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Abstract

Identification of the flood frequency curve in ungauged basins is usually per-

formed by means of regional models based on the grouping of data recorded

at various gauging stations. The present work aims at implementing a re-

gional procedure that overcomes some of the limitations of the standard

approaches and adds a clearer representation of the uncertainty components

of the estimation.

The information in the sample records is summarized in a set of sample

L-moments, that become the variables to be regionalized. To transfer the

information to ungauged basins we adopt a regional model for each of the

L-moments, based on a comprehensive multiple regression approach. The

independent variables of the regression are selected among a large number

of geomorpholoclimatic catchment descriptors. Each model is calibrated on

the entire dataset of stations using non-standard least-squares techniques

accounting for the sample variability of L-moments, without resorting to
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any grouping procedure to create sub-regions. In this way, L-moments are

allowed to vary smoothly from site to site, following the variation of the

descriptors selected in the regression models. This approach overcomes the

subjectivity affecting the techniques for the definition and verification of the

homogeneous regions. In addition, the method provides accurate confidence

bands for the frequency curves estimated in ungauged basins.

The procedure has been applied to a vast region in North-Western Italy

(about 30,000 km2). Cross-validation techniques are used to assess the effi-

ciency of this approach in reconstructing the flood frequency curves, demon-

strating the feasibility and the robustness of the approach.

Keywords: Regional flood frequency analysis, L-moments, Uncertainty,

Ungauged basins, Short records

1. Introduction1

The evaluation of the frequency of flood events in ungauged catchments2

is usually approached by building suitable statistical relationships (models)3

between flood statistics and basins characteristics, calibrated on a set of4

records of annual maxima. These models are used to transfer the information5

available at the gauged sites to the target basin, where only morphoclimatic6

catchment’s characteristics are available. This type of procedure is called a7

regional model, because it identifies a subset of basins, called region, that is8

used as a pooling set where the information to be transferred to ungauged9

site resides. In standard regional models, the basins, which are assumed to10

belong to a homogeneous region, donate their (common) statistical properties11

of the flood frequency curve to the ungauged basins that are assumed to fall12
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in the same region.13

Various methods to achieve this goal have been proposed in the literature14

(see for example the review by Cunnane (1988) and Grimaldi et al. (2011)),15

differing to each other mainly on the basis of the distribution used to de-16

scribe the at-site data (see e.g. Hosking and Wallis, 1997, for a bouquet of17

distributions), and on the pooling criterion used for the delineation of regions.18

Several techniques have been proposed for region delineation. Among others,19

we can mention: cluster analysis and proximity pooling (Burn, 1990), hierar-20

chical approaches (Fiorentino et al., 1987; Gabriele and Arnell, 1991), neural21

network classifiers (Hall and Minns, 1999) and mixed approaches (Merz and22

Bloschl, 2005). For any of these techniques the check for statistical homogene-23

ity within the regions is an important issue (Viglione et al., 2007; Castellarin24

et al., 2008).25

However, most of the standard statistical tools for the estimation of the26

flood frequency curve in ungauged basins present limitations. In particular,27

(i) the subdivision of the domain of interest in homogeneous regions, and28

(ii) the choice of an a priori probability distribution to describe the sample29

data, can be considered as limiting factors, due to the difficulties of manag-30

ing estimations where abrupt changes occur across regions, or distributions31

demonstrate not to keep their properties inside and across regions.32

Regarding the point (i), different approaches exist to create homogeneous33

regions. For instance, regions can be created by splitting in separated areas34

the geographical space or a multi-dimensional space of the physiographic35

basin’s characteristics (e.g. Ouarda et al., 2001, fig.1). The regions can be36

defined by means of fixed boundaries (e.g. cluster analysis procedures) or37
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by means of a pooling technique that does not define fixed regions, as in the38

region-of-influence (ROI) approach (Burn, 1990). The ROI approach is more39

flexible than the fixed-regions approach because it creates site-dependent40

regions. However, the estimates are not smooth (both in geographic or phys-41

iographic spaces) due to possible discontinuities at the border between one42

ROI and another.43

The main limitation of the approaches that use a subdivision in sepa-44

rate regions is the difficulty to assess a reliable and stable configuration of45

the regions (e.g. which catchments to include or not in a particular region).46

In fact, since there is no prior information about the regions configuration,47

any algorithm used for regions delineation induces some errors. Then, the48

regions must be tested for their statistical homogeneity, although the re-49

lated tests can be rather weak in the estimation of statistical heterogeneity50

(Viglione et al., 2007). A few papers have tried to overcome this problem51

proposing methods based on the interpolation of the hydrological variable in52

the descriptors space (Chokmani and Ouarda, 2004; Chebana and Ouarda,53

2008), or based on the so-called top-kriging (Skoien et al., 2006). The first54

technique presents problems in the definition of the descriptors used for the55

interpolation, while the top-kriging is heavily dependent on the availability56

of large datasets that would support a reliable construction of a “objective”57

variogram. The idea not to resort to a grouping procedure to form the re-58

gions has been also developed by Stedinger and Tasker (1985), and recently59

improved by Griffis and Stedinger (2007), where the advantages of using this60

approach are underlined. Using no regions there is no longer the need for an61

homogeneity test: the statistical characteristics of the floods can vary from62
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site to site and the model will try to reproduce this variability.63

