitate the comparison between different applications, the value in (15) is 
rescaled by the variance 2σ of the observed discharges, and an index of performance similar to the 
coefficient of determination of linear regression models was proposed by Claps et al. (2005) as a 
measure of model adequacy: 

2

2

1
s1I
σ

−=  (16) 



P. Allamano, P. Claps, F. Laio 

 170

The closer I1 to its limit value 1, the more adequate is the model to represent the flow duration 
curve. 

Other measures of model adequacy can be defined by considering other characteristics of the 
observed and generated sequences. For example, to test the correct reproduction of the annual 
maxima (AM) statistics (see Fig. 7e and f), a specific index can be defined as: 

2
AM

2
AM

2
s

1I
σ

−=  (17) 

where 
[ ]

k

)F(Y)F(Y
s

k
1j )j(

AM
g)j(

AM
o2

AM
∑ = −

=   is the mean squared distance between the empirical 

frequency curves of the k observed AM, AM
oY , and the corresponding curves for generated data, 

AM
gY , and 2

AMσ  is the variance of the observed AM sample. 

 

6 MODEL PERFORMANCE IN DIFFERENT APPLICATION CONTEXTS 

The Shot Noise procedure described here has not only the purpose of producing an efficient 
and parsimonious model formulation for time series simulation. In fact, this model can be also 
applied as a diagnostic tool, able to compare some characteristics of the long-term basin 
hydrologic response and some features of the inversely-estimated net rainfall. In general terms, 
one could expect that model building and application provides information on the main 
mechanisms underlying the long-term formation of the runoff. Presentation and discussion of 
some shot noise applications in the literature will support the above-mentioned purpose. Literature 
application of the Shot Noise model refer to watersheds taken from regions characterized by 
different climates and different sources of 'reservoir' effects. These effects were 'interpreted' 
according to the model conceptual structure. 

In Murrone et al (1997) the multiple shot noise model was applied to 8 time series of daily 
flows, recorded in 7 watersheds located in the Apennine region of central-southern Italy. Two sub-
series were considered for the Tiber river, since the streamflow record is interrupted. The basin 
under study are all characterized by the climate and the geology of Apennine mountains, in which 
the presence of large fractured carbonate massifs produces correlation also in the annual runoff, 
requiring the identification of a possible over-year groundwater component. Looking at values of 
the shot noise parameters estimated by Murrone et al. (Table 1) one can notice significant values 
of the parameter k3 related to the deep groundwater component identified for six of the seven 
examined cases. 
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Table 1 - Estimated shot noise model parameters for the 'Appennine' time  series 
Name Area (km2) c0 c1 c2 c3 k1 (d) k2 (d) k3 (d)
Alento @ Casalvelino 284 0.34 0.281 0.297 0.082 3.105 60.4 551.4
Calore Irpino @ Montanella 123 0.155 0.194 0.546 0.106 2.672 72.2 228.5
Tammaro @ Pago Veiano 555 0.272 0.236 0.492 - 2.912 35.6 -
Sacco @ Ceccano 922 0.319 0.242 0.261 0.178 2.706 53.9 507
Giovenco @ Pescina 139 0.106 0.112 0.191 0.59 3.274 56.3 1073
Tiber @ Rome 16545 0.098 0.158 0.225 0.52 4.076 43.7 1233
Tiber @ Rome 16545 0.101 0.136 0.243 0.52 5.552 40.2 1233
Nera @ Torre Orsina 1445 0.025 0.018 0.247 0.71 5.401 109.3 1533  
 

In a semi-arid context, model identification resulted in the absence of the over-year 
component. Cannarozzo et al. (2003) applied the model to series from 11 watershed in Sicily, 
obtaining results reported in Table 2. The results show some variation in the k2 and c2 parameters 
while k1 presents quite stable values in the interval of 1-3 days. 

Based on the two series of results presented, one can conclude that in basins located in 
temperate regions, the only option in model identification and estimation is related to the presence 
of an over-year reservoir component. If this component is missing, the other sources of delay 
remain easily identifiable, as widely reported in the literature (see e.g. Jakeman and Hornberger, 
1993). Therefore, shot noise application in temperate basins without over-year component 
presents no difficulties but can still provide interesting insights in net rainfall estimation, as it will 
referred later in this section. 

