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Design flood hydrographs: a regional analysis based on flood reduction functions
Daniele Ganora a, Giulia Evangelista a, Silvia Corderob and Pierluigi Claps a

aDepartment of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy; bAgenzia Interregionale Po, Ufficio periferico di 
Torino, Moncalieri, Italy

ABSTRACT
Modern flood hazard mapping techniques and water infrastructure design require the entire flood 
hydrograph. However, statistical methods for flood hydrograph estimation in ungauged basins have 
not received the same attention as the models used to predict the peak flow value. Here the design 
hydrograph of an ungauged basin is reconstructed in a parsimonious way through the estimation of 
a non-dimensional flood reduction function (FRF). Based on data from 87 basins (763 station-years of 
flood hydrographs), we show that a two-parameter FRF can be efficiently estimated by multiple linear 
regression from the longest drainage path length and slope of the basin, the average basin elevation, the 
width function kurtosis and the mean value of the scaling exponent of the intensity–duration–frequency 
curve. Reasonable similarities between the estimated flood hydrograph and the original ones make the 
method suitable for extension into other areas to estimate design hydrographs in ungauged basins.

ARTICLE HISTORY 
Received 19 April 2022  
Accepted 13 October 2022  

EDITOR 
A. Castellarin 

ASSOCIATE EDITOR 
K. Kochanek

KEYWORDS 
volume of design 
hydrograph; flood reduction 
function; flood volume 
regionalization

1 Introduction

Modern hazard and flood risk analysis, used in the design of 
flood mitigation infrastructures, must be based on reliable 
information about hydrograph volume and shape, in addition 
to the peak flow value. However, while the estimation of design 
flood peaks has a long history (Gumbel 1945, Cunnane 1988, 
Castellarin et al. 2012) and many operational models are 
currently available, methods to estimate flood volume (and 
hydrograph shape) are still limited and not well consolidated 
(see e.g. Brunner et al. 2017, Tomirotti and Mignosa 2017), 
particularly in ungauged basins. In those cases, the lack of 
direct observations of historical flood volumes means that 
complex statistical estimation approaches are required. 
Basically, two main alternatives are found in the literature: 
on the one hand, it is possible to use indirect methods based 
on a rainfall input and a rainfall-runoff transformation to 
generate the hydrographs; on the other hand, regional statis-
tical methods can be used to transfer information (e.g. the 
shape parameter of the hydrograph) from gauged to ungauged 
sites (see e.g. Blöschl et al. 2013). For this latter approach quite 
few examples are currently available, as most of the literature 
on the statistical analysis of peak and volume data refers to 
applications in gauged basins.

Several different implementations exist for the indirect 
methods, but they can be primarily classified into event- 
based or continuous simulation approaches (Ayalew et al.  
2022). In the first case, a design hyetograph is preliminary 
defined and used as input in a rainfall-runoff model (e.g. 
Petroselli and Grimaldi 2018), while in the latter case one or 
more long-term rainfall records are used to generate a long 
record of synthetic hydrographs (e.g. Mediero et al. 2010, 
Grimaldi et al. 2022), and a subsequent statistical analysis 

of the synthetic hydrograph record allows the user to obtain 
the flood design parameters of interest (peak, volume, 
duration).

Indirect methods are often preferred over direct statis-
tical estimation methods because rainfall records are gen-
erally quite long and have uniform geographical density 
while hydrometric records are shorter, non-uniform in 
space, and often include only annual maximum peak 
flows. Even if the hydrograph tracks are available, they 
are often recorded on paper (as is the case of Italy) and 
the required digitalization efforts make them difficult to 
obtain. With a very limited availability of flood volume 
data in many countries, it is no wonder that regional 
statistical characterizations of such complex curves are 
rare, resulting in a very fragmented literature on the 
subject with methods not easily applicable to other con-
texts. However, the direct statistical methods have the 
advantage of avoiding a rainfall-runoff transformation 
that introduces further uncertainties, and most of them 
take into account that flood peaks and flood volumes are 
positively correlated. This issue has been extensively 
investigated: Yue et al. (1999), for instance, suggested 
jointly modelling the peak and volume with 
a multivariate distribution. In the same vein we find the 
copula-based bivariate modelling of peak and volume 
developed by Zhang and Singh (2006), Salvadori and De 
Michele (2007), Bacova Mitková and Halmová (2014), or 
Requena et al. (2016), among others. Most of these 
approaches, when directed to the estimation of the design 
hydrograph, leave the definition of the hydrograph shape 
to a subjective choice (e.g. triangular, rectangular, etc.) 
while focusing on a limited number of hydrograph 
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characteristics. An exception is the procedure developed 
by Yue et al. (2002), which reproduces the hydrograph 
shape in a statistical way provided that design values of 
peak flow, volume and duration are available. In princi-
ple, this approach could be combined with the previously 
cited ones to include the shape among the design flood 
features. Another approach considering the hydrograph 
shape is that of Brunner et al. (2017), who use 
a dimensionless lognormal probability distribution, scaled 
according to flood peak and volume values, modelled 
through a bivariate copula.

A different and less common approach to characterize 
the flood volumes in a design hydrograph procedure 
relies on the use of the flood reduction function (FRF; 
e.g. Bacchi et al. 1992). The idea is to use a parsimonious 
function to represent how the flood volume is distributed 
for a given duration, where a duration of zero corre-
sponds to the peak value. The FRF curve is conceptually 
similar to the average intensity–duration–frequency (IDF) 
function used to represent rainfall depths for a given 
duration (Grimaldi et al. 2011). Strictly speaking, the 
method does not account for the shape of the hydro-
graph, but provides a duration–volume constraint that 
allows the users to reconstruct a meaningful synthetic 
hydrograph using only a few parameters and simple 
hypotheses about the shape.

As our investigation is directed towards developing 
a regional statistical method for the estimation of the 
design hydrograph in ungauged basins, we have consid-
ered that the FRF paradigm has the right characteristics 
of simplicity and parsimony to be applied in contexts of 
limited availability of data. In this paper we consider the 
FRF paradigm using a parametrization with a simple two- 
parameter function, known as the Natural Environment 
Research Council (NERC) equation, that can be estimated 
also in ungauged basins through regional analysis. The 
proposed methodology is built using a dataset of flood 
volumes of 87 basins in the upper Po River basin, north-
west Italy, which is a much larger dataset than those used 
in previous applications (see e.g. the regionalization 
experiment, also based on the FRF, by Maione et al.  
2003).

The proposed methodology is conceived to be tightly con-
nected to available regional models for the estimation of the flood 
peaks, and to be easily adapted to other geographical contexts.

2 Methodology

2.1 Flood reduction function

FRF is a curve representing, for a given duration D, the 
maximum value of the average discharge QD computed 
for all the possible time windows of duration D over 
a period of interest. The curve is usually normalized by 
the instantaneous maximum discharge, QPEAK (i.e. con-
sidering D = 0), of the same period as: 

εD ¼
QD

QPEAK
¼

1
QPEAK

max
1
D

ò
tþD
t Q τð Þdτ

� �

(1) 

In practical applications the period of interest for the 
selection of maxima is usually the year and the observa-
tions of Q are recorded at discrete time steps (e.g. 10 min-
utes). For a specified value of D, εD is also referred to as 
the “flood reduction ratio.” Following the classical 
approach used for flow duration curves and IDF curves 
(Chow 1951), the empirical FRF is computed for all the 
available years, normalized by the corresponding annual 
maximum. Subsequently, the values are averaged over the 
years, to obtain a basin representative εD curve 
(see Fig. 1(b)) to be used in practical applications.