All the above approaches require, at the initial stage, an hypothesis on the64

at-site frequency distribution chosen to describe the data CDF (cumulative65

distribution function) and to estimate flood quantiles. In fact, these methods66

basically perform more or less refined interpolation techniques on the flood67

quantiles estimated at site. This bring us back to point (ii) above, which68

is related to the choice of an a-priori CDF to represent the data. However,69

different probability distributions can fit equally well the data for low return70

periods, while they may produce diverging estimates when extrapolated to71

high return periods (an example will be given in the following figure 6). This72

effect becomes even more evident in the case of short records, which are73

particularly important in data-scarce regions.74

In this paper, we followed the idea of transferring hydrological information75

assuming no regions nor pooling groups, and we use the L-moments and their76

dimensionless ratios as statistical variables to be transferred to the ungauged77

sites. In particular, we select the sample L-moment of order one (the mean),78

the coefficient of L-variation (LCV ) and the L-skewness (LCA) of the record.79

Regionalizing these three L-moments allows one to reconstruct the whole80

flood frequency curve, at least if three-parameter curves are selected. The81

choice of the mean, LCV and LCA as hydrological signatures in a regional82

framework can be interpreted in an index-flood framework (Dalrymple, 1960)83

considering the mean as the scale factor and the L-moments ratios as the84

descriptors of the dimensionless growth curve. A similar approach has been85

applied by Vogel et al. (1999) to the annual streamflow, who regionalized the86

first two moments instead of the L-moments.87
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The use of the mean, LCV and LCA instead of a quantile or distribution-88

parameter is also helpful, for both calibration and prediction purposes, when89

catchments with short sample records are used in the analysis. In fact, during90

the model calibration phase, sample L-moments are computed even if their91

sample variability is high (but known or quantifiable), without resorting to92

often inefficient estimates of the at-site parent distribution. This avoids in-93

formation loss due to the elimination of short records. On the other hand, if94

one is interested in the local quantile prediction at a gauged site with a short95

record, it is still possible to compute, for instance, the index-flood (Qind)96

and the LCV directly on the sample record, leaving to the regional procedure97

the estimation of LCA. From this point of view, this approach extends the98

original index-flood method, in which Qind is often estimated locally, based99

on even few at-site measurements, while the growth curve is derived by a100

regional model.101

The relationships built to transfer the information to the ungauged sites102

are based on multiple regressions and are discussed in section 2.2. The choice103

of the probability distribution used for the final quantile estimation is based104

on a model averaging approach and is reported in section 3. The proposed105

methodology is applied to an area of about 30.000 km2 located in North-106

Western Italy, including 70 gauging stations. The application is presented in107

section 4 and final remarks are reported in the conclusions section.108
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2. Model Definition109

2.1. At-Site Estimates: Systematic and Non-Systematic Information110

The first step of the procedure is to check the available data and use111

them to compute suitable statistical indicators at the gauged sites. Among112

the possible types of data which can be used in the statistical analysis (e.g.113

Stedinger et al., 1993), common procedures implicitly assume a record of n114

systematic measures. Sometimes, however, systematic records of data can115

be integrated with additional data, derived from measurements of significant116

occasional events. This can be particularly useful when the original system-117

atic record is short. When a number of occasional additional measurements118

is available, one can merge them with the systematic ones to improve the119

robustness of the final estimates (e.g. Bayliss and Reed, 2001). This is done120

producing a new time series of “equivalent” length m, that is the number of121

years between the first and the last measurement of both the systematic and122

the occasional record, merged together.123

To calculate the probability weighted moments (PWMs) of the extended124

record, we use a method suggested by Wang (1990): the merged sample is125

arranged in increasing order126

127

x(1) ≤ x(2) ≤ . . . x(m−l+1) ≤ x(m−l+2) ≤ . . . ≤ x(m) (1)

128

where the subscript in round brackets indicates the sorted position; the l129

largest events, exceeding a threshold x0, are considered as a censored sam-130

ple, whose elements can be either systematic or occasional data. When work-131

ing with censored samples, the theoretical formula for the PWM of order r132
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of a random variable X with distribution function F (x) = P (X ≤ x), as133

βr =
∫ 1

0
x(F )F rdF, must be split in two components (Wang, 1990),134

135

βr =

∫ F0

0

x(F )F rdF +

∫ 1

F0

x(F )F rdF = β ′′
r + β ′

r (2)

136

where F0 = F (x0) is the non-exceedance probability relative to the censoring137

threshold x0. The unbiased estimator of β ′′
r is then (Wang, 1990):138

139

b′′r =
1

n

n
∑

i=1

(i− 1)(i− 2) . . . (i− r)

(n− 1)(n− 2) . . . (n− r)
x′′
(i) (3)

140

where x′′
(i) is deducted from the sorted sample as141

x′′
(i) =











x(i) if x(i) < x0,

0 if x(i) ≥ x0.

142

143

On the other hand, the estimator of β ′
r is (Wang, 1990)144

b′r =
1

m

m
∑

i=1

(i− 1)(i− 2) . . . (i− r)

(m− 1)(m− 2) . . . (m− r)
x′
(i) (4)

145

where x′
(i) is the above-threshold sample, i.e.146

x′
(i) =











0 if x(i) < x0,

x(i) if x(i) ≥ x0.

