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ABSTRACT. Informational entropy of river networks, as defined by Fiorentino and Claps
(1992a), was shown to be a useful tool to explain several properties exhibited by natural
networks. In this paper, self-similar properties of river networks are taken as a starting point
for investigating how the entropy of fractal plane trees can be used to show analogies and
differences between natural networks and geometric fractal trees. Attention is directed
particularly to the relations between entropy and Horton order and entropy and topological
diameter of subnetworks. Comparison of features of natural and geometric networks suggest
that the use of entropy can contribute to clarify important points concerning regularity
properties of river networks in the plane. Furthermore, an interesting comparison is shown in
the variability of entropy with the magnitude of subnetworks, for both fractal and natural trees.
In natural networks this relation is compared to an index of energy expenditure with the basin
size, leading to an intriguing connection between plane and altitudinal features found in river
basins.

1.  INTRODUCTION

The definition of informational entropy of a river networks can be achieved by considering the
network as a system, in which stream segments (links) are the elements whose placement
characterize the system configuration. A network link is the path connecting two junctions and
the topological distance from the outlet, i.e. the number of consecutive links forming the
shortest path from a node to the downstream end, corresponds to the state δ in which a link is
placed. The total number of states is the network topological diameter ∆, corresponding to the
maximum topological distance. The network configuration, regardless of links length, is
defined by the topological width function, which is the diagram of the relative frequency pδ of
the links as a function of the topological distance δ. The informational entropy of river
networks, was defined by Fiorentino and Claps (1992a) as
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consistently with the definition given by Shannon (1948) in information theory.
Maximization of the entropy subject to the knowledge of the average elevation of the

river network, along with the principle of uniform energy expenditure, led (Fiorentino et al.,
1993)  to analytical expressions of channel profiles. Also some important scaling properties of
channels, such as slope-area and stream power-area relationships, were derived with the use of
the fractal dimension D of the branching process of the channel network. Moreover, the
informational entropy of river network was empirically found (Fiorentino et al., 1993) to vary
with marked regularity with network characteristics, particularly Horton order, magnitude and
topological diameter.

In this paper, the above regularities are more deeply investigated using fractal trees,
whose properties are first exploited to achieve analytical expressions of the entropy as a
function of parameters of their configuration. Entropy properties exhibited by natural river
networks are then compared with the properties of the entropy of some geometric fractal trees.

2.  INFORMATIONAL ENTROPY OF FRACTAL PLANE TREES

A fractal object can be defined as having a shape made of parts similar to the whole in some
way (Mandelbrot, 1983, p.34). Fractal plane trees can be built by repeated generations, using
an initiator, which is a unit-length segment, and a generator, which is a tree-type combination
of equal shorter segments (Mandelbrot, 1983, pp.72-73) whose length is η. After the first
substitution of the initiator with the generator, each segment of the generator becomes an
initiator and is substituted again, in a recursive way (e.g. Feder, 1988, p. 16) as depicted in
figure 1. After m generations, the number of segments is Mm = M1

m, where M1 is the number
of segments of the generator, and the segment length is ζm = ηm. In this paper, generators are
taken such that the longest path is straight and that the angles between segments are right. This
does not affect generality and allows one to obtain that the number of partitions 1/η of the
initiator equals ∆1, assumed as the topological diameter of the generator tree. After  m
generations the topological diameter becomes

∆m = ∆1
m (2)



Fig. 1. Generation of a fractal tree. Parameter m is the generation index. The structure with
m=1 is the generator. The initiator is a unit-length segment for all the cases considered.

The fractal dimension D of the so-obtained self-similar geometric set is the exponent
describing the fractal (i.e. invariant) measure L=N(ζ) ζD of its Euclidean length L(ζ)=N(ζ) ζ.
The latter varies as a function of the unit of measure ζ and of the number N(ζ) of segments
necessary to cover the set. The expression defining D is (e.g. Feder, 1988, p.19)
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When considering river networks, it is to be pointed out that this fractal dimension is
only due to the branching process and can be also specified as the network similarity
dimension, since various others fractal dimensions have been introduced for the description of
river networks self-similarities (e.g. Liu, 1992;  Beer and Borgas, 1993).