Over the years, for each duration D, one computes a sample 
of εDj values (j = 1 . . . N) so that a statistical treatment would 
enable to estimate a quantile εD;T : This can be done for each 
duration and, in principle, the probability distribution may 
vary among durations. However, it has been shown 
(Franchini and Galeati 2000) that it is generally acceptable to 
use a unique probability distribution for all durations D. This 
enables us to use a simple expression for the estimation of the 
quantile of the flood volume for design purposes, as follows: 

WD;T ¼ �εDQTD (2) 

In Equation (2) QT is the quantile of the flood peak for a given 
return period, that can be represented as QT ¼ �Q � KT accord-
ing to the index method (Dalrymple 1960). This entails that the 
non-dimensional probability distribution of flood peaks, KT , is 
adopted as the non-dimensional distribution of the flood 
volumes, regardless of the duration D of interest.

Equation (2) can be used to build synthetic design hydro-
graphs by derivation of the volume function: 

Q̂ tð Þ ¼
dW
dt
¼ QT � εD þ t � QT � εD

0 (3) 

where Q̂ tð Þ is the synthetic hydrograph and εD
0 indicates the 

first derivative of ε with respect to the duration D. It is impor-
tant to stress the conceptual difference between the chronolo-
gical time t and the duration D, the latter being essentially 
a moving time window.

According to the UK National Environmental Research 
Council (Natural Environment Research Council 1975), the 
average FRF can be represented by a two-parameter curve: 

εD ¼
QD;T

QT
¼ ð1þ b � DÞ� c (4) 

where b and c are parameters to be determined. The depen-
dence on the return period is, again, only concentrated in the 
peak flow QT , so that the form of the curve (Equation 4) is 
independent of the return period.

In the scientific literature, other analytical forms of the FRF 
have been proposed: Franchini and Galeati (2000) compared 
different analytical models (the NERC, the geomorphoclimatic 
model by Fiorentino et al. 1987, the stochastic model by Bacchi 
et al. 1992) against the empirical FRFs of 12 basins in central 
Italy. All the models showed a reliable fitting to the observed 
FRF, although the geomorphoclimatic model was more complex 
to apply. As the NERC function allows double curvature and it is 
compatible with a conceptual framework (see Section 2.2), we 
consider the NERC to be the best choice for an analytical FRF to 
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be regionalized, although the results obtained in this work can 
be easily generalized to other kind of functions.

Summarizing, one can use the empirical FRF at a gauged 
location and Equation (3) to obtain a single representative 
form as a design hydrograph. The procedure can be summar-
ized with a few steps (sketched in Fig. 1):

(1) starting from a discharge time series (Fig. 1(a)) for 
each year, the empirical FRF of Equation (1) can be 
computed by considering different time windows 
(Fig. 1(b), thin lines);

(2) the average empirical FRF is then obtained by averaging 
the individual values for each duration (Fig. 1(b), dots);

(3) the analytical NERC model (Equation 4) is fitted to the 
average FRF, providing an analytical representation of 
the FRF (Fig. 1(b), solid line);

(4) a synthetic hydrograph consistent with Equation (4) 
can be built from the fitted FRF.

To apply step 4, it is first necessary to define the peak position 
as, with respect to the duration D, if the peak is at t = 0, the 
hydrograph shape is that represented as a solid thin line in 
Fig. 1(c). To derive the hydrograph with peak at t=0, combin-
ing Equations (3) and (4), we obtain: 

Q̂ tð Þ ¼ QT � 1þ btð Þ
� c
� cbt 1þ btð Þ

� c� 1� �
(5) 

Considering two asymmetrical limbs, a more general ana-
lytical form of the hydrograph shape can be written as: 

Q̂ðtÞ
1þ b

1� r tj j
� �� c

� b�c
1� r tj j 1þ b

1� r tj j
� �� c� 1t< 0

1þ b
r t

� �� c
� b�c

r t 1þ b
r t

� �� c� 1t � 0

(

(6) 

Figure 1. Example of flood reduction function hydrograph analysis for the Stura di Lanzo at Torino basin. (a) Time series of discharge values recorded at 30min 
resolution. (b) Empirical annual flood reduction functions (thin lines), empirical average flood reduction function (dots) and Natural Environment Research Council 
analytical flood reduction function (b = 0.05627, c = 0.55830). (c) Natural Environment Research Council hydrograph obtained from flood reduction function of panel 
(b) with r = 0.68 (dot-dashed line) compared to the reference hydrograph (bold solid line) and the single event observed hydrographs (thin lines). Dashed and solid thin 
curves show the symmetrical Natural Environment Research Council hydrograph (r = 0.5) and Natural Environment Research Council hydrograph with instantaneous 
initial peak (r = 1), respectively.
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where the shape depends on the “skew” parameter 
r (0 � r � 1). The symmetrical hydrograph (with central 
peak) is generated from Equation (6) with r = 0.5. The “initial 
peak” hydrograph is obtained with with r = 1. An example of 
asymmetrical shape is the dot-dashed curve shown in Fig. 1(c), 
obtained with r = 0.68. Of course, both the hydrograph forms 
are consistent with the same FRF (i.e. Equations (5) and (6) 
lead to the same εD values) when recomputing the volumes 
over moving time windows.

Some authors (Tomirotti and Mignosa 2017) let the 
r parameter vary with the hydrograph duration, after consid-
ering various real hydrographs on large rivers. In this study, 
the parameter r is considered constant for each basin, i.e. it is 
independent of D. The reasons of this choice are discussed 
later. It should also be clarified that here, unlike in the work by 
Tomirotti and Mignosa (2017), the skew parameter 
r represents the ratio between the time after the peak and the 
duration D.

A specific analysis of the hydrograph shape is offered in 
Section 5.1, as an additional validation to the proposed 
method. 
Basically, the regionalized methods presented in this paper 
address step 3 of the above procedure in ungauged basins. 
The following section provides the theory, and in Section 3 
the application in northwest Italy demonstrates the feasibility.

2.2 Estimation of the FRF in ungauged basins

As mentioned in the Introduction, while regionalization of peak 
flow values is a consolidated practice, with many procedures 
available, much less can be found in the literature as regards the 
regionalization of other hydrograph-related characteristics. 
Something different from the regionalization of peaks can be 
found in NERC (1975), where the non-dimensional (with 
respect to the mean annual daily flood) FRF values at three 
and 10 days (AR3 and AR10, respectively) were related to 
catchment characteristics through linear regressions. The ana-
lysis was based on a sample of 64 stations and an initial set of 
four catchment descriptors; the final regional models to estimate 
AR3 and AR10 both proved to be a function of the stream slope. 
Much later, another approach was proposed by Maione et al. 
(2003), and later followed by Tomirotti and Mignosa (2017), for 
the regional estimation of the FRF (which stood for flood dura-
tion frequency in the original paper). Maione et al. (2003) used 
a single-parameter FRF (Bacchi et al. 1992) to correlate this 
parameter to the watershed area using a linear regression fitted 
on eight gauged basins in the Po basin (Italy) with 46 years of 
average record length. More recently, Brunner et al. (2018) 
tested different approaches for regionalization of a synthetic 
normalized hydrograph shape. A total of 24 approaches were 
tested to estimate the 10 parameters of a synthetic design hydro-
graph form proposed in the paper. They were linear regression 
techniques; non-linear regression models, i.e. random forest, 
bagging and boosting; spatial proximity approaches; and meth-
ods based on homogeneous regions. Strictly speaking, the FRF 
concept was not used.