147

Still following Wang (1990), the unbiased estimator of βr is br = b′r + b′′r .148

The censoring threshold x0 represents the level above which the non-149

systematic flood values are assumed as deserving to be recorded. x0 can be150

assumed equal to the smallest non-systematic measure (Bayliss and Reed,151
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2001). In the absence of non-systematic information, the above formulas152

reduce to the usual definitions of PWMs.153

L-moments are then obtained as linear combination of PWMs (e.g. Hosk-154

ing and Wallis, 1997). The first statistic of interest is usually the index-flood,155

that corresponds to the sample average,156

Qind = b0, (5)

157

while the L-moments ratios LCV and LCA are computed as:158

LCV =
2b1 − b0

b0
, (6)

159

160

LCA =
6b2 − 6b1 + b0

2b1 − b0
. (7)

161

Also the coefficient of L-kurtosis,162

Lkur =
20b3 − 30b2 + 12b1 − b0

2b1 − b0
, (8)

can be used in some cases, for example to estimate a four-parameter proba-163

bility distribution.164

The estimates of sample L-moments are integrated with an estimate of165

their sample variance, which is a key element of our model because of the par-166

ticular regression approach adopted in the regionalization procedure. Elmir167

and Seheult (2004) proposed a method for the computation of variances and168

covariances of sample L-moments and of the ratios of sample L-moments;169
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however, their formulation appears to be inconsistent when applied to short170

samples, producing in some cases negative estimates of the variance. In-171

stead, we start defining the standard deviation of the index-flood, following172

the Bulletin 17B Appendix 6 (Interagency Advisory Committee on Water173

Data, 1982), as174

σQind
=

√

1

n2

∑

xi<x0

(xi −Qind)2 +
1

m2

∑

xi≥x0

(xi −Qind)2 (9)

175

where Qind is calculated with equation (5). It is easy to see that, in the176

absence of non-systematic data, equation (9) reduces to the usual standard177

deviation of the mean σQind
= σQ/

√
n.178

The uncertainty of estimates of LCV and LCA is more difficult to assess.179

Due to the presence of short samples, equations reported by Elmir and Se-180

heult (2004) cannot be applied, so we resort to a set of simplified formulas181

obtained by Viglione (2007) on the basis of Monte Carlo simulations. The182

standard deviation of the LCV and LCA are:183

σLCV
=

0.9 · LCV√
n

, (10)

184

and185

σLCA
=

0.45 + 0.6 · |LCA|√
n

, (11)

186

respectively. Moreover, sample LCV and LCA are found to be correlated,187

with a cross-correlation coefficient188

ρ =
1− exp(−5 · LCA)

1 + exp(−5 · LCA)
. (12)
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189

Equations (10)-(12) are approximations, and cannot be easily modified to190

deal with samples extended by mean of occasional information. Conse-191

quently, we use σLCV
and σLCA

calculated only on the systematic sample.192

2.2. Regression Models193

After the definition of the statistics of interest at the gauged stations, a194

model to transfer the information to the ungauged sites is needed. In this195

work, the regional model is intended as a set of relations that allows one to196

estimate the first three L-moments in an ungauged basin on the basis of a197

number of basins descriptors. These relationships, defined by means of linear198

regressions, are built considering the whole descriptors domain, without using199

any subregion or any limitation. Consequently, homogeneity tests are no200

longer necessary, because the flood frequency curves are allowed to change201

site by site.202

We define YT as the vector containing the true values of the statistics203

of interest, in turn index-flood, coefficient of L-variation and coefficient of204

L-skewness. Any transformation of these variables can also be considered.205

The basic hypothesis is that YT can be described through the linear relation:206

207

YT = X β + δ (13)

208

where the (N × p) matrix X contains p suitable descriptors relative to N209

basins, β is the vector of regression coefficients and δ is the vector of the210

residuals due to the incorrectness of the linear model approximation, i.e. the211
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model error. Moreover, in regional flood frequency analysis applications, the212

true statistics YT are not known, and should be replaced by their sample213

estimators in the whole calibration phase:214

215

Y = YT + η (14)

216

where η represents the vector of the sampling errors, built up by considering217

the relations (9)-(11).218

Combining equation (13) and (14), the regression model becomes:219

220

Y = Xβ + ε (15)

221

where ε = δ + η is the vector of the residuals that contains both the model222

and the sampling errors.223

The simplest method to estimate the regression coefficients is based on224

the ordinary least squares (OLS) procedure, that, however, is usually not225

appropriate in hydrological analyses. In fact, due to the presence of records226

of different length and of cross-correlation among different records (e.g. Ste-227

dinger and Tasker, 1985), the requirements of homoscedasticity and inde-228

pendence of the residuals are often violated. To deal with these limitations,229

the weighted and the generalized least squares (WLS and GLS respectively)230

methods have been developed, which require the definition of the covariance231

matrix of the observations (Montgomery et al., 2001).232

In a GLS framework, the vector containing unbiased estimators β̂ of the233

regression coefficients β can be computed as (Montgomery et al., 2001)234
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235

β̂ =
(

XTΛ−1X
)−1

XTΛ−1Y, (16)

236

where Λ is the sampling covariance matrix of the at-site estimators Y. In237

particular, the ordinary least squares (OLS) are the special case in which Λ238

is the identity matrix, whereas the weighted least squares (WLS) involve a239

generic diagonal matrix (the diagonal elements of Λ are the sample variances240

of each at site estimator). Λ has positive values also out of diagonal in the241

GLS case, i.e. when cross-correlations between sample estimates cannot be242

neglected.243

If one considers a non-exact model (Stedinger and Tasker, 1985; Griffis244

and Stedinger, 2007), i.e. the model as an approximation of a real unknown245

functional relation, the variance term relative to the model error also has246

to be accounted for. In this case, the covariance matrix Λ is computed by247

Stedinger and Tasker (1985) combining two terms: the (unknown) model248

variance and the (estimable) sample variance. The method used in this work249

is based on this approach, where the two uncertainty components are sepa-250

rated and the model variance is also used as a quality index. Note that in251

the literature the terms WLS and GLS usually refer to covariance matrices252

containing only the sample variance; then, to avoid misunderstandings due253

to the notation, here we will refer to this approach as iGLS (or iWLS), where254

the “i” stands for “iterative”, since equation (18) requires an iterative solu-255

tion. In this case Λ is approximated by its estimator, defined as256

257

Λ̂
(

σ2
δ

)

