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Abstract

Multivariate streamflow simulation models available in the literature seem to have reached a
more than acceptable level with regard to the representation of the space-time statistical
features of the process.However, using these models with few or patched data prevents one
taking advantage of their full potential, not to mention the case in which data need to be
generated in ungauged stations. Dealing with inadequate multivariate datasets can require a
greater effort than the construction of the simulation model itself. The usual approach of
reconstructing missing data prior to model application has been mainly proposed for the
precipitation process and can be considered as supported by sufficiently robust statistical
methods. However, application of these methods is quite onerous and produces new data that
are model-dependent. Moreover, to patch missing data for the runoff process, statistical
procedures must be supported by hydrological arguments, owing to the nonlinear dependence
between rainfall and runoff and to the serial correlation that affects streamflows. In this paper,
a different view is proposed to deal with incomplete multivariate data, based on the goal of
maximising the use of the existing information with procedures compatible with the standard
application of the simulation model. So, missing data is not reconstructed and application of
the different modules of the stochastic model is accompanied by techniques that guarantee
feasibility and congruence of the solutions.  The model in which these procedures are
introduced is a conceptually-based contemporaneous ARMA with periodic-independent
residual. Peculiar problems and solutions arise with regard to the characteristics of the
residual process, which is treated as an estimate of the effective rainfall and is reproduced by a
compound probability distribution. Model application in a 9-station system located in
Basilicata (Southern Italy) showed the performances of the procedures proposed.
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Introduction

In the framework of water resources systems control and management, multivariate time
series models represent an important tool that allows one to simulate the system performance
under different hydrologic conditions and operating rules. Models for time series generation of
monthly runoff have reached an acceptable level of refinement, both from the viewpoint of the
model structure and from the estimation and validation tools. The multivariate PARMA
model (Salas et al., 1980, Salas et al., 1985, Rasmussen et al., 1996) presents sufficient
generality and flexibility to be considered as the reference case for such kinds of application,
even because it can be easily restricted to less general, yet simpler, model forms whenever
necessary.

Therefore, notwithstanding the impending overparametrization implicit in the standard form
of the PARMA model, the task of generating spatially correlated runoff at the monthly scale
when data is fully available and sufficient in number can be considered as technically
achieved.

However, in many regions of the world hydrological data sets are not particularly complete,
not to mention the cases in which the data is unavailable at all. In cases of extremely poor
data, the entire task of simulating streamflow series is nonsensical, but there are many cases in
which the historical series are incomplete but not so much to preclude a multivariate analysis.
On the other hand, for all the cases in which the quality of available data is poor, models like
the multivariate PARMA can present serious problems at a standard application level. In
addition, there seems to be no way to apply this model when simulated data in ungauged
stations are needed.

In this paper it is shown how a simpler constant-parameter conceptually-based model,
proposed in  univariate form by Claps et al. (1993), when applied in multivariate form can
introduce conditions for a reasonable treatment of inadequate samples and also is potentially
suitable for dealing with data generation in ungauged basins.

Methods for dealing with inadequate data

Procedures for statistical analysis with missing data are well-established in some applications
and less developed in other cases often found in the technical practice. A major distinction is
made between univariate and multivariate cases (Schafer, 1997), the latter requiring
sophisticated statistical techniques. The starting point of these methods is the very basic
procedure of the so-called case deletion, that allows one to deal with a complete dataset by
deletion of all cases in which some observation is missing. It is easy to realise that in
multivariate datasets this procedure can lead one to discard a large amount of information.
Moreover, a substantial bias is introduced in the sample, because of the systematic differences
between the analysed and the observed samples (Little and Rubin, 1987). We can also
consider that there is a minimum length of the sample required to achieve reliable estimates of
the serial correlation structure, and the application of the case deletion principle can easily
lead to samples of insufficient length for model estimation.

Most of the recent methods proposed in the hydrological literature refer to the principle of
data infilling, for which updated methods can be found in Basson et al. (1994), Bennis et al.
(1997), Makhuvha et al. (1997) and Pegram (1977).