The foundations of the procedures proposed here lie in 
a conceptual interpretation of the NERC FRF proposed by 
Silvagni (1984) who connected parameters b and c of the 

NERC curve to the parameters of the rational formula 
(Mulvaney 1851). In practice, assuming that the peak QT can 
be estimated considering a rectangular design rainfall over the 
basin, with duration equal to the time of concentration tc, 
Silvagni (1984) suggested that QD,T could also be estimated 
through the rational formula but using a rainfall event having 
duration tc+D. Assuming that the design rainfall intensity iT(d) 
for a given duration d and return period T can be expressed 
using a two-parameter IDF curve iT(d) = aTdn−1 

(e.g. Koutsoyiannis et al. 1998), the author obtained 
a “rational” FRF expression as: 

εD ¼
QD;T

QT
¼

iT tc þ Dð ÞAφ
3:6

iT tcð ÞAφ
3:6

� �� 1

¼
at: tc þ Dð Þ

n� 1

at:tc
n� 1 ¼ 1þ

D
tc

� �n� 1

;

(7) 

where A is the basin area and φ is the runoff coefficient. 
Comparing Equation (7) with Equation (4), one can recognize 
that the parameters of the NERC FRF can assume the mean-
ing of: 

b ¼
1
tc

e c ¼ 1 � n: (8) 

Equations (4) and (8) can be used, in principle, to estimate 
b and c from only the IDF parameter n and the time of 
concentration tc. By inverting the procedure, Franchini and 
Galeati (2000, 170) observed that when using several empirical 
FRFs to estimate tc, with the conceptual analogy of Silvagni 
(1984), the results were significantly different from those 
obtained by estimating tc with the most common equations 
in the literature. They suggested that the parameter b of the 
NERC equation cannot be directly linked to the usual basin 
time of concentration. Rather, 1/b should be interpreted “as 
a more general ‘reference time,’ characteristic of the response 
of the basin” in the FRF framework. In the following, we will 
thus refer to the parameter 1/b, whose values can be referred to 
an intuitive meaning of “tc.”

The method of regional analysis proposed here is essentially 
built through the institution of relations between the two 
parameters of the NERC FRF and several basin characteristics. 
Three regional statistical approaches are applied to an exten-
sive dataset of hydrographs and flood reduction curves, to 
allow the estimation of the FRF parameters in ungauged 
basins. The methods considered are: multiple linear regression 
(LR; e.g. Montgomery et al. 2001), canonical correlation ana-
lysis (CCA; e.g. Ouarda et al. 2000) and the alternating condi-
tional expectation algorithm (ACE; e.g. Breiman and Friedman  
1985a and 1985b). In all the techniques the basin character-
istics, referred to as descriptors, include geographical, mor-
phological and climatic basin attributes. These are related to 
the basins upstream of the available gauging stations and can 
be easily computed in any ungauged basin by means of 
Geographic Information System (GIS) procedures.

For each regionalization approach tested, several alternative 
models, based on different subsets of descriptors, have been 
implemented, and subsequently ranked, according to their 
prediction performances, e.g. by the adjusted coefficient of 
determination (R2

adj). The most significant models are further 

328 D. GANORA ET AL.



validated with a visual checking of the results, and with a leave- 
one-out cross-validation procedure (see Hastie et al. 2009). In 
the following, the details of the applications are presented, and 
a final assessment of the most convenient method is discussed.

2.2.1 Multiple linear regression
Multiple linear regressions have been widely used to regiona-
lize hydrological variables. An example of a prediction equa-
tion is: 

ŷ ¼ β0 þ β1χ1 þ � � � þ βpχp (9) 

where ŷ is the (FRF) parameter to regionalize, x is a basin 
descriptor and β is its corresponding regression coefficient. In 
this work, the ordinary least squares method (e.g. Montgomery 
et al. 2001) is used and the model considers both the NERC 
parameters b and c as the regionalized variable ŷ. Different 
possible transformations (log, Box-Cox; Box and Cox 1964) 
have been considered for both the variable sets x and y, 
e.g. considering y = c and y = b or y = ln(b) or y = 1/b or y = ln 
(1/b). Only the most significant results are reported here, and, for 
instance, no transformation of c has provided satisfactory results.

Regarding the covariates x, a preliminary analysis of their 
frequency distribution showed that some of them are markedly 
skewed, and that the logarithmic and Box-Cox transformation 
can be effective to correct the skewness. For each set of trans-
formations (on y and x), all the possible combinations of two 
and three descriptors have been computed, producing about 
6000 combinations. Using the obtained results, the regression 
models are tested for significance (Student’s t-test at 5%), 
multicollinearity (Variance inflation factor (VIF) test; see 
Montgomery et al. 2001) and residual analysis (normal prob-
ability plot and homoscedasticity). The subset of results pas-
sing all the tests are then ranked according to the R2

adj 
computed on the variables back-transformed to their original 
units. Section 3.2 of this paper thoroughly describes the results 
of applying this procedure.

2.2.2 Canonical correlation analysis
CCA is a method used to explore relationships between 
two multivariate sets of variables, that are here represented 
by FRF parameters (b−1 and c) and by the basin descrip-
tors. The CCA allows one to determine which is the linear 
combination of the variables of the latter group most 
correlated to a linear combination of the variables of the 
former group. CCA is widely used in statistics: e.g. multi-
variate regression and factorial discriminant analysis are 
special cases of the CCA method (Ouarda et al. 2001). 
Approaches belonging to this family have been commonly 
applied in hydrology since the works of Snyder (1962) and 
Wong (1963). More recently, Ouarda et al. (2000) devel-
oped a CCA-based procedure to assess the joint regional 
estimation of spring flood peaks and volume for Northern 
Canadian basins.

To resume the functioning of the CCA, let X be the n × 
p matrix of basins descriptors, where n is the number of basins 
in the dataset and p is the number of the considered descrip-
tors, and let Y be the n × 2 matrix of the FRF parameters. The 
predicted parameters ŷ ¼ 1

b ĉ
� �

can be computed as 

bY ¼ % � x� x½ �A � B� 1 þ Y (10) 

where the descriptors of the ungauged basin are included in 
vector x while each column of x is the mean value of the 
corresponding descriptors in X, computed from the n gauged 
basins of the calibration dataset. Similarly, Y is the vector of 
mean values of the FRF parameters computed from the 
n gauged basins of the dataset. Two matrices of canonical 
variables are defined: U =½x � x�A and V = Y � Y

� �
B. The 

canonical correlation between the jth pair of canonical variables 
is then: 

% ¼
cov uj; vj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var uj
� �

var vj
� �q (11) 

Matrices A and B contain the canonical coefficients aj and bj, 
scaled to make the covariance matrices of the canonical vari-
ables the identity matrix, and ϱ is the square root of the 
corresponding eigenvalue (Ouarda et al. 2001).

The aim of the CCA is thus to find the coefficients a and 
b that maximize %: The results of the CCA application are 
reported later, in Section 3.3.

2.2.3 Alternating conditional expectation algorithm
The ACE algorithm was proposed by Breiman and Friedman 
(1985a, 1985b) as a non-parametric model to find those trans-
formations that produce the best-fitting additive model. 
Considering y and x1, . . .,xp as the response and the predictor 
random variables, respectively, the ACE algorithm provides 
a mapping function t for each variable, which defines a set of 
non-parametric transformations. The prediction variable is 
then obtained as 

ŷ ¼ t� 1
y tx1 x1ð Þ þ tx2 x2ð Þ þ . . .þ txp xp

� �� �
(12) 

where t� 1
y is the inverse of the mapping function of the variable 

y, and txi is the mapping function of the ith descriptor. The 
optimal transformations are achieved through an iterative 
series of optimizations. While the reader can refer to 
Breiman and Friedman (1985a and 1985b) for the algorithm 
details, it is worth recalling the practical procedure through 
a graphical example presented in Fig. 2: after the mapping 
functions have been computed, the two descriptors x1 and x2 
of the ungauged basin are entered in the respective mapping 
functions to obtain their transformed values; their sum is then 
back-transformed with the ty mapping function to obtain the 
final estimate.

