Catchment Characterization based on Runoff Copulas

Luis Samaniego (1), András Bárdossy (2)

(1) Helmholtz-Centre for Environmental Research - UFZ(2) Institute of Hydraulic Engineering, University of Stuttgart

EGU General Assembly Vienna, $19^{\rm th}$ April 2007

HELMHOLTZ | CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

Outline

1. Introduction

- 2. Overview of the method
- 3. Application
- 4. Conclusions and outlook

1. Introduction

Main objective:

Estimate time series characteristics using a set of catchment descriptors, **specially** where there is no discharge data (PUB)

Methods: Unsupervised/supervised clustering

1. Introduction

Main objective:

Estimate time series characteristics using a set of catchment descriptors, **specially** where there is no discharge data (PUB)

Methods: Unsupervised/supervised clustering

• ANN, k-NN, fuzzy-rules, spectral signatures...

1. Introduction

Main objective:

Estimate time series characteristics using a set of catchment descriptors, **specially** where there is no discharge data (PUB)

Methods: Unsupervised/supervised clustering

- ANN, k-NN, fuzzy-rules, spectral signatures...
- Generalized k-Nearest Neighbors + copulas

2. Traditional Catchment Characterization Procedure

Data:

- $\mathcal{D} = \{ (\mathbf{x}_i, y_i) \mid i = 1, \dots n \}$
- Outputs: $y \rightarrow \mathsf{Highly dynamic}$

• Inputs: $\mathbf{x} \rightarrow \text{Static or slightly}$ dynamic

 Similarity ⇔ Metric: Selected *a priori*, e.g. Euclidian distance

Results:

- Unsupervised approaches highly uncertain
- Characterization is not unique
 \sim runoff characteristic(s) y e.g. \bar{q} , q_5
 - \sim metric

What is a Copula?

"In statistics, a **copula** is a multivariate distribution function on the unit hypercube with **uniform** marginals." Bárdossy, 2006, WRR

⇒ "Describes the dependence structure between random variables without information on the marginals."

$$F(x_1,\ldots,x_n) = C\Big[F_1(x_1),\ldots,F_n(x_n)\Big]$$

Examples of Copula Density

Examples of Copula Density

Empirical Runoff Copula

Given: $q_i^t, q_j^t \equiv \text{daily time series (1908-2000)}$

$$C(v_i, v_j) = P\Big[F_i(q_i) < v_i; F_j(q_j) < v_j\Big]$$
$$= C\Big(F_i(q_i), F_j(q_j)\Big)$$

Empirical Runoff Copula

Given: $q_i^t, q_j^t \equiv$ daily time series (1908-2000)

$$C(v_i, v_j) = P\Big[F_i(q_i) < v_i; F_j(q_j) < v_j\Big]$$
$$= C\Big(F_i(q_i), F_j(q_j)\Big)$$
$$c(v_i, v_j) = \frac{\partial^2 C(v_i, v_j)}{\partial v_i \partial v_j}$$

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

$$L_{ij} = \int \int_{\Omega_1} c(v_i, v_j) d\Omega$$
$$U_{ij} = \int \int_{\Omega_2} c(v_i, v_j) d\Omega$$
$$\lambda_{ij} = \frac{|U_{ij} - L_{ij}|}{U_{ij} + L_{ij}} + (p - L_{ij})$$

Distance λ and the FD Curves

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

Proposed Characterization Method

Training \longrightarrow	$\mathcal{T} = \{ \mathbf{x}_i, [\lambda_{ij}], y_i \forall \ i, j \in n \}$
Embedding \longrightarrow	$\mathbf{u} = B[\mathbf{x}]$
Condition \longrightarrow	Small $d(\mathbf{u}_i, \mathbf{u}_j) \to Small \ \lambda_{ij}$
	$d_{ij}^2 = (\mathbf{u}_i - \mathbf{u}_j)\mathbf{g}(\mathbf{u}_i - \mathbf{u}_j)^{\mathrm{T}}$
Validation \longrightarrow	$\mathcal{V} = \{(\mathbf{x}, y)\}$

Prediction \longrightarrow

$$y = \frac{1}{N} \sum_{d_B(\mathbf{u}, \mathbf{u_i}) < D(N)} y_i$$

Defining the Metric in the Predictor's Space

Euclidean Metric (Mahalanobis)

Riemannian Metric

e.g.