The following considerations arise from the review of literature:
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1.  Sophisticated and efficient methods can be applied to the estimation of missing
hydrological data, even in the multivariate cases, on normal and uncorrelated variables. In
many cases precipitation series can approach these conditions.

2.  When data is not normal and/or autocorrelated the ensemble of techniques required to face
these problems become varied and actual applications become critical.

3.  Some approaches to the repairing of streamflow data require an hydrological (deterministic
or statistical) procedure to save the nonlinear aspects of the rainfall-runoff transformation
in the reconstructed series (see Basson et al., 1994, chapt. 3). However, this means that the
hydrologic model used to infill the data must be estimated on an incomplete dataset as
well.

4.  When data are missing in a complex pattern, implementation of ad hoc schemes that
preserve the most important aspects of the joint distribution of variables can be very
demanding.

5.  In any case, patched data must be considered 'not real' when determining measures of
uncertainty (standard errors, etc.) with standard, complete-data methods (Schafer, 1997).
This means that an additional uncertainty resulting from the error associated to the
estimates of new data must be accounted for in subsequent risk analyses.

Considering the previously-cited conditions that make data reconstruction difficult, it seems
that additional investigations are required to produce practical procedures for dealing with
multivariate streamflow records with complex patterns of missing data.

The case study presented in this paper involves a dataset with the above characteristics.
Additionally,  the treatment of missing data is applied to a non-normal and compound-
distributed variable that also represents a problem with regard to the application of
consolidated techniques.

The approach presented here tries to answer the missing data problem directly in the
simulation model, by devising schemes for objective, yet approximated, estimation of
parameters and correlation matrices in the multivariate framework. The advantages of
operating in this way are that there is a unique and compact approach to model estimation in a
framework of  missing data, which does a correct job in  the sense of point #5 above and
includes the hydrologic phase (point #3) mentioned by Basson et al. (1994). Considering that
the characteristics of the hydrologic variables of interest are far from being normal, the bases
of this approach look sufficiently justified.

Multivariate model choice with inadequate data

As mentioned in the introduction, reconstruction of missing rainfall data requires less effort
than that needed to infill or patch series of streamflows, due to the reduced impact of
autocorrelation and the absence of hydro-geological considerations that bias the streamflow
structure even in adjacent watersheds.

Given that, a multivariate model that must operate in the presence of missing data will
perform much better if it allows one to reconstruct the rainfall (or a surrogate of it)
independently or in advance with respect to the reconstruction of runoff. The practice of
multivariate modelling of seasonal streamflows in fact makes this goal relatively easy to
achieve, because it has been widely accepted that models that reproduce independently the
serial and the spatial correlation of data (multisite or  contemporaneous models) are fully
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justified by hydrological considerations and provide more than accurate reproduction of the
space-time correlation structure of the process. Salas et al. (1985) and Rasmussen et al.
(1996), among others, provide extensive discussions on the model selection process for the
hydrological variable considered with reference to contemporaneous ARMA (CARMA)
formulations.

Of the different approaches to treat the estimation of the spatial correlation structure in
contemporaneous models (see e.g. Stedinger et al., 1985;  Salas et al., 1980; Rasmussen et al.,
1996) the most suitable one with respect to requirements in terms of missing data is the one
proposed by Salas et al. (1980), in which the streamflow spatial correlation matrix is obtained
indirectly from the corresponding matrix computed on the residuals. In the case considered by
Salas et al. (1980) residuals do not have the meaning of hydrological inputs but the rationale
sounds correct in the sense discussed earlier. An additional important advantage of this
approach (made possible by the decoupling of the estimation of the space and time
correlations) is that stochastic models for reproduction of the serial correlation can differ from
one station to another. This is a really important matter when there is the need and the
possibility of discriminating between the univariate model structure among the series.

