What drives high flow events in the Swiss Alps?

Wavelet spectral analysis for the analysis of observed

and simulated extreme events

Bettina Schaefli¹

Douglas Maraun²

1: University of Potsdam

2: Now at Climate Research Unit, University of East Anglia

Motivation

• Design flood estimation for the Swiss Rhone catchment

⇒ 4 observed high flow events

⇒ all in autumn

Estimation of design floods

Motivation

- Conceptual hydrologic model
 - ⇒ good performance, reproduces observed high flows

Motivation

- Discharge scenarios
 - ⇒ Surprise.... floods during spring
 - ⇒ Realistic or something wrong?
- New question:
 - ⇒ How good is the model for *potentially* flood producing situations?
 - ⇒ How to identify these situations?

Motivation - Assumption

• Extreme climate situations in the Alps

= **Unusual co-oscillation** of temperature and precipitation

Motivation - Assumption

- Extreme climate situations in the Alps
- = Unusual co-oscillation of temperature and precipitation
- **Detection**?
 - ⇒ Time and scale resolved analysis
 - Scale ~ 1/frequency
 - ⇒ Wavelet spectral analysis (continuous wavelet transform)

Illustrative example: deterministic chirp

Univers

· Potsdam

.. and its Fourier transform

Wavelet power spectrum of the chirp

Detect co-osciallations

• Detect coherency between two processes

12

Co-oscillation example

Example: two co-oscillating processes

Method

- Detect co-oscillation between processes
- Wavelet coherence

⇒ Estimated wavelet cross spectrum of signal 1 and signal 2

 $WCS_{g}(a,b) = E[W_{g}^{(s_{1})}(a,b)W_{g}^{(s_{2})}(a,b)]$

 \Rightarrow Wavelet coherency between $s_1(t)$ and $s_2(t)$

 $WCO_g(a,b) = \frac{Estimated\ cross\ spectrum}{(Spectrum\ signal\ 1 \cdot Spectrum\ signal\ 2)^{0.5}}$

Wavelet coherence

Coherence between temperature and precipitation

Remember: assumption

• Extreme climate situations in the Alps

= Unusual co-oscillation of temperature and precipitation

Potentially flood producing situations

• Coherence between temperature and precipitation

Connection to high flows

• Model performance for all potentially flood producing situations? ⇒ ~ 15 events

Extreme flood 2000 ?

Extreme flood 2000 ?

- Coherence between precipitation & temperature
 ⇒ Strong power on small scales (spring and autumn)
 ⇒ Signature of climate in this region
- Situations with significant coherence of precip. & temperature

⇒ high flows (not necessarily exceptional)

- Model development
 - ⇒ Concentrate on these situations
 - ⇒ Does meteo generator yield reasonable co-oscillation?

Conclusion & Outlook

- Analysis and simulation of extreme events
 - ⇒ Look at *potentially* flood producing meteorological situations
 - ⇒ Assess model performance for these situations
- Wavelet spectral analysis
 - ⇒ Time and scale resolved analysis
 - ⇒ But: due to correlations difficult to interpret

Conclusion & Outlook

- Drawn conclusions
 - = knowledge about physical processes
 - x statistically rigorous wavelet analysis

- Reference: Schaefli, Holschneider, Maraun, 2007: What drives high flow events in the Swiss Alps? A review of wavelet spectral analysis with an application to hydrology
 - ⇒ Submitted to Adv. in Water Resources