 $\mathbf{g} = \mathbf{I}_k = diag(1, 1, \dots, 1)$

 $\mathbf{g} = [g_{ij}]$

 $\begin{array}{l} [g_{ij}] \text{ is positive definite} \\ g_{ij} = 1 + \alpha_{i,j} u_i u_j \quad \forall i = j \\ g_{ij} = \alpha_{i,j} u_i u_j \quad \forall i \neq j \end{array}$

Finding an Appropriate Embedding Space

Define a variance function: Bárdossy, Pegram & Samaniego,

2005, WRR.

 $G_B(p) = \frac{1}{\mathcal{N}(D_B(p))} \sum_{d_B(i,j) < D_B(p)} \left(\lambda_{ij}\right)^2$

Find a transformation $B[\cdot]$ (e.g. $\mathbf{u} = \mathbf{Bx}$) and a metric \mathbf{g} so that

$$\int_0^{p^*} G_B(p) dp \to \min$$

3. Application

Study Area

_											
4000- 3000-		X1	+ +	+ ‡	+ ‡	+ +	+ +	+ ‡	+ +		
1000-			••••••••	• 		8 • • × × × × ×					
9- 8- 7- 5-	× • •	++ +	X2	···*	× ************************************	* * * * * * * * * * * * * * * * * * *		· 8			
17.5 12.5 7.5		#+		Х3		***					
600- 400- 200-		#+	+ ************************************		X4	+ ******	+	. ". • ******	+ *****		
90 60 30	** ** •	** *	* ***********************************	.	8 88 + ×××× +	X5	**	×××: : : : : : : : : : : : : : : : : :	••••••••••••••••••••••••••••••••••••••		
100 80 60 40 20		++ +	••••••••••••••••••••••••••••••••••••••		۰. ²⁰⁰	• • • •	X6		• · · · · · · · · · · · · · · · · · · ·		
20- 15- 10- 5-		#+			₩1	₽ ₩ ×××	°••.	Х7			
1200 1000 800		#+			***** ***** *****	•••• ×× ××			X8		
	0 2000 40005 6 7 8 9 7.5 12.5 20200 500 8000 20 50 80 20 40 60 80 5 10 15 20800 1000										

 x_1 area

$$x_2$$
 trimmed mean slope $P_{15} - P_{85}$

- x_3 north facing slopes
- $x_4 \quad h_{max} h_{min}$ (elevation)
- x_5 percentage of karstic formation
- x_6 mean share of forest
- x_7 mean share of impervious areas
- x_8 30y-mean annual precipitation

Results

Basin Characterization

Basin Characterization

Based on distances in the input space ${\bf x}$

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

Validation

Performance of different metrics

Validation

 The embedding space and the adaptive metric performed better than a priori selected standard metrics.

- The embedding space and the adaptive metric performed better than *a priori* selected standard metrics.
- The distance based on density copulas lead to robust characterizations.

- The embedding space and the adaptive metric performed better than *a priori* selected standard metrics.
- The distance based on density copulas lead to robust characterizations.
- Validation with several runoff characteristics (y) gives r > 0.65.

- The embedding space and the adaptive metric performed better than a priori selected standard metrics.
- The distance based on density copulas lead to robust characterizations.
- Validation with several runoff characteristics (y) gives r > 0.65.
- Additional similarity (or dissimilarity) measures are still to be investigated.

- The embedding space and the adaptive metric performed better than a priori selected standard metrics.
- The distance based on density copulas lead to robust characterizations.
- Validation with several runoff characteristics (y) gives r > 0.65.
- Additional similarity (or dissimilarity) measures are still to be investigated.
- Expand the data set to include a number of basins with different hydrological regimes.

Thank you

Appendix