When dealing with patched datasets, the multivariate CARMA model allows one to choose
whether or not to rebuild data, while other multivariate structures require complete datasets
from the beginning. The CARMA model is the one used in this paper, with a variant made up
of a conceptually-based framework that modifies the identification and estimation phases and
that makes explicit reference to a hydrological input to the watershed system.

Advantages of a conceptually-based contemporaneous model

Claps et al. (1993) proposed a conceptually-based framework for identification of univariate
constant-parameter ARMA models of monthly runoff. One of the peculiar features of that
model is the parsimony of parameters achieved by considering independent sources of
monthly correlation, such as deep groundwater and seasonal groundwater systems, whose
effects are evaluated at independent aggregation scales. Model identification and estimation
are strictly conditioned by this structure. In particular, in the identification phase the only
option is related to the recognition of the presence of a deep (over-year) groundwater
component, that leads to a more general ARMA(2,2) model instead of an ARMA(1,1).
Another feature of the conceptual framework is that the model residual is formally identified
with the effective rainfall, that results from being inversely estimated once the model is
identified. To maintain this correspondence, no transformation or deseasonalisation  is applied
to the data, such that a non-gaussian periodic-independent residual is obtained (PIR-ARMA
model).

The difficulties arising in the probabilistic modelling of the residual are compensated for by
the possibility of validating parameter estimates that have conceptual meaning and by the
possibility of allowing streamflow generation in ungauged sites. The first issue is particularly
useful when data are scarce and uncertain. Conditions that are necessary for the second task,
with reference to an ungauged station are: a) The effective rainfall must be estimated in
adjacent basins and relations with the total rainfall must be established; b) ARMA parameter
values are to be related to the estimates in adjacent basins by means of relations with hydro-
geological features of the basins.

The extension of the conceptually-based approach to the multisite case, as proposed by
Straziuso (1997) and Straziuso et al. (1998), presents the model preserving the advantages just
discussed, with the additional feature that when residuals are considered in their spatially
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correlated structure this is reinforced by their conceptual meaning. In other words, it is more
effective to look for the spatial correlation in the effective rainfall process than in the runoff,
which is highly affected by serial correlation.

In the following, the process of generating multisite series of monthly runoff will be reduced
to the task of generating spatially correlated residuals, or effective rainfall, leaving as a trivial
final step the final reproduction of serially correlated streamflows in each site with the specific
ARMA stochastic model.

Multivariate process of the effective rainfall

In the conceptually-based approach the effective rainfall process behaves as the ARMA model
residual. The advantages of introducing a conceptual meaning for the residual are partly
counterbalanced by the disadvantage of having to work with its compound (and skewed)
marginal distribution. The Bessel distribution originally introduced to model this variable
(Claps et al., 1993) was replaced by a more treatable compound square-root normal (csr-
normal), which has probability density function as:
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This distribution behaves well with respect to the Bessel (Straziuso, 1997) particularly when
the parameters are estimated with the method of moments directly applied to the transformed
form of the normal dostribution (Lloyd, 1980, p. 154):
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These relations apply to the continuous part I+ of the distribution, while the zero finite
probability P(0) coincides with the sample frequency of zeros.

Reproduction of the spatial correlation structure of this variable requires that the continuous
part (or the whole distribution) be reduced to a normal distributed variable et so that the
classical scheme for generation of normal correlated variables (see e.g. Salas et al., 1980) can
be applied. This scheme is based on the matrix equation  et = B ξt , in which ξt  is a vector of
normal uncorrelated standardised values corresponding to the innovation for the n stations at
time t, while B is the nxn matrix carrying the information content of the spatial correlation. In
fact, this latter is explicitly contained in the correlation matrix G with which B is connected
by means of the gramian equation BBT = G.