= σ2
δ IN + Σ̂ (17)
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258

where Σ̂ is the sample covariance matrix of Y, IN is the identity matrix and259

σ2
δ is the model error variance. The regression coefficients β̂, computed with260

equation (16), and σ2
δ are (jointly) estimated (Griffis and Stedinger, 2007)261

searching for nonnegative solution to the equation262

263

(

Y −Xβ̂
)T [

σ̂2
δIN + Σ̂

]−1 (

Y −Xβ̂
)

= N − p (18)

264

where σ̂2
δ is the estimate of σ2

δ , N is the number of catchments and p is265

the number of independent variables used in the regression (including the266

intercept).267

In the paper by Stedinger and Tasker (1985) and related works, a complete268

covariance matrix Σ̂ is used, that includes covariances in the off-diagonal ele-269

ments. In our study, the basins are assumed to be independent of each other,270

because of the high climatic heterogeneity of the area: thus Σ̂ reduces to a271

diagonal matrix containing the sample variance of the i-th at site estimate272

of Qind, LCV and LCA as the i-th diagonal element. Strictly speaking, our273

model therefore follows an iWLS approach.274

2.3. Regression Model Selection275

In regional analyses a great number of physical descriptors at the basin276

scale can be used nowadays, thanks to the availability of accurate digital277

terrain models and remotely sensed data. Despite this, it is necessary to278

define a suitable subset of descriptors to be used in the regression, in order279

to obtain a robust model. Each model should be tested for significance and280
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against multicollinearity before application (Montgomery et al., 2001). The281

statistical significance of the descriptors used in the model is tested through282

standard Student t-test, applied to each estimated regression coefficient β̂j .283

The null hypothesis H0 : βj = 0 is tested using the statistic284

285

t0 =
β̂j

√

var(β̂j)
(19)

286

(e.g. Montgomery et al., 2001) where the variance of the regression coefficient287

is taken from the diagonal of the sampling covariance matrix
(

XT Λ̂X
)−1

288

(Reis et al., 2005).289

The t0 statistic is compared against its limit value and the null hypothesis290

is rejected, i.e. the coefficient is considered significantly different from zero, if291

|t0| > tα/2,n−p, where t is the quantile of the (two-tailed) Student distribution292

with a confidence level α and n− p degrees of freedom.293

The regression is also checked against multicollinearity, in order to avoid294

to select descriptors that are mutually near-linearly related, that would lead295

to misleading results. The test used for this purpose is the variance inflation296

factor (VIF) test (e.g. Montgomery et al., 2001) with a limit value of 5,297

that is commonly accepted as an indicator of absence of multicollinearity.298

The VIF value is calculated for each descriptor j of a selected model as299

VIFj = (1 − R2
j )

−1, where R2
j is the coefficient of determination obtained300

when the vector of values of the j-th descriptor is regressed on the remaining301

p− 1 descriptors. The test is passed if all the VIF values are lower than the302

selected limit.303

The models passing the t-Student and VIF tests are retained and the304
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model choice within this subset is based on the analysis of the regression305

residuals: models with the lowest model variance are favored. After the306

choice of the most appropriate model, we use this model to calculate the pre-307

dicted value of the variable of interest (Qind, LCV and LCA) in an ungauged308

basin. Hence forward we will use the “ˆ” symbol to refer to the value pre-309

dicted by the regression, while the symbol without any mark will denote the310

sample estimate. One therefore has311

312

Ŷ = xβ̂, (20)

313

where x is the row-vector of descriptors relative to the ungauged basin and314

β̂ the regional regression coefficients vector (equation (16)); the variance of315

Ŷ is (Reis et al., 2005)316

317

σ2
Ŷ
= σ̂2

δ + x
(

XT Λ̂−1X
)−1

xT , (21)

318

with X taken from the calibration dataset and Λ̂ from equation (17).319

The method proposed here allows one to easily estimate the variance of320

the regional Qind, LCV and LCA estimators. This is a relevant advantage over321

standard regional methods, also because it allows one to decide, in gauged322

stations, whether to use regional or sample estimators. In fact, in these323

cases, it is possible to compute both the sample (at-site) and the regional324

estimators and then choose the one with the lowest variance. To this end, the325

standard deviation of the sample estimates, computed on the available data326

through equations (9), (10) or (11), is compared to the standard deviation327
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of the corresponding estimates obtained by the regional model by means of328

equation (21).329

3. Selection Of The Probability Distribution330

The final aim of a regional procedure is to estimate the flood quantile331

and its uncertainty for a specific return period at an ungauged site. So332

far, however, the procedure focused only on modelling Qind, LCV and LCA333

leaving aside the problem of the selection of the distribution. The necessity334

of defining a probability distribution function introduces an additional source335

of uncertainty, due to the inherent ambiguity in this choice at the regional336

scale, particularly when one deals with short samples. Indeed, for low return337

periods there is more than one distribution that fits well the data, and the338

selection of a suitable distribution for the regional model is not trivial (Laio339