The topological width function can be readily obtained recursively as a function of m, by
determining first the number Wm(j) (j = 1,..,∆m) of links at the topological distance j from the
outlet. It is handy to obtain Wm(j) in ∆1 sets of length ∆m−1. After the m-th generation, given
the concept itself of similarity, there will be as many (m−1)-structures as was the number of
segments in the generator. The network diameter will then be ∆m = ∆1

m = ∆1∆m−1, leading to ∆1
sets. In the first set, Wm(j) is not affected by the generation while in the others ∆1−1 sets the
structure of W will reproduce that of the first set multiplied for the number of segments of the
generator at the level corresponding to the set number. Operating two generations of a
whatever structure clarifies the issue. After m generations Wm(j) is obtained as

set 1:          Wm(1,...,∆m−1)  =  W1(1) ⋅ Wm−1(1,...∆m−1)  =  1⋅ Wm−1(1,...∆m−1)

set 2:          Wm(1⋅∆m−1+1,...,2⋅∆m−1)  =  W1(2) ⋅ Wm−1(1,...∆m−1) (4)
...................................................................................................
set ∆1:         Wm((∆1−1)⋅∆m−1+1,...,∆1⋅∆m−1)  =  W1(∆1) ⋅ Wm−1(1,...∆m−1)

Informational entropy S of fractal trees, computed using (1) and (4), was shown by
Fiorentino and Claps (1992b) to be: Sm = Sm−1 + S1. By recursion, this relation produces

Sm = m S1 (5)

Also, it was shown that this linear relationship does not apply to maximum-entropy and
minimum-entropy-production tree structures, which are not self-similar.

In this paper, four kinds of trivalent (i.e. three segments joining into each node)
generators were used (figure 2) and the properties of the corresponding fractal networks were
compared with those of eight natural drainage networks in southern Italy, with characteristics
reported in table 1.



3. NETWORK PARAMETERS AND ENTROPY

3.1. Informational entropy and Horton orders

Geometric fractal trees can be analyzed in a hortonian framework, paying attention to the
Horton order Ω1 of the generator tree and to the analogy that M1 and ∆1 present with the
Horton bifurcation ratio RB and length ratio RL, respectively. This analogy is best understood if
considering the relation D = ln RB / ln RL suggested (La Barbera and Rosso, 1989) for the
network similarity dimension. It will be shown below that this analogy is asymptotically an
equality for fractal networks.

            
(a) (b) (c) (d)

Fig. 2. Generators of fractal networks: (a) M1=3, η=1/2, D=1.585, S1=0.637;  (b) M1=5, η=1/3,
D=1.465,  S1=1.055;  (c) M1=7, η=1/4, D=1.404, S1=1.352; (d) M1=7, η=1/5, D=1.490,  S1=1.516.

Basin A
(Km2)

Dr. Den.
(km-1)

M. L.
(Km)

n H
(m)

E
(m)

∆ Ω RB RL

Arcidiaconata 123.9 2.24 23.04 254 657 301 50 5 4.12 2.39
Lapilloso 28.5 2.34 11.56 72 394 229 36 4 4.34 2.28
Vulgano 94.1 2.08 22.08 193 663 370 37 5 3.79 2.26
S.Maria 58.1 2.26 15.53 159 226 144 48 5 3.72 2.57
Salsola 44.1 2.24 14.21 100 513 270 31 5 3.28 2.29
Casanova 57.3 2.20 15.79 123 524 290 26 5 3.44 2.55
Celone S.V. 92.5 2.07 27.59 181 715 362 42 5 3.83 2.73
Celone a P.F. 233.5 1.55 48.61 292 861 405 53 5 4.1 2.74

Tab. 1. Some characteristics of the Southern Italy basins considered. A (drainage area);
Dr.Den. (drainage density); M. L. (mainstream length); n (magnitude); H (total elevation
drop of the main stream); E (average basin elevation); ∆ (topological diameter); Ω (Horton
order); RB (Horton bifurcation ratio); RL (Horton length ratio).



Selecting the ruler ζ as the generic link, each generation transforms first-order links into
tree structures with higher Horton order, thus producing an increment in the network order.
After m generations the network order is:

Ωm = 1 + m(Ω1 − 1) (6)

Considering (5) and (6), the entropy of subnetworks of order Ωm is obtained as

S  =    S  Ω
Ω
Ωm

m −1
−1

⋅
1

1 (7)

which is strictly true for structures that can be obtained with a given number j of  generations
(we will call them j-structures). For generators of Horton order 2, all subnetworks are
j-structures, so (7) can be written as

SΩ=(Ω−1) S1 (8)

The use of generators of order Ω1 greater than 2 is awkward, because there is no explicit
expressions for the entropy of subnetworks of orders not obtainable through (6). However, the
generator in figure 2d was considered as an intermediate structure between these of figures 2a
and 2b. For that case, relation (5) is applied only for subnetworks of odd order, which are
identical (due to self-similarity) within the network, while entropy of subnetworks of even
order is computed  as an average value.