A conformal transformation between the csr-normal and a gaussian distribution was tried by
Straziuso (1997), based on some results given by Bell (1987) on analytical and numerical
methods to transform the correlation matrix estimated on the gaussian (transformed) variable
in the correlation matrix relative to the untransformed variable. In this attempt, the compound
nature of the distribution did not provoke specific problems in the application of the
transformation. What made this method practically inapplicable, because of the poor results
obtained, was the extreme variability of the P(0) values between months and between stations.
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A more complex, yet more natural, mechanism for reproduction of the spatial correlation for
the csr-normal was selected using the properties of correlated intermittent processes,
considered in the family of Discrete AR and ARMA models (Jacobs and Lewis, 1978). In
particular we looked at an evolution of this family, as the product Periodic DAR(1) model
developed by Chebaane et al. (1995) to reproduce intermittent monthly flows processes.

The PDAR(1) model by Chebaane et al. (1995) reproduces zero-non zero sequences of a
univariate correlated intermittent process, and is proposed for application in the time domain.
We have used a non periodic formulation of this scheme in a spatial domain, that starts from
the same vector equation (product model):

Yτ = Xτ Zτ (3)

in which Y is the vector at time τ of the process to reproduce, X is a Bernoulli stochastic
process of (0,1) occurrences and Z is the vector of the continuous part of the distribution.

Evaluation of the correlation structure of the continuous part is coherent with the general case
cited above (Salas et al., 1980) while for the intermittent process Chebaane et al. (1995)
provide the estimation tools with respect to a formulation for a 2-site process that is
equivalent to:

X V X V Us s1 0
1, , ( )τ τ τ τ τ= ⋅ + − (4)

In this relation the correlation is evaluated between the value XS0,τ of the variable X at month τ
in the 'independent' station s0 and the value XS1,τ at the same time in the 'dependent' station s1.

Vτ and Uτ are mutually independent binary processes with Binomial distribution and
parameters:

{ } { }γ δτ τ τ τ= = = =P V P U1 1 ;  (5)
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Using the transition matrix estimation method reported in Chebaane et al. (1995), one obtains
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in which P00 and P11 are obtained directly on the sample, with reference to the month τ, by
counting the numbers n00 and n11 of the actual 0→0 and 1→1 transitions relative to the total
number n0 and n1 of starting states.

Chebaane et al. (1995) introduced the product model with reference to a periodic univariate
AR(1) model, in which the intermittent scheme is sequentially applied to couples of
consecutive months. The transposition of this scheme in a spatial correlation framework leads
to a bivariate contemporaneous model, that is not immediately extendible to the general
multivariate case. On the other hand, the bivariate form does not prevent one from obtaining
realistic results, given that simulation of contemporaneous streamflow data must obey some
constraints imposed by the parental relations existing between river basins drained by the river
sections of interest. In the case study examined, the presence of nested and adjacent basins
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allowed us to establish reasonable sequences of couples of stations (upstream in one basin and
continuing towards adjacent basins).

Application of different sequences of couples showed that the final correlation matrices
resemble each other very well, independently of choice of sequence. Even the correlation
values resulting for pairs not included in a sequence does not change significantly if the pair is
subsequently included in a different sequence. This result derives from the substantial
homogeneity of the spatial field of the effective rainfall process and is not guaranteed in other,
more variable, contexts.

Correlation matrix of effective rainfall estimation with patched data

Continuous part

In the framework of multivariate contemporaneous models the handling of missing data
without reconstruction requires two distinct approaches within the estimation of serial and
spatial correlations. For serial correlation we need to estimate unique parameter vectors for
discontinuous series. Since we apply univariate linear stochastic models to the continuous
subsets of the series, final values of the parameters can be obtained by weighted averages of
the subset estimates, with the record length as the weight. These parameters are used in the
generation step, while it is important to underline that the effective rainfall series are
estimated independently for each subset and are not modified when the final stochastic
parameter estimates are obtained. Therefore, at the end of the univariate model estimation on
all of the record subsets we have a patched matrix of estimated effective rainfall data, that
contains also a significant fraction of zero values. Referring to the product model of equation
(3), evaluation of the spatial correlation structure is independently performed for the
continuous and for the intermittent parts. In the following we will start by evaluating
techniques for robust estimation of the correlation matrix of a continuous process in the
presence of uneven and/or intermittent datasets.

