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Abstract

Variability of precipitation with elevation is often related to the presence of an oro-
graphic effect interacting with prevailing arrival directions of wet air masses. This
effect is commonly recognized to be responsible for the increase with elevation of
the annual precipitation amounts measured at the ground level. However, the vari-
ability with elevation of heavy rainfall with short duration is poorly investigated in
hydrology, despite the importance of short duration events in hydrological applica-
tions. Analyzing a database of 567 time series of annual maximum sub-daily rainfall
in north-western Italy, we find the relation of extreme precipitation with elevation
to be a function of the event duration. In particular, it emerges that the intensity of
rainfall decreases with elevation for very short durations (i.e. 1 to 3 hours), while the
negative slope of the intensity-elevation regression curves tends to decrease when
considering events of longer duration (i.e. 12 to 24 hours). This tendency appears
to have a geographic drift from the western to the eastern side of the alpine chain.
A combined use of kriging and regression techniques is then proposed to account
for the effect of elevation and longitude in the spatial interpolation of sub-daily
rainfalls.
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1 Introduction

In the middle latitudes, precipitation in the winter season predominantly de-
rives from advective air movements, i.e. the uplift in a horizontal plane of
a warm air mass. Orographic uplift is a special case of advection, where air
masses are forced to rise by the relief of the land they pass over, with con-
sequent increase with elevation of the precipitation amounts measured at the
ground level (Elliott and Hovind, 1964; Foufoula-Georgiou and Georgakakos,
1991; Barry, 1992; Hevesi et al., 1992; Barros and Lettenmaier, 1994; Rotunno
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and Ferretti, 2001; Borga et al., 2005; Roe, 2005). Capturing the existence of
these mechanisms in mountainous environment is important to understand the
behavior of precipitations at high-elevation. In high-elevation regions in fact,
rainfall patterns are usually not very well known, partly because of the com-
plex topography, and partly because of the sparsity of information available
to study such relationships (Molnar and Burlando, 2008).

Several papers investigate the relation between mean annual precipitation and
elevation (e.g. Basist et al., 1994; Harris et al., 1996; Guan et al., 2005),
typically finding significant increasing relations between the two. A common
belief that precipitation amounts increase with elevation has then formed, so
that mountainous environment is commonly thought to be subject to more
intense and frequent precipitation events.

When passing from long-duration to short-duration events the relation be-
tween precipitation and elevation is not univocal, and few literature studies
exist that investigate the problem (e.g., Prudhomme and Reed, 1999; Weisse
and Bois, 2001; Boni et al., 2006). In this paper we investigate this relation
and find that, contrary to expectations, maximum annual precipitations of
short duration on a vaste alpine region situated in northern Italy significantly
decrease with elevation.

A first implication of this finding is that the parameters of the depth-duration-
frequency curve (DDF), which is commonly used to estimate design rainfall
at ungauged sites (see e.g., Gilman, 1966; Burlando and Rosso, 1996), vary
with elevation. This complicates the spatial interpolation of the coefficients of
the curve. Methods for incorporating elevation into the spatial interpolation of
rainfall are available, as for example the ‘kriging with an external drift’ method
or the ‘detrended kriging’ (e.g., Gotway and Hartford, 1996; Prudhomme and
Reed, 1999). However, these methods have not been specifically designed to
deal with extreme rainfall. In this paper the problem is addressed of defining a
procedure to account for the effects of elevation into the spatial interpolation
of short-duration precipitation, based on the combined use of kriging and
regression techniques.

The study region and the data that are used in this study are described in
section 2. In section 3 and 4 the relationships between precipitation amounts,
elevation and longitude are presented and the parameters are estimated respec-
tively. An application aimed at spatially interpolating the DDF parameters
(section 5) closes the paper.
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2 The study region

The study area covers the entire alpine region of Italy, located in the northern
part of the country at latitudes that vary from 44 to 47 degrees North (see
figure 1A). The mountain chain is about 700 km long, that is equivalent to
7.5 longitude degrees. 567 rainfall stations are considered in this study (figure
1B), derived from the national hydrological information system set up under
the CUBIST project (see www.cubist.polito.it). Each station j is identified by
its longitude, latitude and elevation (xj, yj, zj) and by the historical record
of maximum annual precipitations (h1, h3, h6, h12, h24) at different durations
(1, 3, 6, 12 and 24 hours), over a time span going from 1930 to 1990. In this
study only the alpine and pre-alpine stations having series of at least 10 years
of data and with an elevation greater or equal to 200 m a.s.l are considered.
In figure 1C the distribution of the stations with elevation is shown.