The average entropy of natural subnetworks was shown (Fiorentino et al., 1993) to vary
linearly with the order, with a slope very close to unity. Since entropy of first-order links is
zero, the empirical relation is the same as (8) with S1 representing the slope of the regression
line. S1 is the rate of increase of entropy both with the index of generation and with the order.
It is hence called rate of entropy production. Also, S1 is an estimate of the average entropy of
second-order subnetworks.
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Fig. 3. Empirical and theoretical linear relations between Horton orders and average entropy
of subnetworks.

In figure 3, theoretical laws obtained for fractal networks are compared with the
empirical relations found for the 8 basins considered. It can be noted that natural basins
behaves as fractal structures mostly intermediate between these obtained from generators 1a
and 1b. Generator 1d could be considered as one of such intermediate structures.

3.2. Informational entropy and topological diameters

Relation (5) can be expressed in terms of the network topological diameter, given (2), as
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∆
∆m

ln

ln
m

1
1⋅ (9)

which is again a linear relation between entropy and a network parameter.
It is interesting to comment how close natural basins and fractal networks are to the case

of maximum-entropy tree structures, for which entropy is S∆ = ln ∆ (Fiorentino and Claps,
1992a). To this end, observation of figure 4 reveals that the lines relative to both fractal and
natural networks deviate only slightly from the diagonal representing the case of maximum
entropy structures. The linear relations between S∆ and ln ∆ for the river networks considered
were found by regression, with very high correlation coefficients (> 0.99). The dotted lines
representing these relations are comprised between the lines of the two fractals obtained from
1a and 1b.
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Fig. 4. Empirical and theoretical linear relations between average entropy of subnetworks
with diameter ∆ and ln ∆.



In figure 4 is also shown the curve relative to the Peano fractal network (e.g. Marani et
al., 1991) which presents a clearly different behavior. The Peano network is a tetravalent
structure (four links join into each node) with fractal dimension 2. Thus it is a plane filling
curve. In addition to the comments by Rodriguez-Iturbe et al. (1992), Fiorentino and Claps
(1992b) and Rinaldo et al. (1992), the position of the line relative to the Peano network in
figure 4 is a further confirmation that this tetravalent fractal tree is not representative of the
features of natural networks.

3.3. Informational entropy and fractal dimension

The analogies in patterns exhibited by fractal and natural networks with reference to their
informational entropy suggest to reconsider the usual estimation of the network similarity
dimension proposed by La Barbera and Rosso (1989).  In this regard, Beer and Borgas (1993)
recently highlighted on a natural network the sensitivity of the relation D = ln RB / ln RL with
the basin order. We have derived theoretically a similar conclusions for fractal networks.

 Letting fractal trees grow by successive generations we have computed the Horton
ratios RB and RL to obtain an estimate of D = ln RB / ln RL for each order of generation. As
shown by figures 5 and 6, relative to the networks obtained by generators a and d of figure 2,
this estimate of D is correct only asymptotically for purely fractal networks and does not
depend on the order Ω1 of the generator (Claps and Oliveto, 1993). Based on this result and
on the number of linear relations found between entropy and fractal network properties, a
direct relation between S and D could be used in order to improve the estimate of D.
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Fig. 5. Estimate of D as ln RB / ln RL obtained for different levels of generations of the fractal
network derived from the generator in figure 2a.



 In fact, a relation between D and S1 is apparent for geometric fractal trees. Using data
from a number of fractal structures with generators of second order, including those of figure
2, we have obtained the regression relation

D = 1.476 −€0.240 ln S1 (10)

between the two variables (figure 7). This relation can be used to estimate D once S1 is known.
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Fig. 6. Estimate of D as ln RB / ln RL obtained for different levels of generations of the fractal
network derived from the generator in figure 2d.



Title:  MATLAB graph
Creator:  MATLAB, The MathWorks, Inc
CreationDate:  12/11/93  21:40:53

Fig. 7. Regression between the logarithm of the theoretical fractal dimension D and the
logarithm of the rate of entropy production S1 for fractal networks with second-order
generators.