In the literature we found two main methods for dealing with patched matrices in estimating
the spatial correlation. The first was referred to as case deletion and works so as only the
cases in which all of the stations have data are accepted and processed. Using data matrices of
equal length ensures that the correlation matrix is positive definite, which is a sufficient
condition to allow one to solve the gramian equation BBT = G and generate spatially
correlated random numbers (Salas et al., 1980). The problem with this simple and intuitive
technique is that the resulting even dataset is frequently too short to retain enough information
about the spatial correlation structure.

The second method found was proposed by Basson et al.(1994 pp.163-164) and is more
effective in reproducing the original correlations between couples of stations. In this method
the case deletion is only applied between each pair of stations, reducing to a minimum extent
the number of deleted data. This means that the data considered for a given station can vary
depending on which other station is considered in turn. As a consequence of this procedure, it
is not certain that the resulting correlation matrix is even positive semidefinite, which is a
necessary condition for decomposition of  BBT = G. If the computed correlation matrix comes
out as negative semidefinite, a reconditioning method must be applied to make it at least
positive semidefinite.
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This latter method ensures reasonable preservation of sample spatial correlation even when
data are quite sparse, and is certainly coherent with the approach presented here, which avoids
infilling the data when the gaps are large and systematic.

The choice of the reconditioning method is from a restricted lot. The methods found in
literature were those proposed by Fiering (1968), Crosby and Maddock (1970), Mejia and
Millàn (1974) and Rasmussen et al. (1996). Each of the related techniques has advantages in
terms of practicability and drawbacks in terms of alteration of the original correlation figures.
We compared the performances of the algorithms by Fiering and by Rasmussen et al. The
former is very simple and intuitive, and so preferable to the other two methods presented in
the seventies, and the latter is part of a wider method to recondition families of correlation
matrices within the framework of periodic contemporaneous models. For the data considered
here, the method by Fiering performed best, and was the one adopted throughout the
procedure. The technique consists of modifying the eigenvalue matrix Λ by setting to zero the
lowest (negative) value and distributing the error uniformly on the other eigenvalues, leaving
their sum unchanged. The only constraint on the recomputed correlation matrix  G1=ΘΤΛ1Θ,
with Θ as the eigenvector matrix, will be that the main diagonal must have unit values. After
having imposed this constraint, eigenvalues and eigenvectors are again computed until all
eigenvalues are all non-negative. As a result of application of this procedure one obtains a
positive semidefinite matrix G that is only slightly different from the original matrix.

Decomposition of the gramian equation BBT = G is achieved through the Singular Value
Decomposition (SVD) method (also called eigenvalues method) originally coded by
Wilkinson and Reinsch (1971) and largely accessible in numerical methods books (e.g. Press
et al., 1986). This methods is computationally efficient and does not fail with zero and
negative eigenvalues. The accuracy resulting from this method when large matrices are
considered depends essentially on the algorithm used for computation of eigenvalues and
eigenvectors. In the cases in which G is positive definite, decomposition of the above equation
can result also by the Gram-Schmidt orthogonalization procedure, first introduced by Young
and Pisano (1968) for this factorization problem. This latter algorithm presents computational
instabilities for large matrices, consequently being substantially less appealing than the SVD
for practical applications, in which positive semidefinite G matrices are commonly
encountered.

Having chosen the method by Basson et al. (1994) and the reconditioning technique by
Fiering (1968)  the generation of spatially correlated non-zero values of effective rainfall
proceeds with the following steps:

1.  Estimation of the sample correlation matrix G from the square-root transformed (non-zero)
values of estimated inputs

2.  If  G is negative-definite, the reconditioning method by Fiering is applied.

3.  Equation BBT = G is decomposed by the SVD method, implemented in the Matlab©

environment (The Mathworks, 1997).

4.  Once B is computed, generated values of the continuous part of the inputs result from
equation et = B ξt , in which et vectors are squared to respect the original distribution.

