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1. Summary

Annual and monthly streamflow time series are mostly modelled using linear
models of the ARMA class. Model identification is usually performed
through statistical procedures (e.g. Noakes et al., 1985) or, sometimes,
by describing the processes as linear conceptual models whose equations can
be rearranged in order to assume AR or ARMA representation (e.g. Salas and
Smith (1981), Moss and Bryson (1974).

The aim of the present work is to reproduce streamflow time series at
both annual and monthly scales by mean of ARMA models whose order is
identified through simple conceptual models of the processes. Explicit
correspondences between conceptual and stochastic parameters result from
the identification procedure.

2. Conceptual Model of Annual Streamflows

Efficient simulation of the annual streamflow process is provided by the
Thomas-Fiering conceptual model. In this model the precipitation x; in the
year t is assumed to reach the stream in the amount (1-cj-c¢;)x; (surface
runoff) where ciX; is the amount of infiltration and cjx; is the amount of
evaporation. The annual streamflow is the sum of the surface runoff and
of the groundwater contribution c3Vigs where Vi is the storage volume at the
end of the year t.

This conceptual model has been demonstrated (Salas and Smith, 1981) to
lead to an ARMA(1,1) stochastic model, which seems to be the most adequate
to describe the annual streamflow process. i

However, this model, in the form derived in the above mentioned paper,
does not provide explicit relationships between conceptual and stochastic
parameters.

In order to reconcile this lack of agreement, a modification of the
conceptual model with regard to the system input is proposed. The
watershed is supposed to be fed by the effective rainfall rather than by
the total rainfall. In such a way, the evapotranspiration process

disappears from the mass balance equations, reducing the conceptual para-
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meters to the number of two.
The streamflow and the groundwater storage mass-balance equations are

Dt = CK Vt'1 + 8(1—I'K)It + (1'3)It

\A

(1-cp) Viy + a g I,

In the above equations, D, is the streamflow, V, is the storage volume
I, is the effective rainfall (or net input) and (1-cg) is the recessio
coefficient of the storage volume.

Conceptual parameters are: the inffltration coefficient a, and th
storage coefficient K (K = -[ln(1—cK)]')

The feasibility of accounting for the within-year effective rainfal.
distribution is also added through a predetermined coefficient gy whic
is called the recession coefficient of the within-period infiltration ani
represents the rate of the infiltration volume reaching the stream at th
end of the year. The coefficient ry depends on the aquifer storag:
coefficient K and on the shape of the within-year effective rainfall curv
(see Moss and Bryson (1974) for the case of concentrated input).

If an analytical representation is given to the effective rainfall curve
i(t), the rg - K relationship can be obtained by solving the expression:

1 1 z
(1-rp) § i(z)dz = | etk sk . ] i(m)e™! dm dz
0 0 0

The proposed conceptual model is shown in Figure 1.

Figure 1. Conceptual model of annual flows.
3. Annual Flows: Relationships Between Conceptual and
Stochastic Parameters

By combining the above mass balance equations, the following ARMA(1,1)
model is obtained with parameters a and K:

Db - (1 -) Dy =(—arg) I, - [(1-¢)-ar] I,
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On the other hand, a general ARMA(1,1) stochastic model can be written
as:

Dy - & D = I¥, - 8 I

with parameters: & = autoregression coefficient, 8 = moving average
coefficient. The parameters a and K can be expressed in terms of & and @
as follows:

a=(2-8)/(1-8) K = -[1n (8)]"

and the relationship between the residual I*, and the net input (effective
rainfall) I, is:

I*t=1t (1 _arK)

4. Conceptual Model of Monthly Flows

In Italian basins with two distinct climatic seasons and no snow melt
runoff, the presence of at least two different groundwater contributions
can be observed during the recession phase. The first one is due to the
so-called deep aquifer and its presence is evident at the end of the dry
season. It has a pluriannual decay, which implies that the storage
coefficient is greater than one year.

The second one is due to the so-called seasonal aquifer, which can be
observed at the end of the rainfall season, where an exponential decay
occurs below flood peaks. This aquifer has a seasonal response, because
it fills and empties within the year.

Those considerations suggest a conceptual model with two linear
reservoirs in parallel plus a diversion, with no lag, representing the

direct runoff (Fig. 2).
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Figure 2. Scheme of the proposed conceptual model of monthly flows.

