The provision of an online neural network system for flood estimation in ungauged catchments

Christian W. Dawson Loughborough University, UK

Robert .J. Abrahart University of Nottingham, UK

Dawson, C.W. Abrahart, R.J. Shamseldin, A.Y. and Wilby, R.L. (2006) 'Flood estimation at ungauged sites using artificial neural networks', Journal of Hydrology, Vol 319, pp 391 - 409

The provision of an online neural network system for flood estimation in ungauged catchments

Introduction

- Artificial Neural Networks
- Flood Estimation Handbook
- Model development
- Web site implementation
- Conclusions

Artificial Neural Networks

Artificial Neural Networks

100 Billion neurons 1,000 Billion+ connections

The University of Nottingham

Artificial Neuron

Artificial Neural Networks

Advantages of ANNs

- New problems ANNs are well suited to new problems that are difficult to define. They act as 'black boxes'
- Robustness ANNs can handle missing and fuzzy data. Because data and processing is distributed throughout an ANN they can tolerate faults and can tolerate damage to themselves.
- Fast processing can solve complex problems quickly once trained by operating on problems using a massively interconnected number of processing units.
- Flexibility can adapt to changing environments. Easy to maintain and can learn new things.

Summary of criticisms of ANNs

- No physical reasoning/ explanation (i.e., black boxes)
- Inability to generalise to extreme events outside training data
- Data dependent
- No single "true" solution (i.e., equifinality)
- Difficult to assign confidence limits
- Over–parameterised
- Fails to build on conventional hydrological "wisdom"

Flood Estimation Handbook

- FEH produced by CEH
- FEH CD ROM Data on 1,000 UK catchments (0.5km²+)
- 3 Files:
 - Annual maximum series (100+ years to 5 or 6)
 - POT series (may not be same period as AMS)
 - Catchment descriptors

Model Development

- 1,000 catchments;
- Processing →850 catchments (10+ years)
- AMS extracted
- T-year flood events calculated based on Gumbel Type 1 distribution:
- $Q_T = \overline{Q} + K(T)S_Q$
- K(T): frequency factor, Q mean AMS, S_Q SD of AMS

Model Development

20-year flood event derived

 16 catchment descriptors

The University of Nottingham

DTM AREA	Catchment drainage area (km ²)	
BFIHOST	Base flow index	
SPRHOST	Standard percentage runoff	
FARL	Index of flood attenuation attributable to reservoirs and lakes	
SAAR	Standard period (1961-1990) average annual rainfall (mm)	
RMED-1D	Median annual maximum one-day rainfall (mm)	
RMED-2D	Median annual maximum two-day rainfall (mm)	
RMED-1H	Median annual maximum one-hour rainfall (mm)	
SMDBAR	Mean Soil Moisture Deficit for 1941 – 1970 (mm)	
PROPWET	Proportion of time when Soil Moisture Deficit<6mm during 1961 - 1990	
LDP	Longest drainage path (km)	
DPLBAR	Mean distance between each node (on a regular 50m grid) and catchment outlet (km)	
ALTBAR	Mean altitude of catchment above sea level (m)	
DPSBAR	Mean of all inter-nodal slopes in catchment (m/km)	
ASPVAR	Invariability of slope directions	
URBEXT1990	Extent of urban and suburban land cover in 1990 (%)	

Avoiding Over Fitting

Accuracy of Model

Web site implementation

https://co-public.lboro.ac.uk/cocwd/FEstimation/index.htm

Developed using PHP

	🗿 ANN Flood	Estimation Mod	lel - Microsoft	i Internet Exp	lorer			
	<u>File E</u> dit <u>V</u> ie	w F <u>a</u> vorites <u>T</u>	ools <u>H</u> elp					
		<u>* * * * * *</u>		I Estimati	on Model	<u> </u>		
	Complete the	appropriate field	is below and cl	lick 'Calculate'	to perform the analyses.			
	Variable	Value	Minimum	Maximum	Description			
	DTM AREA	410.77	.07	9951	Catchment drainage area (km2)			
	BFIHOST	0.5	0.17	0.97	Base flow index			
	SPRHOST	36.86	4.80	59.90	Standard % runoff			
	FARL	0.97	0.64	1.00	Index of flood attenuation			
	SAAR	1084.76	547	3473	Average annual rainfall (mm)			
	RMED1D	39.11	25.20	84.20	Median annual max rainfall 1-day (mm)			
	RMED2D	51.85	32.20	122.00	Median annual max rainfall 2-day (mm)			
	RMED1H	10.73	8.10	14.90	Median annual max rainfall 1-hour (mm)			
	SMDBAR	25.21	3.29	53.78	Mean soil moisture defecit (mm)	=		
	PROPWET	0.46	0.21	0.83	Proportion of time SMD<6mm			
	LDP	39.95	2.41	280.96	Longest drainage path (km)			
	DPLBAR	21.48	1.14	140.81	Mean distance between nodes (km)			
	ALTBAR	207.47	25.00	683.00	Mean altitude (m)			
	DPSBAR	97.71	11.61	415.21	Mean inter-nodal slopes (m/km)			
	ASPVAR	0.18	0.01	0.57	Invariability of slope directions			
	URBEXT	0.03	0.00	0.43	Urban and suburban land cover (%)			
	Calculate 20 year ev	Reset ent = 140.75	cumecs (m	nax: 1521.6	2; min: 1.15)			
			1	T				
The University of Nottingham					EGU 2007	Ļ	Loughborou University	19h 16

	0 0 0 0 0 0 0		l Estimati	on Model	
omplete the	appropriate fie	elds below and c	lick 'Calculate'	to perform the analyses.	
Variable	Value	Minimum	Maximum	Description	
DTM AREA	500	1.07	9951	Catchment drainage area (km2)	
BFIHOST	0.5	0.17	0.97	Base flow index	
SPRHOST	36.86	4.80	59.90	Standard % runoff	
FARL	0.97	0.64	1.00	Index of flood attenuation	
SAAR	1084.76	547	3473	Average annual rainfall (mm)	
RMED1D	39.11	25.20	84.20	Median annual max rainfall 1-day (mm)	
RMED2D	51.85	32.20	122.00	Median annual max rainfall 2-day (mm)	
RMED1H	10.73	8.10	14.90	Median annual max rainfall 1-hour (mm)	
SMDBAR	25.21	3.29	53.78	Mean soil moisture defecit (mm)	
PROPWET	0.46	0.21	0.83	Proportion of time SMD<6mm	
LDP	39.95	2.41	280.96	Longest drainage path (km)	
OPLBAR	21.48	1.14	140.81	Mean distance between nodes (km)	
ALTBAR	207.47	25.00	683.00	Mean altitude (m)	
OPSBAR	97.71	11.61	415.21	Mean inter-nodal slopes (m/km)	
ASPVAR	0.18	0.01	0.57	Invariability of slope directions	
IRBEYT	0.03	0.00	0.43	Urban and suburban land cover (%)	

20 year event = 158.44 cumecs (max: 1521.62; min: 1.15)

Loughborough University 17

Conclusions

- Web-based flood estimation model quick and easy model to use
- Forum for discussion
- Other models still to develop (index flood, 10-, 30-, 50-, 100-year events)
- Urban / rural models
- UK only so far

Questions?

C.W.Dawson1@lboro.ac.uk