et al., 2009). A reasonable solution to this problem, when there are no prior340

knowledge about a suitable distribution to use, is to define the quantile for341

a specific return period following a model-averaging approach.342

The model averaging approach follows the idea that more than one dis-343

tribution may be suitable for the quantile estimation. Instead of choosing344

only one distribution (among those that behave well in the fitting range),345

it is suggested to evaluate many of them and to take their average for each346

quantile. The different distributions will share the same three lower-order347

L-moments, but of course the quantile estimators will be different due to the348

different shape of the distributions.349

After the computation of the frequency curve, the uncertainty of the350

quantile estimates is also assessed. Since regional L-moments are estimated351
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with their variance, we can use a Monte Carlo simulation to define the con-352

fidence limits of the frequency curve adopted. The method is summarized353

as follow: (i) for each basin the regional Qind, LCV and LCV are computed354

as well as their variances; (ii) a set of fictitious values of Q′
ind, L

′
CV and L′

CV355

is randomly extracted from the specific distribution of each L-moment; (iii)356

the parameters of any selected distribution are computed on the basis of the357

L-moments sampled in (ii), and the quantile is estimated for the required358

return period; (iv) points (ii) and (iii) are repeated for a great number of359

times, so that the distribution of the quantile can be empirically estimated;360

(v) confidence bands are defined based on the quantile distribution built in361

point (iv).362

Note that, when dealing with regional estimates, Qind, LCV and LCV are363

assumed to be independent, so that one can consider three univariate distri-364

butions. For the index-flood a lognormal distributionQ′
ind ∼ logN

(

Q̂ind, σ
2
Q̂ind

)

365

is appropriate when the regionalized variable is logQind instead of Qind, as366

in our case study (see section 4.2 for details); while two independent normal367

distributions are used for L-moments ratios: L′
CV ∼ N

(

L̂CV , σ
2
ˆLCV

)

and368

L′
CA ∼ N

(

L̂CA, σ
2
ˆLCA

)

. The normality (or log-normality) of L̂CV and L̂CA369

(or Qind) distributions results from normality of residuals of the linear (or370

multiplicative) regression.371

Differently, the uncertainty of a quantile estimation based on sample data372

depends on the mutually correlated LCV and LCA (equation (12)). Therefore,373

the index-flood is sampled from a normal distribution Q′
ind ∼ N

(

Qind, σ
2
Qind

)

374

while the L-moments ratios are jointly extracted from a multinormal distri-375

bution (L′
CV , L

′
CA) ∼ N (LCV , σ

2
LCV , LCA, σ

2
LCA, ρ). Normality or joint nor-376
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mality of the average and L-moments estimators is asymptotically obtained,377

with a rather fast convergence for small sample sizes (Hosking and Wallis,378

1997).379

4. Case Study380

4.1. Data Availability381

The methods described above are applied to a set of 70 catchments located382

in the North-Western part of Italy (see figure 1, which refers to the database383

used in Claps et al. (2008, p.56)). The analysis is carried out on basins384

belonging mainly to mountainous areas, with area ranging between 22 and385

3,320 km2 and mean elevation from 471 to 2,719 m a.s.l. To reduce any effect386

of upstream lakes and/or reservoirs, we discarded basins whose catchment387

area is covered by lakes in a percentage beyond 10%. The investigated region388

presents basins subjected to various climate regimes, from purely nivo-glacial389

to almost temperate-mediterranean.390

The first step in the model building is the analysis of available data391

of annual streamflow maxima, increased, in some cases, by including non-392

systematic information about large floods occurred in the area. Occasional393

values are retrieved from reports issued by the national or regional environ-394

ment agencies and refer to unusually intense events occurred when no sys-395

tematic measurements were available. The method for inclusion of occasional396

information allowed us to extend the time series length of 18 basins using a397

total of 36 non-systematic measurements. The equivalent time series are, on398

average, 20 years longer than those without non-systematic information.399

After the data checking, the sample index-flow, LCV and LCA coefficients400
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and their standard deviations are computed using the equations in section401

2.1. A short summary of the sample coefficients is shown in figure 2 (panel402

(a) for the index-flood and panel (b) for LCV and LCA), where the filled403

circles highlight the values related to the stations presenting non-systematic404

information.405

A set of 40 basins descriptors (a detailed description can be found in406

Claps et al. (2008, p.65)) has been built for the group of catchments involved407

in this analysis, using geomorphologic and climatic characteristics available408

in the CUBIST database (CUBIST Team, 2007), with procedures developed409

in the CUBIST project (www.cubist.polito.it). The digital terrain model410

used for the calculation (about 90 m cell grid) comes from the Shuttle Radar411

Topography Mission (SRTM) of the NASA and it is freely available (see412

http://www2.jpl.nasa.gov/srtm/index.html).413

4.2. Regional Model Definition414

The model structure adopted in this work for regional estimation of Qind,415

LCV and LCA is linear, and parameters are determined with an improved least416

squares procedure, as discussed in detail in section 2. Although this model417

has an additive structure (see equation (13)), in hydrology it is common to418

use also multiplicative models (Griffis and Stedinger, 2007, among others) in419

the form420

Y = α1X
α2

2 Xα3

3 . . .Xαp

p ε (22)