Intermittent part

Parameter estimation for the intermittent part of the effective rainfall process is obtained
through evaluation of transition probabilities computed between couples of stations. In this
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case the presence of uneven datasets does not affect the nature of the transition matrix, but
rather the inner congruence of probabilities. In the following it is shown how this problem has
been addressed.

Some congruence equations hold in the scheme for estimation of the intermittent process
parameters by means of the transition matrix. They are:

P00 + P01 =1 ;   P10 + P11 =1 (7)

and

( ) ( ) ( ) τττ ,110,000,0 01 0sss PPPPP += (8)

( ) ( ) ( ) τττ ,111,001,1 001 sss PPPPP += (9)

in which (P0)S1,τ is the marginal probability of zero effective rain for the month τ and the
station S1. Relations (8) and (9) derive from the following equation, applied to a generic
month τ:
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where, in this case, the probabilities are interpreted as maximum likelihood estimates based
on observed frequencies.

When dealing with missing data, application of this scheme can produce problems related to
the total number of data in the two stations. Based on the streamflow data, we have two
relatively independently observed datasets, with lengths N0 and N1 , on which we compute the
numbers nij of actual transitions on the two subsets of contemporaneous data, of length N ≤
min(N0,N1). The reduction of the length of original  series can produce significant
modifications of the marginal probabilities (P0) and (P1), resulting in the estimation of model
parameters that will not allow one to reproduce the (0,1) marginal occurrences in the
individual stations. Conversely, it is not possible to estimate transitions without reducing the
data to the contemporaneous observations. Doing so, we cannot use directly the original
marginal values of n0 and n1 in evaluating Pij, because this will prevent the fulfilment of  the
congruence in relations (8) and (9).

What we propose for saving most of the original information contained in the marginal
zero and 1 probability is to impose the congruence, as represented by relations (8) and (9), on
the estimated transition probabilities. In fact, one can consider that relation (8) is a linear
equation in the (P00, P10) plane, that can be written as P a bP10 00= +  with coefficients:
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If we indicate with P* the point in the (P00, P10) plane corresponding to the sample transition

probabilities * P,*P 1000 , in general this point will not lie on the line corresponding to the equation

written above, because of the case deletion applied. The correction proposed, that preserves
the marginal probabilities, consists in moving the point P* orthogonally with respect to the
congruence line until it has reached the line itself (see figure 1a). The rationale is to minimise
the distance between the originally estimated point and the corrected point, coherently with



10

respect to the conditions that both P00 and P10 must lie in the interval (0,1). If this is not the
case, such as when the interception point falls outside the (1,1) congruence square, the new
point will still move on the line until this condition is met (figure 1b).

Congruence of the (P00, P10) pair with relations (8) and (9) is obtained with the expressions:
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Figure 1. Definition sketch for correction of transition probabilities.

Case study

The procedures shown in the preceding paragraphs have been applied to a real world case,
consisting of a system of 9 gauging stations located in the Basilicata region (Southern Italy).
Names and main characteristics of the basins considered are reported in table 1. The dataset
available for the stations are highly variable in length and continuity and the maximum
number of years in which the 9 stations have contemporaneous data is 6 (see figure 2).

Owing to the high percentage of zeros in the effective rainfall series, in some months of the
dry season the correlation matrix of the continuous part of the input distribution has little
significance, because the number of contemporaneous non-zero values can be very low. This
problem does not apply to the transition matrix used for the intermittent part of the process.
As a consequence of this outcome, the spatial correlation structure related to the continuous
part of the distribution was evaluated on a seasonal basis, and was considered constant for all
of the months within each of the two seasons. By contrast, the marginal probability
distributions and the correlation structure of the intermittent part of the process were
maintained with monthly detail.

Even on a seasonal basis it was necessary to apply the reconditioning method of Fiering et al.
to make the correlation matrices of the continuous part of the input positive semidefinite.
Table 2 reports the differences found between empirical and reconditioned matrices for the
dry season (May-October). Station numbers are the codes shown in Table 1.
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Figure 2.  Graphical representation of the pattern of contemporaneous data analysed.

