

AUSTRIAN FLOOD TYPOLOGY

Ralf Merz and Günter Blöschl

Institute of Hydraulic and Water Resources Engineering Vienna University of Technology

EGU 2007, HS29

Motivation

Flood processes

- At-site extrapolation to large return periods
- Similarity measure for regionalisation
- Flood dynamics in flood forecasting

Objective

Flood process typology for all observed annual flood peaks in Austria \rightarrow 490 catchments (5-50000 km²), 1971-1997

Floods due to

- Long-rain floods
- Short-rain floods
- Flash floods
- Rain-on-snow floods
- Snow-melt floods

Floods due to

- Long-rain floods
- Short-rain floods
- Flash floods
- Rain-on-snow floods
- Snow-melt floods

Hypothesised processes:

Synoptic or frontal type rainfall events over several days or longer, filling up of storage capacity, often flood events cover large area up to several thousands of km²

Floods due to

- Long-rain floods
- Short-rain floods
- Flash floods
- Rain-on-snow floods
- Snow-melt floods

Hypothesised processes:

Rainfall of short duration and high intensity, flood flow as combination of runoff from saturated areas, Horton flow & fast subsurface flow

Floods due to

- Long-rain floods
- Short-rain floods
- Flash floods
- Rain-on-snow floods
- Snow-melt floods

Hypothesised processes:

Convective short duration high intensity rainfall, fast catchment response, limited spatial coverage, mainly in summer

Floods due to

- Long-rain floods
- Short-rain floods
- Flash floods
- Rain-on-snow floods
- Snow-melt floods

Hypothesised processes:

Rain on existing snow cover, saturated catchments due to antecedent snowmelt & snow cover → surface runoff

Floods due to

- Long-rain floods
- Short-rain floods
- Flash floods
- Rain-on-snow floods
- Snow-melt floods

Hypothesised processes:

Snow melt during fair weather periods & increasing air temperature are saturating the soils, continuously raising the flows

Process indicators

Soil moisture state (runoff generation index)

Daily water balance simulation in 490 gauged catchments, period 1971-97

 Snow melt & snow water equivalent

 Rainfall duration & intensity ->

1029 daily precipitation time series& data base of extreme rainfallevents

- Runoff dynamics
- Spatial coherence

Derived from ratio of flood peak and daily runoff

Spatial clustering of catchments according to flood timing and catchment locations

Process indicators

• Soil moisture state (runoff generation index)

 Snow melt & snow water equivalent

- Rainfall duration & intensity
- Runoff dynamics
- Spatial coherence

Diagnostic maps

Diagnostic maps

Manual classification of 11518 annual flood peaks in Austria

938 peaks > 10yr flood

Controls on flood frequency shape

Flood types and runoff coefficients (3032 events)

Runoff coefficients from event analysis of hourly runoff (Merz et al., 2006)

Flood types and time of concentration

Time of concentration from event analysis of hourly runoff (Merz et al., 2006)

Use process types to create compound flood frequency distribution

Local statistics for 144 catchments Comparison to long series (>40 years of observation)

Conclusions:

- Plausible stratification of flood peaks
- Applicable to regional scale
- Process indicators from different data sources
- → Useful diagnostic tool
 → Potential for flood frequency estimation