With respect to the linear regression, the ACE 
approach can automatically detect possible efficient non- 
linear transformation of the variables (both x and y), so 
that no preliminary transformations are applied. The 
mapping function ty is here forced to be linear, to ensure 
a more robust inversion of ty; no constraints are applied 
to the descriptors instead. All the numerical analyses have 
been performed with the R package “acepack” (Spector 
et al. 2016). The results of the ACE application are 
reported in Section 3.4.
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3 Case study and regional model building

3.1 Case study and data preparation

The methodologies presented in the previous section were 
used to build regional models of the FRF curves in an area 
of about 25 000 km2 in the northwest of Italy. The case 
study was organized by assembling a new dataset of flood 
hydrographs, extracting flood waves from the continuous 
discharge time series originally recorded in 87 gauging sta-
tions of the Regional Agency for Environmental Protection 
(ARPA Piemonte). The dataset was initially compiled using 
information available from previous, partially unpublished, 
studies that reported data manually collected by the former 
Italian Hydrographic Service. In particular, they consist in:

● 26 time series of hydrometric levels obtained from digi-
talization (at 15min) of data recorded by analogic gauges 
during the period 1928–1994. These water levels have 
been transformed into discharge values using previously 
obtained rating curves for these stations (Claps et al.  
2010);

● FRFs obtained based on the three major events records in 
a single year (data digitalized from analogic recordings) 
for 18 gauges between 1928 and 1994.

● New data, from 2000 to 2015, available in digital format 
with a time resolution of 10min to 30min.

In all cases, annual records with more than 30% missing 
values in a single year were discarded. However, incomplete 
years (with less than 30% missing values) were further inves-
tigated: if no significant precipitation was found during or 
before the gap periods, the river was considered in low-flow 
conditions during these gaps and the record was considered 
reliable for flood hydrograph extraction.

Altogether, the dataset reaches a total of 87 gauging sta-
tions with at least six years of record each over the period 
1928–2015, resulting in a total of 763 station-year records, 
with an average length of 15 years and a maximum length 
of 64 years. The spatial distribution of the gauges is shown in 
Fig. 3(a), while data availability over time is summarized in 
Fig. 3(b). All the data used in terms of annual FRFs, as well as 
the main characteristics of the 87 basins, are available in 
a web GIS (www.resba.it).

As a preparatory step for the regional statistical analyses, we 
computed the empirical mean annual FRFs in all of the 87 
stations and then we fitted the empirical curves with the 

NERC model of Equation (4). The best-fitting curve was 
obtained by numerical least squares minimization, using the 
MATLAB® function “fit” (with the default “trust-region” algo-
rithm; Moré and Sorensen 1983). Parameters b and c are then 
jointly estimated and constrained to be non-negative. The final 
fitting of the NERC curve to the empirical average FRF proved 
to be adequate for all the basins, with a mean coefficient of 
determination (R2

adj) of 0.995.
For all 87 watersheds, almost 100 basin attributes were avail-

able, as already published by Gallo et al. (2013). The set of 
geomorphological descriptors was obtained by processing the 
National Aeronautics and Space Administration (NASA) SRTM 
(Shuttle Radar Topography Mission) Digital Elevation Model 
(Farr et al. 2007), sampled at a 100 m spatial resolution. A subset 
of descriptors to be used in the regional analyses was selected, as 
described in Appendix Table A1. The procedure for selecting 
subsets of descriptors is detailed in Cordero (2019).

3.2 Regional model calibration 1: multiple linear regression

In pursuing the goal to reconstruct the NERC parameters 
1/b and c for ungauged basins, both were considered as 
prediction variables in multiple linear regressions. 
Observations of b and c were the values fitted to the 
average FRF curve for each station in the data preparation 
step discussed above.

All the possible combinations of two and three basin 
attributes (Appendix Table A1) were used as set of cov-
ariates in the multiple regressions, including some var-
iants where 1/b, c and the covariates were transformed. 
The best-performing models obtained are reported in 
Table 1, together with some goodness-of-fit indicators, 
i.e. the adjusted R-squared, R2

adj, and the relative root 

mean squared error, RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

byi� yi

� �2
n� 1

q

�y . For opera-
tional purposes, when different models reached similar 
performances the preferred one has been that based on 
“simpler” descriptors (i.e. easier to compute). This is the 
case for models 1 and 2 in Table 1. Despite the high 
performance of the models subjected to Box-Cox trans-
formation in limiting the skewness of residuals (see 
Cordero 2019), considering the overall performances, we 
suggest concluding with the choice of the models ID 1 
and ID 5 of Table 1, where the log-transformation of the 
x variable is applied.

Figure 2. Example of Alternating Conditional Expectation algorithm application: x1 and x2 are two independent variables and tx1 and tx2 are their non-parametric 
transformations; y is the dependent variable obtained as the back-transformation of ty. The mapping functions are represented by black dots as they are computed for 
each sample value.
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Table 1. Best regionalization linear models for 1/b and c. From left to right: model identification, transformation applied to independent variables, number of 
independent variables, dependent variables (y), independent variables (x), coefficients (β), R2

adj and RRMSE. The last two models refer to 1/b estimated directly from 
c. For the meaning of the symbols, see the Appendix.

ID Transformation No. descriptors y x β R2
adj RRMSE

1 Natural logarithm 3 c ln (Havg) 4.8403 0.5879 0.40
ln (LDP) −0.58869
ln (IDFn) 0.13813

0.80202
2 Box-Cox 3 c0.1635 Havg

0.6938 1.1436 0.5487 0.41
LDP−0.2929 −0.0019
IDFn1.9984 −0.3648

0.6423
3 Natural logarithm 2 c ln (Havg) 2.9990 0.5626 0.42

ln (LDP) −0.4190
0.1421

4 Box-Cox 2 c0.1635 Havg
0.6938 1.1943 0.5417 0.41

LDP−0.2929 −0.0013
−0.3609

5 Natural logarithm 3 ln(1/b) ln (kufa) 3.7285 0.4287 0.74
ln (LDP) −2.0775
ln (LDPs) 0.5006

−0.7715
6 Box-Cox 3 (1/b)0.0851 Havg

0.6938 1.9611 0.3797 0.76
kufa

0.5423 −0.0008
LDP−0.2929 −0.2048

−0.8146
7 Natural logarithm 2 ln(1/b) ln (Havg) 4.7943 0.3491 0.79

ln (LDP) −0.6859
0.6986

8 Box-Cox 2 (1/b)0.0851 Havg
0.6938 1.6236 0.3311 0.80

LDP−0.2929 −0.0008
−0.7506

9 b estimated from observed c ln(1/b) ln (c) 3.4589 0.6190 0.61
1.2908

10 b estimated from c estimated by model 1 ln(1/b) ln (bc) 3.4589 0.2856 0.84
1.2908

Figure 3. (a) Geographical location of the 87 gauging stations in the database. (b) Years with available data (after quality checks) for each gauge. Gauge codes allow us 
to access the watershed descriptors in Gallo et al. (2013) and in the web GIS mentioned in the main text.
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For both c and 1/b, the descriptors emerging in the best 
regressions are substantially the same. It is also clear that, 
despite the high correlation between b−1 and c (see ID = 9 
in Table 1), the most robust way to estimate b is not as 
a function of c, as shown in the results of ID = 10.

The best models found (ID = 1 for c and ID = 5 for b−1) have 
the following expressions: 

ln
1
b

� �

¼ 3:7285 � 2:0775 � ln kufa
� �

þ 0:5006 � ln LDPð Þ

� 0:7715 � ln LDPsð Þ ð13Þ

c ¼ 4:8403 � 0:58869 � ln Havg
� �

þ 0:13813 � ln LDPð Þ

þ 0:80202 � ln IDFnð Þ (14) 

Again, the definitions of the descriptors are reported in 
Appendix Table A1. A graphical representation of the perfor-
mances of Equations (13) and (14) is shown in Fig. 4, which 
reports a comparison between the observed and predicted FRF 
parameters.

