
Physics and Chemistry of the Earth 34 (2009) 635–641
Contents lists available at ScienceDirect

Physics and Chemistry of the Earth

journal homepage: www.elsevier .com/locate /pce
A data-based assessment of the dependence of short-duration precipitation
on elevation

P. Allamano *, P. Claps, F. Laio, C. Thea
Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 July 2008
Received in revised form 24 December 2008
Accepted 8 January 2009
Available online 18 January 2009

Keywords:
Orographic effect
Intense rainfall
DDF curves
Elevation
1474-7065/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.pce.2009.01.001

* Corresponding author.
E-mail address: paola.allamano@polito.it (P. Allam
Variability of precipitation with elevation is often related to the presence of an orographic effect interact-
ing with prevailing arrival directions of wet air masses. This effect is commonly recognized to be respon-
sible for the increase with elevation of the annual precipitation amounts measured at the ground level.
However, the variability with elevation of heavy rainfall of short duration is poorly investigated in
hydrology, despite the importance of short-duration events in hydrological applications. Analyzing a
database of 567 time series of annual maximum sub-daily rainfall in northern Italy, we find the relation
of extreme precipitation with elevation to be a function of the event duration. In particular, it emerges
that the intensity of rainfall decreases with elevation for very short durations (i.e., 1–3 h), while the neg-
ative slope of the intensity-elevation regression lines tends to decrease when considering events of longer
duration (i.e., 12–24 h), at least in the western part of the alpine chain. A combined use of kriging and
regression techniques is then proposed to account for the effect of elevation and longitude in the spatial
interpolation of sub-daily rainfalls.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the middle latitudes, precipitation in the winter season pre-
dominantly derives from advective air movements, (i.e., the uplift
from the horizontal plane of a warm air mass). Orographic uplift
is a special case of advection, where air masses are forced to rise
by the relief of the land they pass over, with consequent increase
with elevation of the precipitation amounts measured at the
ground level (Elliott and Hovind, 1964; Foufoula-Georgiou and
Georgakakos, 1991; Barry, 1992; Hevesi et al., 1992; Barros and
Lettenmaier, 1994; Rotunno and Ferretti, 2001; Borga et al.,
2005; Roe, 2005). Capturing the existence of these mechanisms
in mountainous environment is important to understand the
behavior of precipitations at high-elevation. In high-elevation re-
gions, in fact, rainfall patterns are usually not very well known,
partly because of the complex topography, and partly because of
the spatial unevenness of the information available to study such
relationships (Molnar and Burlando, 2008).

Several papers investigate the relation between mean annual
precipitation and elevation (e.g., Basist et al., 1994; Harris et al.,
1996; Guan et al., 2005), typically finding significant increasing
relations between the two. A common belief that precipitation
amounts increase with elevation has then formed, so that the
ll rights reserved.
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mountainous environment is commonly believed to be prone to
more intense and frequent precipitation events.

When passing from long-duration to short-duration events the
relation between precipitation and elevation is not univocal, and
few literature studies exist that investigate the problem (e.g.,
Prudhomme and Reed, 1999; Weisse and Bois, 2001; Boni et al.,
2006). In this paper we investigate this relation and find that, con-
trary to expectations, maximum annual precipitations of short
duration on a vaste alpine region situated in northern Italy signif-
icantly decrease with elevation.

A first implication of this finding is that the parameters of the
depth–duration–frequency curve (DDF), which is commonly used
to estimate design rainfall at ungauged sites (see e.g., Gilman,
1966; Burlando and Rosso, 1996), vary with elevation. This compli-
cates the spatial interpolation of the coefficients of the curve.
Methods for incorporating elevation into the spatial interpolation
of rainfall are available, as for example the ‘kriging with an exter-
nal drift’ method or the ‘detrended kriging’ method (e.g., Gotway
and Hartford, 1996; Prudhomme and Reed, 1999). However, these
methods have not been specifically designed to deal with extreme
rainfall. In this paper we address the problem of defining a proce-
dure to account for the effects of elevation into the spatial interpo-
lation of short-duration precipitation, based on the combined use
of kriging and regression techniques.