Model application in non-temperate alpine basins revealed various interesting issues. First, 
identification of the over-year component was again registered, even in absence of the same 
hydro-geological features of the Apennine mountains. Claps et al (2003) considered 8 watershed 
located in Piemonte and Valle d’Aosta (North-Western Italy), presenting a wide spectrum of 
morpho-climatic characteristics. These basins present very variable average elevation (see Table 
3) and some of them must be considered 'Alpine' basins, i.e. strongly influenced by the snow and 
ice contributions to runoff. Table 3 reports the model parameter estimates on these series, from 
which emerges that only the larger basin (Dora Baltea at Tavagnasco, also the second highest) 
presents a significant correlation at the over-year scale. This could be due to the presence of a 
strong runoff component coming from the melting of snow and glacier stocks. Beside this, it can 
be observed that other alpine watersheds, such as Ayasse and Chisone, show no deep component 
but rather high values of seasonal aquifer recharge coefficient c2. This could be due to the 
seasonal-only effect of snow storage melting on the flow formation process.  
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Table 2 - Estimated shot noise model parameters for the time series in Sicily 

Name c0 c1 c2 c3 k1 (d) k2 (d) k3 (d)
Oreto @ Parco 0.198 0.253 0.549 - 1.14 70.59 -
Eleuterio @ Lupo 0.193 0.354 0.453 - 1.23 53.49 -
Salso @ Gagliano 0.23 0.402 0.368 - 1.56 24.45 -
Imera Mer. @ Capodarso 0.193 0.343 0.464 - 1.09 31.13 -
Imera Mer. @ Drasi 0.185 0.411 0.404 - 1.43 43.71 -
Imera Mer. @ Petralia 0.149 0.272 0.58 - 2.05 69.85 -
Belice @ Case Balate 0.196 0.346 0.458 - 1.42 54.2 -
Belice @ Finocchiara 0.314 0.351 0.336 - 2.79 81.56 -
Belice @ Ponte Belice 0.166 0.398 0.436 - 1.29 51.45 -
S. Leonardo @ Monumentale 0.357 0.256 0.387 - 1 53.71 -
Nocella @ Zucco 0.189 0.215 0.596 - 1.72 60.39 -  

 
In alpine basins the presence of the snow-melting component represents a notable alteration of 

the net rainfall-runoff conceptual mechanism. Effective rainfall identified by the model are in fact 
not necessarily due to rainfall events, but can refer to snow melting events. For the purpose of 
time-series generation, an empirical use of the shot noise model raises the point of what is the 
most efficient estimation of effective rainfall, independently on its meaning. The application made 
by Claps et al. (2005) showed that more realistic runoff time series representation were obtained 
using the DIP type of input, as the one that better resembles the combination of rainfall and 
snowmelt event sequences. 

If the rainfall-runoff conceptual mechanism is not sufficient for the process description in high 
alpine basins, better qualification of the runoff formation mechanisms are required. Also, runoff 
analysis in the 'transition' basins must be adequately addressed.  

The Piemonte and Valle d'Aosta region presents a wide variety of climatic and morphological 
situations, offering cases for the analysis of different mountain basins. More detailed examination 
of the estimated effective rainfall series was presented in the work by Claps et al. (2003b) where 
the authors propose a comparison of direct and inverse effective rainfall estimates at the daily time 
scale. The comparison is carried out in terms of effective rainfall estimation by means of the 
IHACRES (Jakeman et al., 1990) and Shot Noise models, essentially to face model performances 
in transition and alpine basins. The Shot Noise and IHACRES models have a similar structure in 
terms of (linear) effective rainfall to runoff transformation, but the effective rainfall (ER) series is 
obtained by inverse estimation in the former model and directly from rainfall in the latter model. 
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Table 3 - Estimated shot noise model parameters for the Alpine series, with the DIP and 
the FPOT (values in italic) procedures used for effective rainfall identification 

Name Area (km2) Mean Elev.(m) c0 c1 c2 c3 k1 (d) k2 (d) k3 (d)
Dora Baltea @ Tavagnasco DIP 3313 2090 0.03 0.07 0.43 0.47 1.1 23.31 546

FPOT 0.03 0.04 0.47 0.47 1.2 33.45 546
Ayasse @ Champorcher DIP 42.2 2392 0.05 0.08 0.86 - 1.2 19.7 -