3.3 Regional model calibration 2: CCA

The CCA method is applied considering again all the possible 
combinations of two and three descriptors. This time they have 
been reduced to a benchmark set that includes the 10 most 

robust and easy to compute descriptors selected by an iterative 
pruning procedure. This procedure deletes, at each iteration, 
the descriptors most correlated to each other. The set of 10 
descriptors selected is reported in Table 2.

Figure 5 shows, for both parameters b−1 and c, the values 
obtained from the local estimates versus those obtained from the 
regional CCA estimate built using a 10-descriptor model. All the 
model coefficients (aj, bj and the mean values �xj and �yj) are 
reported in Table 2. The fitting performances are R2

adj = 0.4432 
and RRMSE = 0.7314 for b−1, and R2

adj = 0.58 and 
RRMSE = 0.3993 for c.

Among the top 10 combinations that use only two or three 
descriptors (see Table 3), similarly to the number of indepen-
dent variables used in the previous method, the most significant 
model from a hydrological and practical point of view is ranked 
eighth, based on the canonical correlation ϱ. For this model, the 
coefficients aj and bj, the mean values �xj and �yj , and the 
canonical correlation ϱ are summarized in Table 4. However, 
R2

adj and RRMSE are respectively −0.1 and 1.03 for b−1 and 0.39 
and 0.48 for c, and the model is therefore not explanatory. 
Figure 6 shows the fitting performances of model 8 in Table 3.

3.4 Regional model calibration 3: ACE

For the ACE algorithm application, as in the case of multiple 
regressions, all the possible combinations of two and three 

Figure 4. Estimated versus empirical values of parameters (a) 1/b and (b) c based on the linear regionalization model of Equations (13) and (14).

Table 2. Coefficients of the best CCA model based on 10 descriptors. The meaning of the 
descriptors is reported in the Appendix.

Descriptors �x j a1 a2

A 430.68 −5.1894∙10−4 −5.8926∙10−5

Havg 1290.50 −1.4485∙10−3 2.3539∙10−4

Xb 403 985.71 6.2250∙10−6 2.9468∙10−6

Yb 4 976 076.19 3.4813∙10−6 1.7074∙10−6

Dd 0.64 1.3540 2.9862
LDP 44.04 8.0066∙10−3 2.2960∙10−2

MAP 1239.83 −2.7431∙10−3 −5.9138∙10−4

IDFa 24.03 0.1003 −4.2900∙10−3

IDFn 0.46 11.9365 0.4314
cf 0.44 −0.7036 −3.4828

�y j b1 b2
1/b 18.5718 −0.0264 0.0865
c 0.5628 3.8355 −2.7990
% 0.7781
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descriptors have been considered. Preliminary data transfor-
mations are not applied in this case, since the ACE algorithm 
already searches for an optimal transformation. The best mod-
els found for c and b−1, ranked by R2

adj, are listed in Table 5. 
The mapping functions of the highest performing models are 
shown in Fig. 7. Estimated values of b−1 and c are finally 
compared to the observed ones in Fig. 8. The results are 
quite interesting and are fully explored in the Discussion 
section.

4 Discussion

Before undertaking comparative analyses among the 
results obtained with the three methods applied, we point out 
that for all models the leave-one-out cross-validation proce-
dure has been applied. The main goal is to check the correct 

reproduction of the observed mean FRFs, but some considera-
tions are also applied to the form of the hydrographs.

First of all, the cross-validation has been applied to check 
the model performances in the reproduction of the FRF 
parameters, i.e. 1/b and c. Considering the multiple LR 
models of Equations (13) and (14) and applying the leave- 
one-out cross-validation procedure, prediction performances 
worsen, as expected. For the parameter 1/b, R2

adj drops from 
0.4287 to 0.3669 and the RRMSE rises from 0.74 to 0.78; for 
the parameter c, the R2

adj changes from 0.5879 to 0.5374 and 
the RRMSE increases from 0.40 to 0.42. Overall, the perfor-
mance degradation does not seem to be very significant.

To better inform the comparisons, we have plotted the varia-
tions between the whole observed curves and the estimated 
ones. In Fig. 9 each line represents the difference, ∆εD, between 
the predicted (regional in panel a; cross-validated in panel b) 
and observed εD for all durations D. Each curve refers to 
a specific station. Figure 9 shows that the performances in cross- 
validation are basically indistinguishable from those obtained 
with the pure regional model, in which the data of the “predic-
tion” station are also used to fit the model. Panels (c) and (d) of 
the same Fig. 9 reports the relative errors obtained, that are 
bounded within ±10% for most of the basins and also for the 
longer durations. A slight underestimation bias must also be 
acknowledged.

The application of the CCA method produces average 
differences, in terms of FRF, that are even smaller, if we 
consider the 10-parameter model (results not shown). 
However, for some basins there are severe underestimates 
of the observed curve, exceeding 30% in a few cases, and 
which go over the 40% in cross-validation. For this reason, 
also considering the high number of parameters required, 
this method is deemed not so efficient in the domain of this 
regional analysis.

The application of the non-linear ACE models produces 
interesting results. In cross-validation, results confirm that 
the models with two descriptors are more robust than those 
with three independent variables. The passage from three to 
two descriptors also has a positive effect on the R2

adj values. 

Figure 5. Values obtained from local estimates of (a) 1/b and (b) c versus those obtained from the Canonical Correlation Analysis regional model based on 10 
descriptors (see Table 2).

Table 3. Top 10 combinations (ranked by the canonical correlation values) that 
use only two or three descriptors. The most significant model from a hydrological 
and practical point of view is highlighted.

Ranking Descriptors �yj

1 Havg, kufa, FourierB2 0.74699
2 Havg, Lca12h, cv[rr] 0.74650
3 Havg, kufa, cv[MAP] 0.74586
4 Havg, Lca3h, cv[rr] 0.74253
5 Havg, kufa, cv[rr] 0.74153
6 Havg, kufa, IDFn 0.74109
7 Havg, Rs, cv[rr] 0.74026
8 Havg,Rs, IDFn 0.73923
9 Havg, kufa, Lca12h 0.73903
10 Havg, kufa, Lca3h 0.73852

Table 4. Coefficients of the best Canonical Correlation Analysis model based on 
three descriptors. The meaning of the descriptors is reported in Appendix.

Descriptors �x j a1 a2

Havg 1290.50 −0.0023 0.0018
Rs 2.1834 −0.3847 −0.2578
IDFn 0.46 7.5196 −26.0262

�y j b1 b2
1/b 18.5718 −0.0379 0.0821
c 0.5628 4.1778 −2.2565
% 0.7392
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After cross-validation, the best model for parameter c is the 
two-descriptor one with R2

adj = 0.5377 (for the three- 
descriptor model the R2

adj is 0.525). The RRMSE remains 
almost constant between the three-variable and the two- 
variable models (from 0.43 to 0.42 for c and from 0.82 to 
0.83 for b−1).

The results of the FRF regional estimation for ACE models are 
shown in Fig. 10, where the panels (a) and (b) refer to the ∆εD 
curves computed before and after the cross-validation, respec-
tively. Despite the high RRMSE of the individual parameter 
estimates, the overall errors on the FRF curve estimation remain 
limited.

Table 5. Best Alternating Conditional Expectation algorithm models among all possible combinations of two and three descriptors ranked by R2
adj.

ID No. descriptors y x Mapping functions R2
adj RRMSE

1 3 c Havg, LDP,IDFn * 0.6483 0.36
2 3 b−1 A,Havg, Ff * 0.4881 0.70
3 2 c Havg, LDP Fig. 7(a) 0.6115 0.39
4 2 b−1 Havg, LDP Fig. 7(b) 0.4306 0.75

*For the sake of brevity, the mapping functions are not reported. They are available in Cordero (2019).

Figure 6. Values obtained from local estimates of (a) 1/b and (b) c versus those obtained from the Canonical Correlation Analysis regional model based on three 
descriptors (Table 4).