The study region and the data that are used in this study are de-
scribed in Section 2. In Sections 3 and 4 the relationships between
precipitation amounts, elevation and longitude are presented and

mailto:paola.allamano@polito.it
http://www.sciencedirect.com/science/journal/14747065
http://www.elsevier.com/locate/pce


636 P. Allamano et al. / Physics and Chemistry of the Earth 34 (2009) 635–641
the parameters are estimated. An application aimed at spatially
interpolating the DDF parameters (Section 5) closes the paper.

2. The study region

The study area covers the entire alpine region of Italy, located in
the northern part of the country at latitudes that vary from 44� to
47� North (see Fig. 1A). The mountain chain is about 700 km long,
that is equivalent to 7.5 longitude degrees. 567 rainfall stations are
considered in this study (Fig. 1B), derived from the national hydro-
logical information system set up under the CUBIST project (see
www.cubist.polito.it). Each station j is identified by its longitude,
latitude and elevation (xj,yj,zj) and by the historical record of max-
imum annual precipitations (h1,h3,h6,h12,h24) at different dura-
tions (1, 3, 6, 12 and 24 h), over a time span going from 1930 to
1990. In this study only the alpine and pre-alpine stations having
series of at least 10 years of data and with an elevation greater
or equal to 200 m a.s.l are considered. In Fig. 1C the distribution
of the stations with elevation is shown.

3. Model formulation

The relation among depth, duration and frequency of precipita-
tion of short duration is represented with different mathematical
expressions in different regions of the world (eg., Bell, 1969;
Koutsoyiannis et al., 1998). In Italy, a power law expression is com-
monly used to relate the mean of the maximum annual intense
precipitation, hd, to the rainfall duration d (see e.g., Burlando and
Rosso, 1996)

hd ¼ adn
; ð1Þ

where the coefficients a and n are estimated from the data collected
at the station. A relation between the depth–duration curve and the
return period T is then obtained according to a frequency curve, by
introducing in Eq. (1) a multiplicative factor (growth factor) ex-
pressed as a function of T (e.g., scaling model of Burlando and Rosso
(1996)). In this paper the dependence of the parameters a and n on
elevation is analyzed, in order to investigate the variability of the
Fig. 1. Panel A: map of the rainfall stations available in the CUBIST database. Panel B
geographic areas considered (western, central and eastern Alps). Panel C: frequencies o
average DDF curve (i.e., corresponding to the mean annual extreme
precipitation of duration d) with elevation. In contrast, we will not
consider the variations with the return period of the depth–dura-
tion curve.

A necessary condition for the construction of the DDF at a point
is that historical series of maximum rainfall intensities hd for dif-
ferent durations are available at the station. This allows one to
evaluate for each station the parameters of the DDF by linear
regression of lnhd versus lnd. In the following subsection the var-
iability of the coefficients a and n with elevation (Section 3.1), lon-
gitude (Section 3.2) and latitude (Section 3.3) are separately
considered.

3.1. Elevation

In this section a statistical model to quantify the variations, if
any, of the DDF curve coefficients with elevation is proposed. We
relate a to the elevation z by means of a power law model

a ¼ a0za1 ; ð2Þ

while a logarithmic model is used for n(z):

n ¼ n0 þ n1 ln z: ð3Þ

These specific mathematical formulations of the a(z) and n(z)
relations are adopted to have a model that congruently represents
the hd(z) relation as a power law. In fact, substituting Eqs. (2) and
(3) into (1), with simple manipulations one obtains

hd ¼ a0dn0 � za1þn1 ln d; ð4Þ

that, for any fixed duration (e.g., d = 1 h), has the same form of Eq.
(2).

3.2. Longitude

As mentioned, the study region is 7.5 longitude degrees wide.
For this reason one can suppose that a0, a1, n0 and n1 in Eqs. (2)
and (3) are also functions of the longitude x. The models for
a0(x), a1(x), n0(x) and n1(x) are designed to maintain the linearity
: zoom on the alpine area of Italy, where different gray shades refer to the three
f the station availability in the Alps at the different elevations.
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of the relations lna(z) and n(z). For what concerns n0 and n1, it is
easy to verify that the simplest conjectures

n0 ¼ n01 þ n02x; ð5Þ
n1 ¼ n11 þ n12x; ð6Þ

guarantee that the relation n(z,x),

n ¼ n01 þ n02xþ n11 ln zþ n12x ln z; ð7Þ

is linear in the coefficients, which allows one to use the least
squares method for estimation (while, for example, a model
n1 ¼ n11xn12 would not have this property). Another property of this
model is that it is unaffected by the re-scaling of the explicative
variables. This means, for example, that one can divide x by an arbi-
trary constant x (or z by z) without modifying the structure of the
model.