421

that can be reduced to the linear additive form by means of a log-transformation422

of both sides of the equation.423
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We examine additive and multiplicative model structures for each of the424

cited statistics; details on the descriptors involved and on the transformations425

applied are summarized in table 1. In particular, concerning the index-flood,426

two additive and two multiplicative models are considered, with the depen-427

dent variable equal either to Qind or to Qind/A, where A is the catchment428

area. These models will be referred as Qind, QindA, lnQind and lnQindA,429

respectively. The regional model for LCV is still based on an additive model430

(named LCV) and a multiplicative one (lnLCV), while the LCA is repro-431

duced through an additive model only (LCA). A direct application of the432

multiplicative model to LCA is not possible due to the non-positiveness of433

the variable, that is incompatible with a logarithmic transformation.434

The best models to be used for the regional estimation are identified435

among all the possible combinations of a number of descriptors ranging from436

1 to 4, plus the intercept. The limit of 4 descriptors is mainly due to the437

computational efforts required in exploring all the descriptors combinations438

(∼ 102, 000 combinations with 40 descriptors). Moreover, additional tests439

showed that using more than 4 descriptors does not consistently improve the440

efficiency and the robustness of the final estimates.441

All of the above combinations of models are then tested for significance442

and multicollinearity, and the ones passing the Student and the VIF tests443

are ranked on the basis of their model variance (σ̂2
δ ). Models that emerge as444

the most efficient are finally checked in order to verify the basic regression445

hypotheses (see diagnostic plots in figures 3-5). Finally, the best model for446

each independent variable is selected, as reported in table 2.447

When the dependent variable of interest is log-transformed, equations448
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(20) and (21) yield estimates that are not directly usable and need to be449

back-transformed to their original space. In this case, if the regression resid-450

uals are normally distributed, Ŷ is also normally distributed, and its back-451

transformation leads to a lognormal variable. Therefore, we evaluate the452

mean of the estimate as453

454

µ = exp

(

µŶ +
1

2
σ2
Ŷ

)

(23)

455

with µŶ equal to Ŷ , estimated with the regression in the logarithmic space456

(equation (20)), and σ2
Ŷ

coming from equation (21). The variance of the457

estimate is obtained as458

459

σ2
µ = µ2 ·

[

exp
(

σ2
Ŷ

)

− 1
]

. (24)

460

This back-transformation can be important to avoid estimation bias (e.g.461

Seber and Wild, 1989, 2.8.7), although very often the simple exponential462

transformation463

464

µ′ = exp(Ŷ ). (25)

465

is used to reconstruct the variable in its original space.466

4.3. Regression Results467

Solutions obtained after sorting the models are reported in table 2, to-468

gether with a short summary of the prediction errors, i.e. the root mean469
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squared error470

471

RMSE =

√

√

√

√

1

N

N
∑

s=1

(

Ŷs − Ys

)2

, (26)

the mean absolute error472

473

MAE =
1

N

N
∑

s=1

∣

∣

∣
Ŷs − Ys

∣

∣

∣
, (27)

and the Nash-Sutcliffe efficiency474

475

NS = 1−
∑N

s=1

(

Ys − Ŷs

)2

∑N
s=1

(

Ys − 1
N

∑N
s=1 Ys

) , (28)

computed after a cross-validation procedure (table 4), where N is the total476

number of the gauged stations. Cross-validation is a procedure to validate477

models and can be easily implemented as follow: (i) one station, in turn, is478

removed from the database; (ii) the model coefficients are re-calibrated on the479

basis of the remaining data; (iii) the variable of interest is reconstructed in480

the site removed and (iv) the residual is computed by comparing the estimate481

with the sample value.482

The model selected for Qind leads to a rather efficient estimation of the483

variable. Among the possible transformations (linear or log-transformed; nor-484

malized or not by the catchment area), our analysis showed that the most485

suitable model is lnQind. The selected best model with four descriptors in-486

clude: the catchment area A, the mean annual precipitation (MAP ), a per-487

meability index cf and the coefficient a of the IDF curve (Intensity-Duration488

curve of the average of maximum annual rainfall, as expressed in the form489
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h = adn, with h as the cumulative precipitation for a duration d, and a490

and n as catchment-averaged regression parameters). This model passes the491

Student test with a level of significance of 1% and the VIF test with a limit492

value of 5. Figure 3 shows the regression diagnostic plots, demonstrating the493

good qualities of the model.494

The regional model of LCV is investigated through an additive structure495

as well as a multiplicative one. These approaches are respectively referred496

to as LCV and lnLCV. Regarding LCV, only a few models pass the Student497

test with a 1% confidence level. Therefore the 2% level is also considered,498

that correspond to a greater probability of rejecting the null hypothesis that499

the regression coefficient is equal to zero. The first-ranked model (see table 2500

and 4) has four descriptors: the mean elevation (H), the length of the longest501

drainage path (LLDP ), the length of the vector linking the centroid to the502

basin outlet (LOV ) and the coefficient n of the IDF curve already introduced503

for the lnQind model. Diagnostic plots for this latter models are shown in504

figure 4.505

From observation of figure 4 (panel (a)), where the regional prediction506

are compared against the sample values, we note that the model is not able507

to catch the whole sample variability. This behavior can be traced back to508

two main factors: i) intrinsic limitations of the multiple (linear) regression509

approach based on a set of simple descriptors (reality is certainly more com-510

plex than this); ii) uncertainty affecting sample estimates used for model511

calibration, especially when they are estimated on short samples. An intu-512

itive representation of ii) can be seen in figure 4 panel (a), looking at empty513

and filled circles, as a function of the sample length: it is apparent that514
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the model is rather efficient at describing the LCV of larger samples, while515

the large sample variability of LCV in small samples decreases the quality of516

estimation for small samples.517

The last statistic needed for flood regionalization is the coefficient of L-518

skewness (LCA), that is investigated using only the additive model. The best519

model we obtain is characterized by three descriptors: longitude and latitude520

(Xs and Ys) and the LCV estimate obtained from the previous step. The re-521

sults are shown in greater detail in figure 5; in this case, similar considerations522