Figure 7. (a) The best Alternating Conditional Expectation algorithm model to estimate the flood reduction function c parameter among all possible combinations of 
two descriptors (ID 3 of Table 5); (b) the best Alternating Conditional Expectation algorithm model to estimate the flood reduction function b−1 parameter among all 
possible combinations of two descriptors (ID 4 of Table 5).
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Figure 8. Estimated versus empirical values of parameters (a) 1/b and (b) c. Panel (a) uses the Alternating Conditional Expectation algorithm regional model for flood 
reduction function parameter 1/b (ID 4 in Table 5); panel (b) uses the Alternating Conditional Expectation algorithm regional model for flood reduction function 
parameter c (ID 3 in Table 5). See Table 2 for R2

adj and RRMSE.

Figure 9. Regional estimation expressed by Equations (13) and (14) for flood reduction functions parameters 1/b and c, respectively. (a) difference between 
regionalized and observed flood reduction functions; (b) difference between regionalized after cross validation and observed flood reduction functions; (c) and (d) box 
plots of the relative error εD; model � εD; observed

� �
=εD; observed for fitted flood reduction functions and regionalized flood reduction functions after cross-validation, respectively.
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Summarizing the results obtained, the multiple linear regres-
sion globally leads to errors slightly larger than those obtained 
by ACE (compare Figs 9 and 10). However, the linear regression 
model is much easier to apply and less sensitive to extrapolation. 
To safely apply ACE models in extrapolation, the transforma-
tion curves should be first approximated with a polynomial of 
degree higher than 4, hence leading to a degradation of the 
model performances. The recommended models are, in conclu-
sion, linear regressions with three descriptors.

4.1 Design hydrograph shape

As a final step of the analysis, we have evaluated the impact 
of the FRF estimation errors on the design hydrograph. We 
have compared the “regional” hydrograph (i.e. the one 
based on regionalized parameters) to a “reference” hydro-
graph, obtained from observations. As there is no estab-
lished procedure to define what a “reference hydrograph 
shape” is, we have overlapped a sequence of suitable 
observed high-flow hydrographs, normalized by their peak 
value and centred around their time to peak. On this 
sample of standardized hydrograph shapes we have com-
puted an average shape. The high-flow hydrographs were 
selected from the full-length discharge time series using 
a threshold so that the local peak is equal to or greater 
than 50% of the mean annual maximum of flow.

Using this approach, we have estimated the (constant) skew 
parameter r, by numerically minimizing the deviations 
between the FRF-based hydrograph and the empirical average 
shape.

After application of the regional analysis, two examples 
of comparisons are computed, as reported in Fig. 11. The 
regional hydrograph (dashed line) is plotted against the 
reference hydrograph (bold solid line); the thin lines repre-
sent the real recorded hydrographs (after standardization). 

In both cases the fitting is reasonably good, although in 
panel (a) one can notice that the regional hydrograph does 
not fit the quasi-convex shapes of the rising and falling 
limbs. However, if we consider the local NERC hydrograph 
(i.e. based on local parameters; dot-dashed line), we can 
notice that the FRF model itself is not fully adequate to 
represent the average hydrograph shapes. Sticking on the 
NERC model and fitting it to the observations, one can 
recognize that the regional hydrograph produces very good 
performance in reproducing the “local” NERC FRF func-
tion. Overall, almost all the investigated basins show 
a good fitting, and the maximum relative error of the 
regional estimates, computed in terms of differences 
between the area under the reference hydrograph and the 
one under the regional curve, does not exceed 30%. It is 
worth specifying that this procedure allows the empirical 
averaged normalized hydrograph to be fitted.

As regards the skew parameter r, we have computed it for 
all stations and have observed that it assumes rather constant 
values over the case study area. Slightly larger values of r only 
occurred for basins with higher average elevation. In 
a concrete application, we then suggest that the value of r can 
be taken from a neighbouring gauged basin, at least until 
a specific regional procedure is built for this parameter, 
which can be a matter for future investigation.

5 Conclusions

Flood hazard management and particularly the design of miti-
gation infrastructures requires accounting for the flood 
volume, in addition to the flood peak design value. However, 
statistical methods to estimate the flood volume or the shape of 
the flood hydrograph are still not consolidated, due to the 
conceptual difficulty in representing the hydrograph shape in 

Figure 10. Results of the Alternating Conditional Expectation algorithm regional model: ID = 3 and ID = 4 from Table 5. The graphs report the differences, over the 
duration D, between: (a) regionalized and observed flood reduction functions, and (b) regionalized after cross-validation and observed flood reduction functions.
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a simple way and to the scarcity of data. These difficulties are 
exacerbated in ungauged basins. This paper addresses this 
problem by adopting the FRF as a powerful and parsimonious 
representation of the link existing between hydrograph volume 
and duration. The FRF can be used to “summarize” the hydro-
graph characteristics in a few parameters, easy to estimate even 
in ungauged basins, that are then used to build synthetic 
design hydrographs with minimal assumptions about their 
shape. The FRF approach can also be used in gauged basins 
to “regularize” a sequence of observed hydrographs and to 
allow one to compute, in a systematic and reproducible way, 
a single representative mean hydrograph shape.

The work presented here shows that a simple parametriza-
tion of the FRF function, known as the NERC function, can be 
regionalized, using a set of basin attributes derived from ter-
rain analysis, land-use features and climatic indices. Different 
regionalization methods (multiple linear regression, canonical 
correlation analysis, alternating conditional expectation algo-
rithms) were tested here, with the result that a rather simple 
multiple linear regression model can provide satisfactory esti-
mation performances for the set of basins considered. The 
model uses as predictors easily available basin descriptors 
such as the length and slope of the longest drainage path, the 
mean basin elevation, the scaling exponent of the mean basin 
IDF curve and the kurtosis of the width function. The pro-
posed model provides a good estimate of the empirical average 
FRF with R2

adj values slightly lower than those obtained with 
more complex models. The use of the NERC regionalized 
parameters has also allowed us to assess the model capability 
to build synthetic hydrographs for each of the investigated 

basins, that have been compared to the average empirical 
hydrograph observed at the same gauging station.

In conclusion, with the reasonably good results obtained we 
have shown that the estimation of flood hydrographs in 
ungauged basins can be performed through regionalization 
techniques like those used for the frequency analysis of flood 
peaks, and with minimal additional assumptions. However, as 
the records of flood hydrographs are much shorter than the 
corresponding record of flow maxima, an effort to both collect 
new data and make available existing records is required to 
properly support all the practical applications that involve the 
management of flood volumes.
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Figure 11. Comparison between Natural Environment Research Council synthetic flood hydrographs built using the proposed regional model (dashed curve) and the 
analytical flood reduction function (dot-dashed curve), compared to the empirical average hydrograph (bold solid curve). Bormida a Cassine watershed (code: BORCA, 
area 1516.25 km2, mean elevation 493 m asl, r = 0.6) is shown in panel (a); Stura di Lanzo at Torino watershed (code: SLATO, area 879.97 km2, mean elevation 1368 m 
asl, r = 0.68) is shown in panel (b).

HYDROLOGICAL SCIENCES JOURNAL 337



Data availability statement

Data in support of this manuscript are available in a web GIS (www.resba.it).

References

Ayalew, D.W., et al., 2022. An evidence for enhancing the design hydro-
graph estimation for small and ungauged basins in Ethiopia. Journal of 
Hydrology: Regional Studies, 42, 101123.

Bacchi, B., Brath, A., and Kottegoda, N.T., 1992. Analysis of the relation-
ships between flood peaks and flood volumes based on crossing prop-
erties of river flow processes. Water Resources Research, 28 (10), 
2773–2782. doi:10.1029/92WR01135.