Code Station Area

(Km2)

Mean monthly
runoff (mm)

1 Bradano a Tavole Palatine 2743 7.60

2 Bradano a Ponte Colonna 459 12.50

3 Basento a Menzena 1405 21.67

4 Basento a Gallipoli 848 30.13

5 Basento a Pignola 42.4 48.75

6 Agri a Tarangelo 507 52.40

7 Agri a Le Tempe 174 69.07

8 Sinni a Valsinni 1142 45.04

9 Sinni a Pizzutello 233 83.80

Table 1. Main characteristics of the gauging stations considered.
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As an example of application of the correction method for transition probabilities, the results
of the corrections introduced in the transition matrix computed for the month of October are
reported in Table 3.

The final results obtained in terms of reproduction of the correlation structure of the effective
rainfall process are shown in figures 3-4. The matrices reproduced in the figure present in grey
scale the relative variations found between observed and generated correlations between series
at all the stations pairs. The series considered are those of the complete effective rainfall
process (including the zeros) aggregated on the two seasons chosen, wet and dry. The quality
of results presented for the effective rainfall was also obtained with respect to the runoff
process. In the runoff, the reproduction of the spatial correlation depends on the efficiency of
representation of the serial correlation, which is quite well reproduced in the univariate
scheme

Corrected

Station # 1 2 3 4 5 6 7 8 9

1 1.00 0.81 0.80 0.29 0.36 0.14 0.01 0.65 0.01

2 0.81 1.00 0.69 0.66 0.36 -0.16 0.03 0.52 0.00

3 0.80 0.69 1.00 0.56 0.58 0.46 0.46 0.55 0.31

4 0.29 0.66 0.56 1.00 0.64 0.23 0.63 0.43 0.45

5 0.36 0.36 0.58 0.64 1.00 0.60 0.61 0.34 0.34

6 0.14 -0.16 0.46 0.23 0.60 1.00 0.81 0.50 0.64

7 0.01 0.03 0.46 0.63 0.61 0.81 1.00 0.47 0.59

8 0.65 0.52 0.55 0.43 0.34 0.50 0.47 1.00 0.41

9 0.01 0.00 0.31 0.45 0.34 0.64 0.59 0.41 1.00

Observed

Station # 1 2 3 4 5 6 7 8 9

1 1.00 0.91 0.80 0.24 0.35 0.21 0.13 0.64 0.07

2 0.91 1.00 0.74 0.78 0.39 -0.30 0.17 0.59 0.08

3 0.80 0.74 1.00 0.54 0.57 0.49 0.49 0.52 0.32

4 0.24 0.78 0.54 1.00 0.63 0.28 0.66 0.40 0.45

5 0.35 0.39 0.57 0.63 1.00 0.63 0.61 0.33 0.33

6 0.21 -0.30 0.49 0.28 0.63 1.00 0.81 0.54 0.65

7 0.13 0.17 0.49 0.66 0.61 0.81 1.00 0.49 0.58

8 0.64 0.59 0.52 0.40 0.33 0.54 0.49 1.00 0.42

9 0.07 0.08 0.32 0.45 0.33 0.65 0.58 0.42 1.00

Table 2. Corrected (Fiering algorithm) and observed interstation correlations for the
continuous part of the effective rainfall distribution. Dry season (May-October) .
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Corrected P00