For the eight natural basins considered, application of (10) produced very interesting
results, reported in table 2. For these networks S1 was evaluated by the regression between the
average entropy of subnetworks of each Horton order and the order itself (relation (8)). For
natural networks, in comparison to the estimates of ln RB / ln RL, values of D obtained through
(10) are much more stable around the mean (see table 2), possibly denoting the robustness of
the estimation method.

Tab. 2. Estimates of  ln RB / ln RL and of D (using relation 10) for natural networks of Table
1. Values of S1 needed in relation 10 are estimated by regression with the order (relation 8).

Basin lnRB/lnRL S1 D

Lapilloso 1.78 1.081 1.43
Celone F.S. 1.40 0.981 1.47
Arcidiaconata 1.63 0.952 1.48
Celone S.V. 1.34 0.953 1.49
Vulgano 1.64 0.880 1.49
Salsola 1.43 0.837 1.51
Casanova 1.32 0.859 1.53
S.Maria 1.39 1.018 1.49

Average 1.49 1.49
Std. Dev. 0.169 0.029



4. ENTROPY AND POTENTIAL ENERGY

The potential energy of a basin is given by the elevation of the network nodes above a datum
(say, the basin outlet). For establishing a relation between entropy and potential energy, we
consider yδ as the mean node elevation at the topological distance δ from the outlet. We take ȳ 
as the mean elevation for all the nodes, averaging yδ with δ varying from 1 to ∆, and take it as
approximately the mean basin elevation. ȳ is the total potential energy of the drainage-network
system.

Fiorentino et al. (1993) suggested a link between mean basin elevation and entropy:

ȳ   = −  α   ln β  +  αS (15)

holding for any drainage subnetwork within the larger basin. This relation was based on the
assumption that for the drainage-network system, the distribution of potential energy can be
assumed to be controlled by the two fundamental quantities ∆ (topological diameter) and T
(representing a degenerate temperature of the drainage network) both measured for the entire
system. Based on the analogy with a thermodynamic system where T can be thought of as
proportional to the energy content of the system, α and β may be assumed to be constant as a
first-order approximation.

In this paper, we advocate some properties found for fractal networks in order to further
clarify the role of entropy, determined on the basis of 2-dimensional information, in the
interpretation of the potential energy distribution within the basin. This investigation tends to
put together all information related to the state of natural networks in the hypothesis that they
adjust their geometry to achieve an optimal configuration in terms of minimum global energy
expenditure of the runoff they convey.

The starting point of the comparison between natural and fractal networks must be
something connecting the spatial to the plane network structures. The comparison of figures 8
and 9 provides interesting elements in this regard. Figure 8 shows for two basins, taken from
the group of eight, the variability of the average elevations of a series of subnetworks against
their entropy. For the sake of simplicity, we have considered only the subnetworks directly
draining into the main stream. In this way, the average increase of mean elevation relative to
the outlet reflects the increase in subnetwork size (and in its relative relief, or elevation drop)
moving from upstream to downstream. Figure 9 represents the relation between logarithm of
magnitude and entropy for the same set of subnetworks of the two basins.

As is apparent from the figures, sudden increases both in magnitude and in mean
elevation occur with a minimum (sometimes almost null) increase in entropy. Discontinuities in
both kind of curves occur at the same points, denoting the existence of important junctions
which considerably increase the magnitude and increase or decrease the mean elevation. In the
regions between discontinuities both magnitude and mean elevation display uniform variability
with entropy, represented by straight lines with almost constant slope.
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Fig. 8. Average elevation 
_
yδ  versus informational entropy Sδ  of subnetworks whose outlets

lie on the main channel, for (A) Salsola and (B) Vulgano basins.

One of the interesting aspects in comparing this behavior is the fact that not only the
distribution of potential energy in subnetworks draining into a path varies not uniformly with
the "complexity" of the topological structure (represented by entropy) but also disuniformities
are concentrated in few important junctions, identifiable when a great increase occurs in
network magnitude.

In the sub-paths between the significant junctions mean elevation decreases gradually
with network complexity while magnitude obviously increases. The decrease of mean elevation
can be easily understood considering that first-order or second-order streams joining streams
of greater order are placed in the downstream end of the subnetwork, so their average
elevations are generally below the mean network elevation.
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Fig. 9. Magnitude versus informational entropy of subnetworks whose outlets lie on the main
channel, for (A) Salsola and (B) Vulgano basins.