3 Model formulation

The relation among depth, duration and frequency of precipitation of short
duration is represented with different mathematical expressions in different
regions of the world (e.g., Bell, 1969; Koutsoyiannis et al., 1998). In Italy, a
power law expression is commonly used to relate the mean of the maximum
annual intense precipitation, hd, to the rainfall duration d (see e.g., Burlando
and Rosso, 1996)

hd = a dn (1)

where the coefficients a and n are estimated from the data collected at the
station. A relation between the depth-duration curve and the return period T
is then obtained according to a frequency curve, by introducing in equation
(1) a multiplicative factor (growth factor) expressed as a function of T (e.g.,
scaling model of Burlando and Rosso, 1996). In this paper the dependence of
the parameters a and n on elevation is analyzed, in order to investigate the
variability of the average DDF curve (i.e., corresponding to the mean annual
extreme precipitation of duration d) with elevation. In contrast, we will not
consider the variations with the return period of the depth-duration curve.

A necessary condition for the construction of the DDF at a point is that
historical series of maximum rainfall intensities hd for different durations are
available at the station. This allows one to evaluate for each station the pa-
rameters of the DDF by linear regression of ln hd versus ln d. In the following
subsection the variability of the coefficients a and n with elevation (sec. 3.1),
longitude (sec. 3.2) and latitude (sec. 3.3) are separately considered.
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3.1 Elevation

In this section a statistical model to quantify the variations, if any, of the DDF
curve coefficients with elevation is proposed. We relate a to the elevation z by
means of a power law model

a = a0 za1 , (2)

while a logarithmic model is used for n(z):

n = n0 + n1 ln z. (3)

These specific mathematical formulations of the a(z) and n(z) relations are
adopted to have a model that congruently represents the hd(z) relation as a
power law. In fact, substituting equations (2) and (3) into (1), with simple
manipulations one obtains

hd = a0d
n0 · za1+n1 ln d (4)

that, for a fixed duration (e.g., d = 1 hour), has the same form of equation
(2).

3.2 Longitude

As mentioned, the study region is 7.5 longitude degrees wide. For this reason
one can suppose that a0, a1, n0 and n1 in equations (2) and (3) can be also
functions of the longitude x. The models for a0(x), a1(x), n0(x) and n1(x) are
designed to maintain the simplicity and linearity of the coefficients of ln a(z)
and n(z). For what concerns n0 and n1, it is easy to verify that the simplest
conjectures

n0 = n01 + n02x (5)

n1 = n11 + n12x (6)

guarantee that the relation n(z, x),

n = n01 + n02x + n11 ln z + n12x ln z, (7)

is linear in the coefficients, which allows one to use the least squares method
for estimation (while, for example, a model n1 = n11xn12 would not have

4



this property). Another property of this model is that it is unaffected by the
re-scaling of the explicative variables. This means, for example, that one can
divide x by an arbitrary constant x (or z by z) without modifying the structure
of the model.

On the contrary, using linear models for a0(x) and a1(x) (analogous to the
ones in equations (5) and (6)) would imply a complex non linear dependence
a(z, x). To overcome this problem a0(x) and a1(x) are expressed as

a0 = a01x
a02 (8)

a1 = a11 + a12 ln x. (9)

Substituting the above relations in equation (2) and taking the logarithms one
obtains

ln a = ln a01 + a02 ln x + a11 ln z + a12 ln x ln z, (10)

which is again a linear model of the coefficients. Observe that in equation (9)
we use as explicative variable ln x instead of x in order to preserve robustness
of the model in (10) with respect to normalization. If not, the model would
be sensitive to a normalization x/x, resulting in a dependence on both x and
ln x.

3.3 Latitude

The model we propose, in contrast, does not account for the variations, if
any, of a and n with latitude for two reasons. The first is that the latitude
range covered by the region of study is smaller than the longitude range. The
other reason is due to the geomorphology of the Italian Alps, where latitude
is significantly correlated to elevation, with higher elevations corresponding to
the northernmost points. Using two mutually correlated explicative variables
would negatively affect the robustness of the model.

4 Model application

The values of the parameters of the DDF curves are evaluated for each station
from the historical records of maximum rainfall intensities, obtaining suitable
estimators of aj and nj (with j = 1÷567). The coefficients in equations (2), (3),
(7) and (10) are then estimated by linear regression. For both the univariate
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formulations (2) and (3), significant relations of a and n with z are found. In
particular, it is observed that the coefficient a decreases with elevation while n
increases (see figure 2A and 2B respectively). The curves corresponding to the
hd(z) model in equation (4) are represented for the five durations in figure 3,
where it emerges that the rainfall depth significantly decreases with elevation
for very short durations (i.e. 1 to 3 hours), while the negative slope of the
depth-elevation regression curves decreases when considering events of longer
duration.

For the bivariate model a(z, x), the estimated values of the regression coeffi-
cients are listed hereafter, with the correspondent p-values in parenthesis






ln a01 = 5.25 (p ∼= 0)

a02 = 0.57 (p = 0.26)

a11 = −0.33 (p ∼= 0)

a12 = −0.06 (p = 0.43).