The model described therefore has four conceptual parameters: two storage
coefficients k and q (respectively for the deep and for the seasonal
aquifer) both expressed in months, and the two infiltration coefficients
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a (which is the same as for the conceptual model of annual streamflows) and
b
5. Monthly Flows: Relationships Between Conceptual and

Stochastic Parameters

Streamflow and groundwater storage mass balance equations can be written
as:

D = ¢ Vi + a(1—rk)It + ¢ Wy + b(1—rq)It + (1—a—b)It

=
|

= (=) iy +an I
W, = (1—cq) W + b Ty I
With regard to the seasonal aquifer, W, is the storage volume and (1-cq)
is the recession coefficient of the storage volume.
Rearranging, an ARMA(2,2) stochastic model is obtained:
Dy - & Dy - & Dy = I* - & I¥ - 8 I¥,

The coefficients of the above canonical representation have conceptual
expressions:

o (1-c;) +(1-%) 8, 6 =f(aJchcPrPrQ

@2 _(1_Ck) B (1—Cq)

And the residual - net input relationship is:
I* =1, (1 -ar - b%)

Given that the net input is a seasonal process, the stochastic model is
an ARMA(2,2) with pseudo-periodic residual.

6. Estimation of ARMA(2,2) Model Parameters

The model was applied to streamflow time series recorded in Italy.
Parameters estimation, performed with classical methods, did not give
satisfactory results in our judgment. There are two reasons for this.
First, the storage coefficient k of the deep aquifer assumes very high
values with respect to the time scale. In fact, the acceptance zone of the
stochastic AR parameters is determined by the constraints:

G + & <1 ; & - & < 15 -1 <8 <1

and when k increases, the coefficient (1—ck) approaches unity and the sum
%) + & moves toward the limit value 1.

Second, the seasonal aquifer runoff and the total runoff have similar
periodicities. For that reason, any deseasonalisation of the streamflow
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series tends to eliminate the presence of the seasonal aquifer
contribution.

The aforementioned drawbacks seem to prove the impossibility of
simultaneously estimating the parameters of the two aquifers.

A way to overcome the former problem is to estimate deep and seasonal
aquifer parameters independently, using separate models in two different
time scales.

The latter point suggests not deseasonalizing the time series under
consideration before the estimation stage.

7. Two-stage Model of Monthly Flows

A combined model is proposed which takes advantage of the conceptual and
stochastic features of the streamflow process at both annual and monthly
time scales.

At the annual time scale, pluriannual aquifer parameters and effective
annual rainfall series are estimated.

Then, the deep aquifer runoff is calculated at the monthly time scale.
The estimation is performed by disaggregating the series of annual
estimated effective input and putting the resulting monthly series into the
deep aquifer component. The disaggregation is actually a 'seasonalization'
of the mean annual net input and consists of constraining the net input
monthly series to have the same periodicity as the monthly flow series.

At that time, a decomposition of the flow is possible at the monthly
scale, in order to separate the flow consisting of direct and seasonal
aquifer components (which can be considered a "subprocess’ D't of the
process Dt) from the deep aquifer flow (see Fig. 3).
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Figure 3. Scheme of the proposed two-stage conceptual model of monthly
flows.

The conceptual model of the "direct plus seasonal aquifer'" flow leads to
an ARMA(1,1) stochastic model with pseudo-periodic residual that arises
from the equation of a system composed by one linear reservoir plus
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diversion with no lag, as in the case of annual streamflows, fed by th
pseudo-periodic process (1—a)Ip
The model estimation structure consists of the following steps:

TWO-STAGE MODEL OF MONTHLY FLOWS: ESTIMATION PROCEDURE

ESTIMATION OF THE DEEP AQUIFER CONCEPTUAL PARAMETERS
VIA STOCHASTIC MODEL OF ANNUAL FLOWS

DISAGGREGATION OF THE ANNUAL EFFECTIVE INPUT UNDER
THE PERIODICITY HYPOTHESIS

EVALUATION OF THE DEEP AQUIFER MONTHLY RUNOFF
ORIGINATED BY THE ABOVE INPUT

CALCULATION OF THE ’SUBPROCESS’ SERIES D’y

ESTIMATION OF THE SEASONAL AQUIFER CONCEPTUAL PARAMETERS
VIA STOCHASTIC MODEL OF THE ’SUBPROCESS’ FLOWS D’y

EVALUATION OF THE EFFECTIVE INPUT MONTHLY SERIES )

EVALUATION OF THE DEEP AND SEASONAL AQUIFER RUNOFFS
FROM THE INPUT I

8. Applications and Conclusions

The combined model described has been applied with satisfactory results tc
some river time series in southern Italy. As shown in Figure 4, deep and
seasonal aquifer flow reconstruction seems reasonable, as well as the
values of conceptual parameters. Nevertheless, further studies are needed
in order to improve estimation efficiency, which is stressed by the
periodicity of the residuals.
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Figure 4. Reconstruction of the deep and seasonal aquifer runoffs. The
conceptual parameters, calculated from stochastic parameter estimates, are:
a=0.71, K=4.13 years, b=0.252, q=2.93 months.
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