FPOT 0 0.07 0.93 - 0.2 25.7 -
Borbera @ Baracche DIP 202 880 0.1 0.2 0.71 - 2.4 53.6 -

FPOT 0.08 0.19 0.72 - 3.3 76.3 -
Bormida @ Cassine DIP 1483 493 0.12 0.48 0.39 - 2.2 55.9 -

FPOT 0.12 0.38 0.49 - 2.5 89.2 -
Chisone @ S.Martino DIP 580 1751 0.05 0.17 0.78 - 3.3 86.2 -

FPOT 0.04 0.1 0.87 - 4.3 101.3 -
Orco @ Pont Canavese DIP 617 1930 0.1 0.19 0.72 - 2.1 61.9 -

FPOT 0.04 0.1 0.86 - 3.5 164.5 -
Scrivia @ Serravalle DIP 605 695 0.12 0.34 0.54 - 2 43.7 -

FPOT 0.12 0.28 0.6 - 2.7 57.1 -
Tanaro @ Nucetto DIP 375 1227 0.1 0.25 0.65 - 2 135.3 -

FPOT 0 0.18 0.82 - 0.4 104.7 -  
 

In IHACRES, the rainfall-runoff transformation is obtained with two modules: a non linear loss 
module, that transforms precipitation to effective rainfall by considering the (direct -if available- 
or indirect) influence of temperature, and a linear module, based on the classical convolution of 
the effective rainfall by the unit hydrograph (UH) that produces the total streamflow. The non-
linear loss module involves the calculation of an index of catchment storage s(t) for every time 
step t, based on a negative exponential weighting of precipitation and temperature: 
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In (18), s(t) is the catchment storage index, τw[T(t)] is a variable controlling the rate at which 
the catchment wetness index s(t) decays in the absence of rainfall, τw is the value of τw[T(t)] at 
T=20°C, c is a parameter chosen to constrain the volume of effective rainfall to equal runoff, f is a 
temperature modulation factor, z-1 is the backward shift operator.  
The effective rainfall ER(t) is computed as the product of total rainfall r(t) and the storage index 
s(t), 

( ) ( ) ( )trtstER ⋅=  (20) 
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and then convolved with the unit hydrograph of the two-reservoirs-in-parallel linear system, 
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⋅+⋅=  (21) 

The above relation (21) is a function of the basin dynamic response characteristics (DRCs) 
(Littlewood et al, 2003) that depends on parameters νq and νs (relative volumetric throughputs for 
quick and slow flow), τq and τs (characteristic decay time constants for quick and slow UHs), and 
of the time step t.  

For the comparison, six basins were examined: three rainfall-driven coastal watersheds in 
British Columbia (Canada) and three basins located in northern Italy, respectively a temperate, a 
transition and a pure alpine watershed (see Table 4). Authors observe that in temperate watersheds 
precipitation series show a strong correlation with observed runoff, while in alpine environments 
runoff derives also from snowmelt and precipitation values are often affected by significant errors 
with a consequent reduction of cross correlation coefficients. 

The parameters to be set in the basin response functions are reported in Table 5 for each of the 
6 basins. Note that for the Evançon at Champoluc the calibration procedure of the IHACRES 
method did not converge, so it was impossible to find the parameter values. The lack of 
correlation between rainfall and runoff in alpine basins is a clue of possible problems in the direct 
estimate of effective rainfall. In general terms, shot noise estimation of ER resulted more robust 
than the IHACRES ones, with slightly better perfpormance also in temperate basins. Performances 
were assessed by considering the time series of occurrences of direct and inverse ER estimates, 
starting from basins in temperate regions. 

 
Table 4 - Watersheds main characteristics (area, mean elevation, average annual rainfall, 

average annual discharge) and cross correlation coefficients R and Q (see text 
for details). 