Bacova Mitková, V. and Halmová, D., 2014. Joint modeling of flood peak 
discharges, volume and duration: a case study of the Danube River in 
Bratislava. Journal of Hydrology and Hydromechanics, 62 (3), 186–196. 
doi:10.2478/johh-2014-0026.

Bartolini, E., et al., 2011. Analisi spaziale delle precipitazioni medie ed 
intense su Piemonte e Valle d’Aosta. Working Paper 02. Politecnico di 
Torino. Available from: http://www.idrologia.polito.it/~claps/Papers/ 
wp_precipitazionipiemonte.pdf [Accessed 9 September 2022].

Blöschl, G., et al., eds., 2013. Runoff prediction in Ungauged basins: 
synthesis across processes, places and scales. New York: Cambridge 
University Press.

Box, G.E.P. and Cox, D.R., 1964. An analysis of transformations. Journal 
of the Royal Statistical Society, Series B (Methodological), 26 (2), 
211–252. doi:10.1111/j.2517-6161.1964.tb00553.x.

Breiman, L. and Friedman, J.H., 1985a. Estimating optimal transforma-
tions for multiple regression and correlation. Journal of the American 
Statistical Association, 80 (391), 580–598. doi:10.1080/01621459.1985. 
10478157.

Breiman, L. and Friedman, J.H., 1985b. Estimating optimal transforma-
tions for multiple regression and correlation - rejoinder. Journal of the 
American Statistical Association, 80 (391), 614–619.

Brunner, M.I., et al., 2017. Flood type specific construction of synthetic 
design hydrographs. Water Resources Research, 53 (2), 1390–1406. 
doi:10.1002/2016WR019535.

Brunner, M.I., et al., 2018. Synthetic design hydrographs for ungauged 
catchments: a comparison of regionalization methods. Stochastic 
Environmental Research and Risk Assessment, 32 (7), 1993–2023. 
doi:10.1007/s00477-018-1523-3.

Castellarin, A., et al., 2012. Review of applied-statistical methods for 
flood-frequency analysis in Europe, NERC/Centre for Ecology & 
Hydrology (ESSEM COST Action ES0901).

Chow, V.T., 1951. A general formula for hydrologic frequency analysis. 
Eos, Transactions American Geophysical Union, 32 (2), 231–237. 
doi:10.1029/TR032i002p00231.

Claps, P., et al., 14–17 September 2010. Riesame ed integrazione di serie di 
portate al colmo mediante scale di deflusso di piena. In: XXXII 
Convegno Nazionale Di Idraulica e Costruzioni Idrauliche. Palermo, 
Italy: Walter Farina Editore.

Cordero, S., 2019. Metodologie statistiche e sperimentali per il supporto ai 
piani di emergenza in presenza di invasi artificiali. Thesis (PhD). 
Politecnico di Torino. Available from: https://iris.polito.it/handle/ 
11583/2744152#.X8CzZC9aZZg [Accessed 9 September 2022].

Cunnane, C., 1988. Methods and merits of regional flood 
frequency-analysis. Journal of Hydrology, 100 (1–3), 269–290. doi:10. 
1016/0022-1694(88)90188-6.

Dalrymple, T., 1960. Flood-frequency analyses. Manual of hydrology: part 
3. Flood-flow techniques. Usgpo 1543-A: 80. Available from: http:// 
pubs.usgs.gov/wsp/1543a/report.pdf [Accessed 9 September 2022].

Farr, T.G., Rosen, P.A., and Caro, E., eds., 2007. The shuttle radar 
topography mission. Reviews of Geophysics, 45 (2), RG2004.doi:10. 
1029/2005RG000183.

Fiorentino, M., Rossi, F., and Villani, P., 1987. Effect of the basin geo-
morphoclimatic characteristics on the mean annual flood reduction 
curve. In: Proceedings of the 18th annual Pittsburgh IASTED interna-
tional conference, Pittsburgh. Vol. 18, part 5, 1777–1784.

Franchini, M. and Galeati, G., 2000. Comparative analysis of some meth-
ods for deriving the expected flood reduction curve in the frequency 
domain. Hydrology and Earth System Sciences, 4 (1), 155–172. doi:10. 
5194/hess-4-155-2000.

Gallo, E., et al., 2013. Atlas of the piedmont watersheds (in Italian). 
Piedmont Region: Renerfor-Alcotra Project, 978-88-96046-06-7. 
Available from: http://www.idrologia.polito.it/web2/open-data 
/Renerfor/atlante_bacini_piemontesi_LR.pdf [Accessed 9 September 
2022].

Grimaldi, S., et al., 2011. Statistical hydrology. In: P. Wilderer, ed. Treatise 
on water science. Oxford: Academic Press, 479–517.

Grimaldi, S., et al., 2022. Continuous hydrologic modelling for small and 
ungauged basins: a comparison of eight rainfall models for sub-daily 
runoff simulations. Journal of Hydrology, 610, 127866. doi:10.1016/j. 
jhydrol.2022.127866

Gumbel, E.J., 1945. Simplified plotting of statistical observations. 
Eos, Transactions American Geophysical Union, 26 (1), 69–82. 
doi:10.1029/TR026i001p00069.

Hastie, T., Tibshirani, R., and Friedman, J., 2009. The elements of statis-
tical learning: data mining, inference and prediction. 2nd ed. New York: 
Springer.

Koutsoyiannis, D., Kozonis, D., and Manetas, A., 1998. A mathematical 
framework for studying rainfall intensity-duration-frequency 
relationships. Journal of Hydrology, 206 (1–2), 118–135. doi:10.1016/ 
S0022-1694(98)00097-3.

Maione, U., Mignosa, P., and Tomirotti, M., 2003. Regional estimation of 
synthetic design hydrographs. International Journal of River Basin 
Management, 1 (2), 151–163. doi:10.1080/15715124.2003.9635202.

Mediero, L., Jiménez-Álvarez, A., and Garrote, L., 2010. Design flood 
hydrographs from the relationship between flood peak and volume. 
Hydrology and Earth System Sciences, 14 (12), 2495–2505. doi:10.5194/ 
hess-14-2495-2010.

Montgomery, D., Peck, E., and Vining, G., 2001. Introduction to linear 
regression analysis. 3rd ed. Wiley Series Probability and Statistics. 
New York: Wiley.

Moré, J.J. and Sorensen, D.C., 1983. Computing a trust region step. 
Journal on Scientific and Statistical Computing, 4 (3), 553–572. 
doi:10.1137/0904038.

Mulvaney, T.J., 1851. On the use of self-registering rain and flood gauges 
in making observations of the relations of rainfall and flood discharges 
in a given catchment. Transactions of the Institution of Civil Engineers 
of Ireland, 4, 19–33.

Natural Environment Research Council, 1975. Estimation of flood 
volumes over different duration. Flood Studies Report, 1, 
352–373.

Ouarda, T.B.M.J., et al., 2000. Regional flood peak and volume estimation 
in northern Canadian basin. Journal of Cold Regions Engineering, 
14 (4), 176–191. doi:10.1061/(ASCE)0887-381X(2000)14:4(176).

Ouarda, T., et al., 2001. Regional flood frequency estimation with cano-
nical correlation analysis. Journal of Hydrology, 254 (1–4), 157–1\73. 
doi:10.1016/S0022-1694(01)00488-7.

Petroselli, A. and Grimaldi, S., 2018. Design hydrograph estimation in 
small and fully ungauged basins: a preliminary assessment of the 
EBA4SUB framework. Journal of Flood Risk Management, 11, S197– 
S210. doi:10.1111/jfr3.12193

Requena, A.I., et al., 2016. Extension of observed flood series by combin-
ing a distributed hydro-meteorological model and a copula-based 
model. Stochastic Environmental Research and Risk Assessment, 
30 (5), 1363–1378. doi:10.1007/s00477-015-1138-x.