Station # 1 2 3 4 5 6 7 8 9

1 0.286 1.000 0.023 0.545 0.167 0.189 0.090 0.074 0.085

2 0.511 0.452 0.099 0.521 0.108 0.169 0.057 0.194 0.054

3 0.033 0.541 0.095 0.027 0.006 0.011 0.003 0.501 0.003

4 0.415 1.000 0.024 0.235 0.121 0.138 0.000 0.046 0.000

5 0.508 1.000 0.003 0.502 0.049 0.501 0.500 0.004 0.500

6 0.344 0.679 0.007 0.335 0.335 0.094 0.274 0.017 0.260

7 1.000 1.000 0.001 0.002 1.000 1.000 0.026 0.002 0.951

8 0.059 0.578 0.254 0.049 0.010 0.020 0.005 0.154 0.005

9 1.000 1.000 0.002 0.003 1.000 1.000 1.000 0.003 0.024

Observed P00

Station # 1 2 3 4 5 6 7 8 9

1 0.286 1.000 0.000 0.500 0.167 0.167 0.167 0.000 0.167

2 0.429 0.452 0.071 0.571 0.143 0.143 0.071 0.143 0.071

3 0.000 0.500 0.095 0.000 0.000 0.000 0.000 0.500 0.000

4 0.375 1.000 0.000 0.235 0.125 0.125 0.000 0.000 0.000

5 0.500 1.000 0.000 0.500 0.049 0.500 0.500 0.000 0.500

6 0.333 0.667 0.000 0.333 0.333 0.094 0.333 0.000 0.333

7 1.000 1.000 0.000 0.000 1.000 1.000 0.026 0.000 1.000

8 0.000 0.500 0.250 0.000 0.000 0.000 0.000 0.154 0.000

9 1.000 1.000 0.000 0.000 1.000 1.000 1.000 0.000 0.024

Table 3. Corrected and observed probabilities for the 0→0 transitions.

The proposed procedure performs well under almost all conditions, with less efficient results
in the dry season and with stations located in the extreme positions of the area. The inefficient
reproduction of the correlation in these cases, in terms of relative errors, is mitigated by the
fact that absolute correlation is almost negligible in the dry season for those stations. In
addition, the high number of zeros found in the dry season makes spatial correlation effects
less important than in the wet season, because the runoff volumes in the dry season are a
fraction of those in the wet season, which dominate the annual flow distribution
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Figure 3. Percent of the relative errors [abs(ρgen−ρobs)/ρobs] in the reproduction of the spatial
correlation of the effective rainfall in the wet season (November-April).
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Figure 4. Percent of the relative errors [abs(ρgen−ρobs)/ρobs] in the reproduction of the spatial
correlation of the effective rainfall in the dry season (May-October).
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Final Remarks

In the framework of the conceptually-based analysis of multivariate monthly streamflow data,
the issue of model application with incomplete datasets is addressed in this paper. The main
features of the procedure presented here are: (i) the attempt to make the best use of the
existing data without reconstructing unobserved runoff records and (ii) the specific points
related to the modelling of intermittent processes with incomplete data. Missing records are
treated in a different way with reference to the reproduction of serial correlation and of spatial
correlation; this is made possible by the use of the reduction of the complete multivariate
model to a multisite formulation.

As regards the reproduction of the spatial structure of the process, the stochastic model
residual is considered and its physically-consistent meaning as an estimate of the effective
rainfall provides useful indications on the results arising from the applications. This is
especially true with reference to the relations between the number of zeros in the input
(effective rainfall) sequences and interstation correlation.

The practical implementation of the proposed procedure suggests the following
considerations:

- The use of a conceptually-based modelling framework helps in the interpretation of results
and in the reduction of errors. In this context, relative errors emerging in the reproduction
of correlation in the dry season are to be ascribed to the peculiar characteristics of the
input process in that season and are certainly less important than comparable errors that
may arise in the wet season.

- To maintain the monthly detail in all of the modules of the stochastic procedures looks
difficult at the application level and is probably not always completely justified,
particularly if one is interested in finding physically consistent indications in the results.
This was the case of the spatial correlation in the continuous part of the input distribution,
that sometimes cannot be computed for lack of relevant data and that is characterised by
low values and insignificant variations between the consecutive dry months.

The ensemble of procedures proposed tends to address an objective way of treating
incomplete multivariate datasets, producing even more meaningful results, considering the
physically-consistent meaning of the residual analysed. We believe that the results obtained
provide an interesting contribution to the discussion on a topic of great practical relevance in
multivariate runoff simulation in the context of incomplete data.
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