apply as those already discussed for the LCV .523

4.4. Estimation of Quantiles524

As already mentioned in section 3, the final aim of the procedure is the es-525

timation of the flood quantiles corresponding to assigned return periods (with526

uncertainty). Our work applies regional regression models to distribution-free527

statistics to avoid certain arbitrary constraints induced by the preliminary528

choice of a distribution probability.529

In this section, we discuss about: (i) the estimation of a flood quantiles530

by means of the model averaging approach and (ii) the assessment of the531

quantile estimates uncertainty by means of Monte Carlo simulations. To532

address the first point, we evaluated six different distributions commonly533

used in hydrology, fitting each of them to the sample data relative to each of534

the 70 basins under analysis. The distributions considered are: the Pearson535

type III or Gamma (GAM), the generalized extreme value (GEV), the three-536

parameters lognormal (LN3), the Gumbel (G), the generalized logistic (GL)537

and the generalized Pareto (GP) (see Claps and Laio (2008, p.265) for the538

adopted parameterization). The frequency curves fitted on the sample data539
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can be plotted together with the sample data. For this purpose, we assign540

a non-exceedance probability to each sample value by means of a plotting541

position. In this work we use the Hazen plotting position as defined by Hirsch542

(1987) to include the non-systematic information.543

An example is shown in figure 6 for the river Chisone at S. Martino. This544

example shows that all the distributions have a similar behavior up to a 100-545

years return period, except for the Gumbel, that is a less flexible distribution,546

having only two parameters. A similar behavior is obtained for most of the547

basins (see Claps and Laio, 2008, p.285). The Gumbel distribution is reported548

only for comparison in these graphs, but is not considered in the model-549

averaging procedure, because it has only 2 parameters. It is rather clear that550

all other models are almost equally suitable to represent the sample data;551

as a consequence we propose to take their average as the frequency curve to552

consider for quantile estimation (thicker line in figure 6).553

For the assessment of the uncertainty of the quantile estimates we use the554

Monte Carlo procedure described in section 3. An example of the obtained555

results is in figure 7 (see Claps and Laio (2008, p.190) for a complete report).556

4.5. L-moments Estimation in Data-Scarce Stations557

Strictly speaking, an ungauged catchment has no data records; thus one558

needs to use regional models to obtain the estimates of all the three L-559

moments under consideration. However, if only few measurements are avail-560

able, it is sometimes possible to estimate at least the lower-order L-moments561

from the sample with an acceptable degree of robustness. The choice between562

the regional and the sample estimation method depends on the variance of563

the corresponding estimators.564
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An example is shown in figure 8, where a simple tool to decide if it is565

more reliable a sample L-moment rather than a regional one is reported.566

Each panel of figure 8 represents the sample standard deviation of each L-567

moment as a function of a sample coefficient (abscissa) and the record length568

(ordinate). The thicker iso-lines correspond the average standard deviation569

of the model predictions, and represent the limits that divide the area where570

is more suitable the sample estimator to the area where the regional one is571

preferable. When a sample is available, one can enter in the plots and check572

if the point falls in the shaded area (sample standard deviation lower that573

the regional one): in this case it is suggested to use the sample estimate.574

Circles reported in figure 8 represent the calibration set and put in evidence575

as, increasing the L-moment order, the regional approaches become more576

reliable for short records, due to increased variance of sample L-moments577

estimators with increasing L-moment order. For instance, the Ayasse basin578

at Champorcher (which have a 29-years record, σQ = 9.9, LCV = 0.266 and579

LCA = 0.274), has a sample σQind
equal to 1.8 and a sample σLCV

equal to580

0.05, which implies that the corresponding point falls in the grey area in581

figure 8a and 8b, i.e.for both Qind and LCV it is preferable to use the sample582

estimates. Instead, the sample σLCA
, equal to 0.19, falls in the white area in583

figure 8c, i.e. the regional LCA is more appropriate, because the (averaged)584

regional standard deviation is 0.094.585

In the light of the results of figure 8, one could take advantage of the586

regional model to improve the local estimation of the flood frequency curve,587

replacing sample L-moments with regionally-estimated values whenever the588

regional estimates have smaller variance. For the present case study, this589
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applies to about 30% of the LCV and about 80% of the LCA values.590

5. Conclusions591

The approach to the regional flood frequency analysis proposed in this592

work aims at overcoming some limitations of the classical methods based on593

(pooling) regions. Although some features of our model already appeared in594

the scientific literature, the overall conceptual framework is novel and use-595

ful for facilitating flood frequency analysis where non-systematic or limited596

measurement are available.597

The method does not require to build up an at-site probability distribu-598

tion. The sample record is characterized by its L-moments, that are used599

as the statistics necessary to reconstruct the complete flood frequency curve,600

and that become the statistics to be regionalized. The use of regression601

models against a set of basins descriptors allows the predicted L-moments to602

vary smoothly over the whole descriptors domain, without any subdivision603

in sub-regions.604

Although for higher-order L-moments a unique linear regression is still not605

able to completely describe the sample variability, this is a step forward with606

respect to other approaches (for example the “hierarchical” models) in which607

the higher-order moments or L-moments are typically kept constant over608

large regions. By avoiding the subjectivity of procedures that create regions609

and estimate their homogeneity the model provides a “global” optimization610

rather than a “local” one.611

The representation of sample data by L-moments avoids to force the612

user to accept possible bad fittings related to the preemptive choice of a613
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probability distribution, and allows one to preserve information contained in614