On the contrary, using linear models for a0(x) and a1(x) (analo-
gous to the ones in Eqs. (5) and (6)) would imply a complex non
linear dependence a(z,x). To overcome this problem a0(x) and
a1(x) are expressed as
Fig. 2. Dependence of the DDF curve parameters, a and n, on elevation for the 567 considered stations.
Fig. 3. Dependence of average maximum rainfall of duration d, hd, on elevation for the fi
curves on a bi-logarithmic plane. No data are considered in the grey shaded area.
a0 ¼ a01xa02 ; ð8Þ
a1 ¼ a11 þ a12 ln x: ð9Þ

Substituting the above relations in Eq. (2) and taking the logarithms
one obtains

ln a ¼ ln a01 þ a02 ln xþ a11 ln zþ a12 ln x ln z; ð10Þ

which is again a linear model in the coefficients. Observe that in Eq.
(9) we use as explicative variable lnx instead of x in order to pre-
serve robustness of the model in (10) with respect to normalization.
If not, the model would be sensitive to a normalization x=x.

3.3. Latitude

The model we propose, in contrast, does not account for the
variations, if any, of a and n with latitude for two reasons. The first
is that the latitude range covered by the region of study is smaller
than the longitude range. The other reason is due to the geomor-
phology of the Italian Alps, where latitude is significantly corre-
lated to elevation, with higher elevations corresponding to the
ve considered durations. The graph in the bottom right corner shows the regression
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northernmost points. We have verified that using two mutually
correlated explicative variables would negatively affect the robust-
ness of the model.

4. Model application

The values of the parameters of the DDF curves are estimated
for each station from the historical records of maximum rainfall
intensities, obtaining suitable estimators for aj and nj (with j = 1–
567). The coefficients in Eqs. (2), (3), (7) and (10) are then esti-
mated by linear regression. For both the univariate formulations
(2) and (3), a significant dependence of a and n on z is found. In
particular, it is observed that the coefficient a decreases with ele-
vation while n increases (see Fig. 2A and B, respectively). The
curves corresponding to the hd(z) model in Eq. (4) are represented
for the five durations in Fig. 3. It emerges that the rainfall depth
significantly decreases with elevation for very short durations
(i.e. 1–3 h), while the negative slope of the depth–elevation regres-
sion curves decreases when considering events of longer duration.

For the bivariate model a(z,x), the estimated values of the
regression coefficients are listed hereafter, with the correspondent
p-values in parenthesis

ln a01 ¼ 5:25 ðp ffi 0Þ;
a02 ¼ 0:57 ðp ¼ 0:26Þ;
a11 ¼ �0:33 ðp ffi 0Þ;
a12 ¼ �0:06 ðp ¼ 0:43Þ:

8>>><
>>>:

ð11Þ

The coefficients are referred to a model in which longitude is ex-
pressed in UTM coordinates divided by the sample mean longitude
x ¼ 578;430, in order to have more manageable values. It emerges
that in Eq. (10) the terms a02 and a12 are not statistically significant
(p-values of 0.26 and 0.43, respectively), while a11 results to be
highly significant. This means that the coefficients a vary only with
elevation, the slope of this curve remaining nearly constant
throughout the region. This is exemplified by the graphs in the first
row of Fig. 4. In these graphs the sample has been further divided
into three sub-samples, configuring an ideal distinction between
western, central and eastern Alps (with different grey shade in
Fig. 4. Dependence of the DDF curve parameters, a and n, on elevati
Fig. 1B). For these three sub-regions, a similar behavior of the coef-
ficient a with elevation is observed (i.e., in the bi-logarithmic plane
the slopes of the lines remain nearly the same); this implies that the
a(z) relation does not vary significantly from the West to the East, as
confirmed by the non significance of the terms in x in Eq. (10). On
these bases the conjectures formulated in Eqs. (8) and (9) have to
be rejected and the coefficients a0 and a1 have to be kept constant
according to the univariate model in Eq. (2). Therefore, by linear
regression one obtains

ln a0 ¼ 5:21 ðp ffi 0Þ;
a1 ¼ �0:33 ðp ffi 0Þ:

�
ð12Þ

Analogously for n (Eq. (7)) one obtains

n01 ¼ �0:84 ðp ¼ 7:7� 10�9Þ;
n02 ¼ 0:91 ðp ¼ 4:6� 10�10Þ;
n11 ¼ 0:19 ðp ffi 0Þ;
n12 ¼ �0:14 ðp ¼ 2:2� 10�10Þ:

8>>>><
>>>>:

ð13Þ

In this case all the regression coefficients are statistically significant,
meaning that the dependence of n on elevation also varies with lon-
gitude. This is exemplified by the graphs in the second row of Fig. 4,
that show how the slope of the regression lines changes from wes-
tern to eastern Alps.

One can combine the previous results to derive the complete
model for hd(x,z) where, since the dependence of a on x was found
to be not statistically significant, the coefficients a0 and a1 are kept
constant (see Eq. (12)). With simple manipulations, one obtains a
bivariate expression that relates hd to x and z

ln hd ¼ ln a00 þ a01 ln zþ n00xþ n01x ln z; ð14Þ

where

ln a00 ¼ ln a0 þ n01 ln d;
a01 ¼ a1 þ n11 ln d;

n00 ¼ n02 ln d;

n01 ¼ n12 ln d;

8>>><
>>>:

ð15Þ
on for the three sub-regions: western, central and eastern Alps.



Table 1
Coefficients of the model hd(z,x) estimated by linear regression for the different durations (and correspondent p-values).

1 h 3 h 6 h 12 h 24 h

a00 97.3 (2.2 � 10�16) 8.5 (0.0006) 10.7 (0.0001) 9.8 (0.0001) 7.8 (0.001)
a01 �0.25 (0.001) 0.21 (0.02) 0.23 (0.01) 0.25 (0.004) 0.34 (0.0003)
n00 0.71 (0.19) 1.62 (0.01) 1.69 (0.006) 3.09 (2.2 � 10�7) 3.47 (4.9 � 10�8)
n01 �0.08 (0.34) �0.25 (0.007) �0.26 (0.004) �0.44 (9.1 � 10�7) �0.51 (1.4 � 10�7)

Fig. 5. Regressions between average maximum rainfall of duration d, hd, and elevation for the three sub-regions: western, central and eastern Alps.

Fig. 6. Variability of the DDF parameter a over the region of study.

Fig. 7. Variability of the DDF parameter n over the region of study.
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that shows how the coefficients a00; a01; n00 and n01 of Eq. (14) are
univocally defined from the regressions parameters a0, a1, n01, n02,
n11 and n12 of Eqs. (2) and (7). Alternatively, the model in Eq. (14)
can be estimated by linear regression for the different durations,
obtaining the results in Table 1: as expected, the dependence on
elevation and longitude is again found to be statistically significant
(the longitude is not significant only for the 1-hour duration). The
dependence of hd on both z and x is represented in Fig. 5 where,
by fixing the longitude x, the model (14) is estimated in the three
sub-regions (on the y-axis the precipitation values are divided by
their average). A fan-shaped group of lines is obtained for the wes-
tern and central Alps, while for the eastern region the slopes are all
very similar for the different durations. This behavior reveals the
existence of possible different rates and amounts of wet air arrival
in this part of the study region (see e.g., Rudari et al., 2005).