(11)

The coefficients are referred to a model in which longitude is expressed in UTM
coordinates divided by the sample mean longitude x = 578430, in order to have
more manageable values. It emerges that in equation (10) the terms a02 and a12

are not statistically significant (p-values of 0.26 and 0.43 respectively), while
the term in z results highly significant. This means that the coefficients a vary
only with elevation, the slope of this curve remaining constant throughout the
region. This is exemplified by the graphs in the first row of figure 4. In these
graphs the sample has been further divided into three sub-samples, configuring
an ideal distinction between western, central and eastern Alps (with different
grey shade in figure 1B). For these three sub-regions, a similar behavior of the
coefficient a with elevation is observed (i.e., in the bi-logarithmic plane the
slopes of the lines remain nearly the same); this implies that the a(z) relation
does not vary significantly from the West to the East, as confirmed by the non
significance of the terms in x in equation (10). On these bases the conjectures
formulated in equation (8) and (9) have to be rejected and the coefficients a0

and a1 have to be kept constant according to the univariate model in equation
(2). Therefore, by linear regression one obtains






ln a0 = 5.21 (p ∼= 0)

a1 = −0.33 (p ∼= 0).
(12)
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Analogously for n (equation (7)) one obtains






n01 = −0.84 (p = 7.7 · 10−9)

n02 = 0.91 (p = 4.6 · 10−10)

n11 = 0.19 (p ∼= 0)

n12 = −0.14 (p = 2.2 · 10−10).

(13)

In this case all the regression coefficients are statistically significant, meaning
that the dependence of n on elevation also varies with longitude. This is ex-
emplified by the graphs in the second row of figure 4, that show how the slope
of the regression lines changes from western to eastern Alps.

One can combine the previous results to derive the complete model for hd(x, z)
where, since the dependence of a on x was found not statistically significant,
the coefficients a0 and a1 are kept constant (see equation 12). With simple
manipulations, one obtains a bivariate expression that relates hd to x and z

ln hd = ln a′0 + a′1 ln z + n′
0x + n′

1x ln z, (14)

where






ln a′0 = ln a0 + n01 ln d

a′1 = a1 + n11 ln d

n′
0 = n02 ln d

n′
1 = n12 ln d

(15)

that shows how the coefficients a′0, a′1, n′
0 and n′

1 of equation (14) are univo-
cally defined from the regressions parameters a0, a1, n01, n02, n11 and n12 of
equations (2) and (7). Alternatively, the model in equation (14) can be esti-
mated by linear regression for the different durations, obtaining the results in
table 1 (where the longitude, as expected, is not significant only for the 1-hour
duration). The dependence of hd on both z and x is represented in figure 5
where, by fixing the longitude x, the model (14) is evaluated in the three sub-
regions (on the y-axis the precipitation values are divided by their average). A
fan-shaped group of lines is obtained for the western and central Alps, while
for the eastern region the slopes are all very similar for the different durations.
This behavior reveals the existence of possible different rates and amounts of
wet air arrival in this part of the region of study.
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5 Spatial interpolation

Polynomial and spline interpolation algorithms have been used in the past for
mapping rainfall fields (Tabios and Salas, 1985), also in mountainous regions
(Creutin and Obled, 1982). In such regions, however, it has been demon-
strated that better results can be obtained by applying the kriging techniques
(Hevesi et al., 1992). Kriging is a geostatistical method to interpolate the val-
ues of a random field at unobserved locations from observations at nearby
locations. The quality of its performance depends on the size of the sample
of observations (Briggs and Cogley, 1996), so that if the sample is small it
may result inadequate to represent the complexity of the rainfall field (Bacchi
and Kottegoda, 1995). Using a densely sampled external (or auxiliary) vari-
able in addition to the variable of interest may then help to compensate the
scarcity of measured points (Gotway and Hartford, 1996) and to capture the
spatial heterogeneity of the process. Modified version of the ordinary krig-
ing technique, such as kriging with an external drift (e.g. Goovaerts, 2000;
Rivoirard, 2002), kriging combined with a linear regression (Knotters et al.,
1995) or detrended kriging (Chua and Bras, 1982) have then been proposed in
the literature. Basically in these methods a linear regression is fitted between
the target variable and the auxiliary variable and then an ordinary kriging is
applied to the residuals, under the assumption that they are uncorrelated.