Salvadori, G. and De Michele, C., 2007. On the use of copulas in 
hydrology: theory and practice. Journal of Hydrologic Engineering, 

338 D. GANORA ET AL.

http://www.resba.it
https://doi.org/10.1029/92WR01135
https://doi.org/10.2478/johh-2014-0026
http://www.idrologia.polito.it/~claps/Papers/wp_precipitazionipiemonte.pdf
http://www.idrologia.polito.it/~claps/Papers/wp_precipitazionipiemonte.pdf
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1080/01621459.1985.10478157
https://doi.org/10.1080/01621459.1985.10478157
https://doi.org/10.1002/2016WR019535
https://doi.org/10.1007/s00477-018-1523-3
https://doi.org/10.1029/TR032i002p00231
https://iris.polito.it/handle/11583/2744152#.X8CzZC9aZZg
https://iris.polito.it/handle/11583/2744152#.X8CzZC9aZZg
https://doi.org/10.1016/0022-1694(88)90188-6
https://doi.org/10.1016/0022-1694(88)90188-6
http://pubs.usgs.gov/wsp/1543a/report.pdf
http://pubs.usgs.gov/wsp/1543a/report.pdf
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1029/2005RG000183
https://doi.org/10.5194/hess-4-155-2000
https://doi.org/10.5194/hess-4-155-2000
http://www.idrologia.polito.it/web2/open-data/Renerfor/atlante_bacini_piemontesi_LR.pdf
http://www.idrologia.polito.it/web2/open-data/Renerfor/atlante_bacini_piemontesi_LR.pdf
https://doi.org/10.1016/j.jhydrol.2022.127866
https://doi.org/10.1016/j.jhydrol.2022.127866
https://doi.org/10.1029/TR026i001p00069
https://doi.org/10.1016/S0022-1694(98)00097-3
https://doi.org/10.1016/S0022-1694(98)00097-3
https://doi.org/10.1080/15715124.2003.9635202
https://doi.org/10.5194/hess-14-2495-2010
https://doi.org/10.5194/hess-14-2495-2010
https://doi.org/10.1137/0904038
https://doi.org/10.1061/(ASCE)0887-381X(2000)14:4(176)
https://doi.org/10.1016/S0022-1694(01)00488-7
https://doi.org/10.1111/jfr3.12193
https://doi.org/10.1007/s00477-015-1138-x


12 (4), 369–380. doi:10.1061/(ASCE)1084-0699(2007)12:4 
(369).

Silvagni, G., 1984. Valutazione dei massimi deflussi di piena. Pubb. n. 489, 
Pubb. Ist. Idraulica, Univ. di Napoli.

Snyder, W.M., 1962. Some possibilities for multivariate analysis in hydro-
logic studies. Journal of Geophysical Research, 67 (2), 721–729. doi:10. 
1029/JZ067i002p00721.

Spector, P., et al., 2016. ACE and AVAS for selecting multiple regres-
sion transformations [Software]. CRAN. Available from: https:// 
cran.r-project.org/package=acepack [Accessed 9 September 
2022].

Tomirotti, M. and Mignosa, P., 2017. A methodology to derive synthetic 
design hydrographs for river flood management. Journal of Hydrology, 
555, 736–743. doi:10.1016/j.jhydrol.2017.10.036

Villani, P., 2003. Rapporto sulla valutazione delle piene in Piemonte. 
Fisciano: Del Paguro, 89–118.

Wong, T.S., 1963. A multivariate statistical model for predicting mean 
annual flood in New England. Annals of the Association of American 
Geographers, 53 (3), 298–311. doi:10.1111/j.1467-8306.1963.tb00451.x.

Yue, S., et al., 1999. The Gumbel mixed model for flood frequency 
analysis. Journal of Hydrology, 226 (1–2), 88–100. doi:10.1016/S0022- 
1694(99)00168-7.

Yue, S., et al., 2002. Approach for describing statistical properties of flood 
hydrograph. Journal of Hydrologic Engineering, 7 (2), 147–153. doi:10. 
1061/(ASCE)1084-0699(2002)7:2(147).

Zhang, L. and Singh, V.P., 2006. Bivariate flood frequency analysis using 
the copula method. Journal of Hydrologic Engineering, 11 (2), 150–164. 
doi:10.1061/(ASCE)1084-0699(2006)11:2(150).

HYDROLOGICAL SCIENCES JOURNAL 339

https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(369)
https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(369)
https://doi.org/10.1029/JZ067i002p00721
https://doi.org/10.1029/JZ067i002p00721
https://cran.r-project.org/package=acepack
https://cran.r-project.org/package=acepack
https://doi.org/10.1016/j.jhydrol.2017.10.036
https://doi.org/10.1111/j.1467-8306.1963.tb00451.x
https://doi.org/10.1016/S0022-1694(99)00168-7
https://doi.org/10.1016/S0022-1694(99)00168-7
https://doi.org/10.1061/(ASCE)1084-0699(2002)7:2(147)
https://doi.org/10.1061/(ASCE)1084-0699(2002)7:2(147)
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(150)


Appendix

Table A1. List of the geomorphological, climatological and soil descriptors used in the regional analyses.

Attribute category Attribute Notation Unit Description

Geomorphological East coordinate of the basin’s 
centroid (WGS84 UTM32N)

Xb m Reference system: WGS84 (EPSG code: 4326).

North coordinate of the basin’s 
centroid (WGS84 UTM32N)

Yb m Reference system: WGS84 (EPSG code: 4326).

Basin area A km2 The area required for channel initiation has been set to 1 km2.
Basin mean elevation Havg m a.s.l. -
Length of longest drainage 

path
LDP km Path included between the outlet and the point farthest from it, placed on the 

edge of the basin watershed and identified by following the drainage 
directions.

Mean slope of longest 
drainage path

LDPs - Ratio of the difference between basin maximum and minimum elevation to the 
length of the longest drainage path.

Drainage density Dd km−1 Ratio of the total length of the river network to the basin area.
Shape factor Ff - Ratio of the basin area to the square of the length of the main channel.
Width function kurtosis Kufa - The width function is defined by counting the number of pixels having equal 

distance from the gauging station. This distance is measured following the 
drainage path. The 4th statistical moment of the width function has been 
computed.

Slope ratio Rs - Ratio of average slope of streams of two adjacent orders u and u + 1. Streams 
are numbered according to Horton’s criterion.

Climatological Mean a parameter of the IDF 
curve

IDFa mm h−1 Scale factor of the intensity-duration-frequency curve. The average value over 
the basin area has been calculated.

Mean n parameter of the IDF 
curve

IDFn - Scaling exponent of the intensity-duration-frequency curve. The average value 
over the basin area has been calculated.

Mean coefficient of L-skewness 
for 3-hours duration

Lca3h - Coefficient of L-skewness for 3-hours duration. The average value over the 
basin area has been calculated.

Mean coefficient of L-skewness 
for 12-hours duration

Lca12h - Coefficient of L-skewness for 12-hours duration. The average value over the 
basin area has been calculated.

Mean annual precipitation 
over the basin

MAP mm Total mean annual precipitation (Bartolini et al. 2011).

Spatial coefficient of variation 
of the mean annual 
precipitation

cv [MAP] mm -

Coefficient of variation of the 
rainfall regime over the 
basin

cv [rr] - Calculated from the 12 mean monthly rainfall depths, computed using monthly 
data from Bartolini et al. (2011).

Mean Fourier coefficient B2 of 
the rainfall regime

FourierB2 - Mean values of the B2 coefficient of the Fourier series representation of the 
rainfall regime. The reader can refer to Gallo et al. (2013) for details about the 
meaning of the B2 coefficient.

Soil Mean permeability index cf % Permeability index used in the Vapi project (Villani 2003). This coefficient has 
been obtained by classification of permeability values in flood conditions by 
balancing the rational equation. The average value over the basin area has 
been calculated.
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