5. Spatial interpolation

Polynomial and spline interpolation algorithms have been used
in the past for mapping rainfall fields (Tabios and Salas, 1985), also
in mountainous regions (Creutin and Obled, 1982). In such regions,
however, it has been demonstrated that better results can be ob-
tained by applying the kriging techniques (Hevesi et al., 1992). Kri-
ging is a geostatistical method to interpolate the values of a
random field at unobserved locations from observations at nearby
locations. The quality of its performance depends on the size of the
sample of observations (Briggs and Cogley, 1996), so that if the
sample is small it may result inadequate to represent the complex-
ity of the rainfall field (Bacchi and Kottegoda, 1995). Using a den-
sely sampled external (or auxiliary) variable in addition to the
variable of interest may help to compensate the scarcity of mea-
sured points (Gotway and Hartford, 1996) and to capture the spa-
tial heterogeneity of the process. Modified version of the ordinary
kriging technique, such as kriging with an external drift (eg.,
Goovaerts, 2000; Rivoirard, 2002), kriging combined with a linear
regression (Knotters et al., 1995) or detrended kriging (Chua and
Bras, 1982) have then been proposed in the literature. Basically
in these methods a linear regression is fitted between the target
variable and the auxiliary variable and then an ordinary kriging
is applied to the residuals, under the assumption that they are
uncorrelated.



Fig. 8. Variability of h3, h6, h12 and h24 over the region of study.
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In the present study the variables to be interpolated are the
parameters of the depth–duration curve a and n. The spatial inter-
polation of the DDF coefficients, in fact, is the standard method to
estimate design rainfall at ungauged sites. In practice, since the
relations configured in the previous sections between the coeffi-
cients of the DDF, elevation and longitude are found to be repre-
sentative of the study area, a modified version of the detrended
kriging is used. Before applying the kriging algorithm, the at site
values of aj and nj estimated for each station are recomputed as
if referred to an elevation of 200 m, obtaining

ln a200;j ¼ ln aj � a1 lnðzj=200Þ ð16Þ

and

n200;j ¼ nj � ðn11 þ n12xjÞ lnðzj=200Þ: ð17Þ

An ordinary kriging, respectively, with exponential and penta-
spherical variograms, is then applied to spatially interpolate a200,j

and n200,j, obtaining a representation of how these coefficients
would vary over a hypothetical 200 m high flat area. The real val-
ues (i.e., accounting for elevation and longitude effects) of the coef-
ficients are then obtained as

ln ai ¼ ln a200;i þ a1 lnðzi=200Þ ð18Þ

and

ni ¼ n200;i þ ðn11 þ n12xiÞ lnðzi=200Þ: ð19Þ

where zi is the elevation of the ith cell of a digital terrain model with
a 250 � 250 m2 grid, and xi is the longitude of the centroid of the
cell. A representation of the variability of ai and ni over the region
is given in Figs. 6 and 7. The maps of h3, h6, h12 and h24 are shown
in Fig. 8 (where the map for h1 is not shown, being very similar to
the one shown in Fig. 6).

The difference between this procedure and the standard detr-
ended kriging is that lnz is used instead of z both in expression
(16) and (17). More importantly, the relation used to detrend n in-
volves also the longitude x as an independent variable, which
would not be possible with a standard detrended kriging.

6. Conclusions

The statistical relationship between intense sub-daily precipita-
tions and elevation has been investigated for a database of 567 sta-
tions located in the alpine region of Italy. Contrary to expectations,
maximum annual precipitations of short duration are found to sig-
nificantly decrease with elevation. This tendency also appears to
have a geographic drift from the western to the eastern side of
the alpine chain.

A possible reason behind the decrease of extreme rainfall with
elevation is gauge undercatch at high-elevation sites (e.g., Hamon,
1973; Golubev, 1985; Adam et al., 2006). However, the negative
slope of the depth–elevation regression curves is found to decrease
when considering events of longer duration. This in our opinion
proves that undercatch cannot represent the dominant mechanism
behind our empirical findings.

As an alternative explanation, these phenomena may be the re-
sult of the reduction with altitude of the effective condensation
rate of an air mass when subjected to orographic uplift, also known
as Clausius–Clapeyron effect (see e.g., Alpert, 1986; Roe, 2005). On
the other hand, more efforts are required to explain the different
behavior of rainstorms of longer duration between western and
eastern Alps. The authors who have investigated the different
meteorological mechanisms that lead to the formation of extreme
precipitation across northern Italy, in fact, do not explicitly provide
useful indications in this sense (see e.g. Rotunno and Ferretti, 2001;
Rudari et al., 2005).

The second part of the study proposes a simple linear model
that can represent the variation of the coefficients a and n of the
DDF curve with elevation, where longitude is also introduced as
an auxiliary explicative variable. This simple statistical tool proves
to be very effective in the estimation of a design rainfall at an unga-
uged site, or in ungauged areas.
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