In the present study the variables to be interpolated are the parameters of the
depth-duration curve a and n. The spatial interpolation of the DDF coeffi-
cients, in fact, is the standard method to estimate design rainfall at ungauged
sites. In practice, since the relations configured in the previous sections be-
tween the coefficients of the DDF, elevation and longitude are found to be
representative of the study area, a modified version of the detrended kriging
is used. Before applying the kriging algorithm, the at site values of aj and nj

estimated for each station should be recomputed as if referred to an elevation
of 200 m, obtaining

ln a200,j = ln aj − a1 ln(zj/200) (16)

and

n200,j = nj − (n11 + n12xj) ln(zj/200). (17)

An ordinary kriging, respectively with exponential and pentaspherical vari-
ograms, is then applied to spatially interpolate a200,j and n200,j, obtaining a
representation of how these coefficients would vary over a hypothetical 200
m high flat area. The real values (i.e., accounting for elevation and longitude

8



effects) of the coefficients are then obtained as

ln ai = ln a200,i + a1 ln(zi/200) (18)

and

ni = n200,i + (n11 + n12xi) ln(zi/200). (19)

where zi is the elevation of the cells of a digital terrain model with a 250×250
m2 grid and xi the longitudes of the centroids of the cells. A representation
of the variability of ai and ni over the region is given in figures 6 and 7. The
maps of h3, h6, h12 and h24 are shown in figure 8 (where the map for h1 is not
shown, being very similar to the one in figure 6).

The difference between this procedure and the standard detrended kriging is
that ln z is used instead of z both in expression (16) and (17). More impor-
tantly, the preliminarily relation used to detrend n involves as an independent
variable also the longitude x, which would not be possible with a standard
detrended kriging.

6 Conclusions

In this study the statistical relationship between intense sub-daily precipita-
tions and elevation is investigated for a database of 567 stations located in
the alpine region of Italy. Contrary to expectations, maximum annual precip-
itations of short duration are found to significantly decrease with elevation.
This tendency also appears to have a geographic drift from the western to the
eastern side of the alpine chain.

We do not believe this effect to be the consequence of gauge undercatch at
high-elevation sites (e.g., Hamon, 1973; Golubev, 1985; Adam, 2006). In fact,
the negative slope of the depth-elevation regression curves is found to decrease
when considering events of longer duration. This in our opinion proves that
undercatch cannot represent the dominant mechanism behind our empirical
findings.

We are aware that the results found here deserve thorough investigations. As
a tentative explanation we suppose these phenomena to be the result of the re-
duction with altitude of the condensation rate of an air mass when subjected
to orographic uplift (also known as Clausius-Clapeyron effect, Roe (2005));
while we attribute the rain rates differences between western and eastern Alps
to the different meteorological mechanisms that lead to the formation of ex-
treme precipitation across northern Italy (see e.g. Rotunno and Ferretti, 2001;
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Rudari et al., 2005). Future investigations will be aimed to gain a deeper com-
prehension of these evidences.

In the second part of the study a simple linear model is proposed that repre-
sents the variation of the coefficients a and n of the DDF curve with elevation,
where longitude is also introduced as an auxiliary explicative variable. To ac-
count for this dependence in the estimation of a design rainfall at an ungauged
site, a combined use of regression techniques and kriging is proposed to spa-
tially interpolate the coefficients of the DDF curve.
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Table 1
Coefficients of the model hd(z, x) estimated by linear regression for the different
durations (and correspondent p-values).

1h 3h 6h 12h 24h

a′0 97.3 (2.2 · 10−16) 8.5 (0.0006) 10.7 (0.0001) 9.8 (0.0001) 7.8 (0.001)

a′1 -0.25 (0.001) 0.21 (0.02) 0.23 (0.01) 0.25 (0.004) 0.34 (0.0003)

n′
0 0.71 (0.19) 1.62 (0.01) 1.69 (0.006) 3.09 (2.2 · 10−7) 3.47 (4.9 · 10−8)

n′
1 -0.08 (0.34) -0.25 (0.007) -0.26 (0.004) -0.44 (9.1 · 10−7) -0.51 (1.4 · 10−7)

Fig. 1. Panel A: Map of the rainfall stations available in the CUBIST database.
Panel B: Zoom on the alpine area of Italy. Panel C: Frequencies of the station
availability in the Alps at the different elevations.
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Fig. 2. Dependence of the DDF curve parameters, a and n, on elevation for the 567
considered stations.

Fig. 3. Dependence of average maximum rainfall of duration d, hd, on elevation
for the five considered durations. The graph in the bottom right corner shows the
regression curves on a bi-logarithmic plane. No data are considered in the grey
shaded area.
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Fig. 4. Dependence of the DDF curve parameters, a and n, on elevation for the
three sub-regions: western, central and eastern Alps.

Fig. 5. Regressions between average maximum rainfall of duration d, hd, and eleva-
tion for the three sub-regions: western, central and eastern Alps.
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Fig. 6. Variability of the DDF parameter a over the region of study.

Fig. 7. Variability of the DDF parameter n over the region of study.
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Fig. 8. Variability of h3, h6, h12 and h24 over the region of study.
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