Area [km2] Mean Elev. [m] r [mm/y] y [mm/y] R Q
San Juan Riv. @ Port Renfrew 580 663 3452 2604 0.85 0.84
Kanaka Creek @ Webster Corners 48 460 1807 1818 0.75 0.78
Roberts Creek @ Roberts Creek 33 697 1383 993 0.6 0.78
Scrivia @ Serravalle 611 695 1389 827 0.67 0.71
Chisone @ S.Martino 580 1730 1058 694 0.45 0.29
Evançon @ Champoluc 102 2631 1084 977 0.15 *  
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Table 5 -  IHACRES and Shot Noise parameters calibrated for three Canadian and three 
Italian basins 

τq 0.76 k1 1.86 τq 1.00 k1 2.14
τs 53.15 k2 70.63 τs 17.84 k2 45.66
νq 0.47 c1 0.45 νq 0.49 c1 0.34
νs 0.53 c2 0.41 νs 0.51 c2 0.54

c0 0.14 c0 0.12

τq 1.69 k1 1.28 τq 1.29 k1 6.31
τs 89.20 k2 61.63 τs 29.15 k2 220.03
νq 0.67 c1 0.38 νq 0.20 c1 0.28
νs 0.33 c2 0.44 νs 0.76 c2 0.66

c0 0.18 c0 0.06

τq 3.47 k1 1.62 τq * k1 22.29
τs 114.13 k2 61.48 τs * k2 3507.80
νq 0.54 c1 0.35 νq * c1 0.64
νs 0.46 c2 0.50 νs * c2 0.30

c0 0.15 c0 0.06
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To this end, the time series of the occurrences are first reverted into binary time series, by 

attributing a value 1 to the days when an effective rainfall occurs, and a value 0 to the days when 
it does not. Standard statistical tools can then be applied to compare the two binary series. In this 
case, a modified form of the cross-correlation coefficient is used, the Goodman and Kruskal 
(1979) Yule's Q coefficient, which is well suited for applications to binary time series. The Yule’s 
Q gives a measure of the proximity of the two binary series, based on the 2x2 contingency table 
below: 

 
 0 1 
0 N1 N2 
1 N3 N4 

 
In the table, N1 represents the frequency of occurrence, in the two series, of the (0,0) couple of 

values, N2 of the (0,1) couple, N3 of (1,0) and N4 of (1,1). Accordingly, the Yule’s Q is written 
as: 

3N2N4N1N
3N2N4N1NQ

⋅+⋅
⋅−⋅=  (22) 

and varies between −1 and 1, with large values implying highly correlated binary series. 
The Yule’s Q values were computed in relation to the ER series estimated by IHACRES and 

Shot Noise. The results show that in basins with rainfall-driven streamflows, characterized by a 
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high correlation coefficient between observed rainfall and runoff, it is possible to achieve a 
reasonable synchronicity between directly and inversely computed ER series, as proved by the 
high value of the Q coefficient. On the contrary, in alpine environments direct and inverse ER 
estimates are poorly correlated. For the Chisone basin the Yule’s Q coefficient is very low and for 
the Evançon basin direct ER estimates become even unreliable. 

The application demonstrated that the two models exhibit similar behaviour in temperate 
climates, in terms of values of conceptual parameters and characteristics of the estimated effective 
rainfall. As one moves from temperate to alpine basins the reliability of areal rainfall weakens and 
the role of snow in moderating runoff increases, so that the estimates of parameters, the 
identification of events and the magnitude of ER differ more and more. None of the two models 
has a specific module to deal with the effect of snow accumulation and melting. However, the 
features of the Shot Noise model (preservation of runoff volumes, objective evaluation of ER from 
runoff) produce a more reliable representation of the streamflow process, in particular for basins 
in a transition (from temperate to alpine) environment. 

 

7 CONCLUSIONS 

Univariate shot noise modelling of 'high resolution' time series has been outlined in different 
phases of model building: identification, estimation and validation. Possibilities to use the 
conceptually-based modelling for diagnosis of the rainfall-runoff process are discussed also in 
comparison with others bi-variate models, such as the IAHCRES.  

Of particular importance is the possibility to give insight to the inversely estimated effective 
rainfall, by the viewpoint of its stochastic nature and of its conceptual meaning. As an intermittent 
process derived by a continuous one, estimation of effective rainfall requires additional attention 
and modelling efforts. To this end, occurrence analyses are presented, that help evaluating the 
consistency of this unobserved process to the observational evidence of measured rainfall in alpine 
and transition basins.  

Even considering the need for an extension of the shot noise conceptualization to account for 
processes in Alpine basins, the good model performances in temperate to transition basins make 
the shot noise a good choice for general purpose time series modelling and simulation. 
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