The parallelism that has been established between the variability of magnitude and of
mean-elevation with entropy justifies the interest in investigating the structure of the variability
of subnetwork magnitude with entropy in a fractal framework. To this end, comparison of the
patterns shown in figure 10 for a fractal network with these observable in figure 9 for natural
networks clarifies that, even with regard to magnitude, entropy varies in natural basins as if
they were fractal objects. Figure 10 is built plotting the average entropy of all subtrees of the
fractal network versus their magnitude. All of the subnetworks drain into one of the several
equal main channels of the network, so the average entropy is computed among identical
subnetworks and this representation is equivalent to that of the two previous figures.

For a fractal tree, the variability of entropy with magnitude can be characterized
completely. Let us first make reference to m-structures, for which (by construction) the total
number of segments increases with m as

M = Mm
m
1 (11)

The above relation allows us to substitute m into (5) to obtain

S =
S
M

M
1

m mln
ln1 ⋅ (12)

Considering that the magnitude n is equal to (M+1)/2, for large values of n one can substitute
nm=Mm/2 into (12) to have the desired relation between entropy and magnitude:

S =
S
M1

m ln
ln n1 2⋅ (13)



In figure 10 it can be easily recognized that the points relative to j-structures are the ones
preceding the steps with high increase in magnitude and low increase in entropy. The line
representing relation (13) connects all these points while intermediate structures behaves
differently. It is worth noting that in fractal networks the step in magnitude corresponds to an
increase in Horton order.
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Fig. 10. Magnitude versus average informational entropy of subnetworks for the network
obtained after 5 generations of the structure in fig. 1a. Magnitudes of the j-structures
(j=1,..,5) are 2, 5,14,41,122.

Intermediate structures present a greater increase of entropy with magnitude than that
occurring for j-structures and this different slope becomes stable for relatively large networks.
To explain this it is convenient to make reference to the way the diagram of figure 10 is built.
Following one of the several equal main paths one finds all possible structures existing in the
network. Each step downstream increases of one unity the topological diameter of the
subnetwork considered. For m-structures, topological diameter and total number of links are
related by

M  =  D
m m∆ (14)

which is obtained by elimination of m between (2) and (11) and considering that in (3) η=1/∆1.
So, for the points (S,n) relative to m-structures relation (13) gives

S =
S

M
D

1
m mln

ln1 ⋅ ∆ (15)



that means entropy Sm is exactly proportional to the primary entropy ln∆m (maximum entropy
for structures of diameter ∆m). But we have seen in section 3.2 that the whole fractal network
is a quasi maximum-entropy structure, meaning that S = C ln∆, with C ≈1.

Thus the difference between the m-structures and all the intermediate structures is in the
approximation achievable with (16), because by increasing ∆ entropy always increases
approximately as ln∆ while magnitude increases as nm=1/2 ∆D for the m-structures and much
less for intermediate structures.

5. FINAL REMARKS

Some important properties displayed by parameters of natural basins connected to the concept
of informational entropy of the network are explored in this paper. The fractal nature of river
network allowed us to make use of purely fractal trees to further substantiate self-similarity
properties in natural basins and to better understand patterns of variability of some parameters
as functions of the informational entropy. To this end, exact relations between entropy and
fractal network parameters are derived in many cases.

The following points are worth emphasizing:
1) the entropy of fractal and natural networks is linearly related, in average, to the Horton
order, with the slope of the relation, representing the rate of entropy production, strictly
related to the fractal dimension of the branching process;
2) fractal and natural networks behaves as quasi maximum-entropy structures, allowing us to
use the logarithm of the topological diameter as a good approximation for the network
entropy;
3) the connection between rate of entropy production and the similarity dimension of fractal
network permits an estimation of the fractal dimension of the branching more stable than the
usual estimate D=ln RB/ln RL, which is shown only asymptotically correct with regard to
fractal trees;
4) the distribution of potential energy and of magnitude along the main stream of natural
networks is shown to vary with similar patterns with respect to the entropy of the
subnetworks. Both variables display discontinuities in correspondence of significant junctions
along the path and gradual variations between these junctions. With regard to magnitude
versus entropy again fractal and natural networks show the same patterns, which are given a
satisfying interpretation with the aid of the rules valid for fractal trees.
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