short samples, that otherwise would be discarded. In the present work, eight615

stations out of 70 present less than 20 data, and would probably be discarded616

in a traditional approach. Even though the importance of these short samples617

in the whole data set is low for the higher-order L-moments, due to their618

high variance, their preservation is important for “local” estimation. In fact,619

our approach allows one to combine sample and regional predictions for the620

estimation of on-site frequency curve.621

A final remark can be devoted to the inclusion of non-systematic measure-622

ments in flood time series. In literature, non-systematic data are commonly623

referred to historical flood, occurred before the beginning of the measurement624

period. However, in the Italian context, we often found time series with large625

gaps and with some large events measured during this “ungauged” period. In626

our procedure, these information can be interpreted as non-systematic data627

and can be used as valuable additional measurements.628
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Table 1: Different model structures used in the analysis. The last column provides the

matrix of independent variables X to be used in the linear regression, that depends on

the descriptors matrix Xd in which each column is a different descriptor and each row

a different catchment. The symbol 1 indicates an unitary column vector introduced to

account for the intercept coefficient in equation (15).

Model denomination Original variable Transformation Sample standard deviation Descriptors

Qind Qind none from eq. (9) X = [1,Xd]

QindA Qind Qind/A σQind
/A X = [1,Xd]

lnQind Qind log (Qind) σQind
/Qind X = [1, logXd]

lnQindA Qind log (Qind/A) σQind
/Qind X = [1, logXd]

LCV LCV none from eq. (10) X = [1,Xd]

lnLCV LCV log (LCV ) σLCV
/LCV X = [1, logXd]

LCA LCA none from eq. (11) X = [1,Xd]

Table 2: Regional models for the estimation of Qind, LCV and LCA. For a short description

of the independent variables see table 3.

Model Equation

lnQind log Q̂ind = −8.76 + 7.99 · 10−1 logA+ 1.09 loga+ 9.53 · 10−1 logMAP + 7.85 · 10−1 log cf

LCV L̂CV = 1.58 · 10−1 − 9.79 · 10−5H − 3.19 · 10−3LLDP + 9.67 · 10−3LOV + 6.07 · 10−1n

LCA L̂CA = 3.92− 6.16 · 10−7Xs − 6.94 · 10−7Ys + 3.59 · 10−1L̂CV
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Table 3: Descriptors involved in the regional models of table 2. More details in Claps

et al. (2008, p.66).

A Catchment area

H Mean catchment elevation

LLDP Length of the longest drainage path

LOV Length of orientation vector

Xs, Ys Basin outlet coordinates

cf Permeability index

MAP Mean Annual Precipitation

a, n Coefficients of the precipitation IDF curve in the form h = adn

L̂CV Estimated LCV

Table 4: Summary statistics for the selected models, computed in cross-validation mode.

Model σ2

δ σδ NS RMSE MAE

lnQind 0.1153 0.340 0.89 101.2 60.1

LCV 0.0054 0.074 0.05 0.105 0.08

LCA 0.0085 0.092 0.09 0.165 0.14
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Figure 1: Geographical location of the gauging stations used for the calibration and vali-

dation of the model. The area is located in northwestern Italy, the names of the stations

are found in Claps et al. (2008, p.56).

Figure 2: Summary of sample estimates for the 70 basins located in Northwestern Italy.

Panel (a) shows the index-flood values related to the correspondent basin area, while panel

(b) reports sample LCV versus LCA. Panel (c) reports the diagnostic plot of Hosking and

Wallis (1997) in which sample LCA- Lkur pairs are compared to those of some probability

distributions: Gamma (GAM), generalized extreme value (GEV), lognormal (LN3), Gum-

bel (G), generalized logistic (GL) and generalized Pareto (GP). For all the panels, filled

circles indicates the basins where non-systematic information have been included in the

analysis.

Figure 3: Diagnostic diagram for index-flood estimation, model lnQind. Panel (a) reports

the results in the log-transformed space. Panel (b) shows the comparison between sample

and estimated values in the original index-flow space. Empty and filled circles differ for the

back-transformation used. Panel (c) and (d) report the check plots for residual normality

and homoschedasticity.

Figure 4: Diagnostic plots for LCV estimation, model LCV. Panel (a) shows the com-

parison between regional and sample estimates. Panel (b) reports the normalplot of the

residuals.

Figure 5: Diagnostic plots for LCA estimation, model LCA. Panel (a) shows the comparison

between regional and sample estimates, highlighting the effect of sample length by different

circles size. Panel (b) reports the normalplot of the residuals.

Figure 6: Example of sample flood data for the river Chisone at S. Martino and su-

perposition of different theoretical frequency distributions. The thicker line is obtained

by averaging the theoretical curves. Black dots represents empirical data, circled ones

correspond to non-systematic events.
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Figure 7: Example of quantiles confidence bands for the river Chisone at S. Martino

obtained with a Monte Carlo simulation. Panel (a) reports the bands when the three

L-moments are all obtained from sample data; while the curve in panel (b) is based only

on a set of regional L-moments obtained after cross-validation.

Figure 8: Comparison between regional and sample standard deviations for the index-flood

(panel a), LCV (panel b) and LCA (panel c). In each panel the thinner iso-lines represent

the standard deviation of sample estimators (in abscissa, based on the sample of σQ, LCV

and LCV respectively) and sample lengths n (in ordinate). Thicker line represents the

average of the regional standard deviation obtained in the case study, and separate the

area of the plot in which the (mean) regional variance is lower than the sample one. For

basins falling in the shaded area it is suggested to used the sample estimate instead of the

regional one and viceversa.
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