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ABSTRACT 
 

Annual and monthly average temperatures are analyzed with statistical methods to 

characterize the temperature regime in Italy. Data from 738 weather stations, with 

homogenous spatial cover throughout Italy, are used to estimate the annual and monthly air 

temperature normals. Geographic and morphologic parameters, computed around the points 

of measure, are considered as explicative variables within a geo-regression model. 

Morphometric variables are defined using the USGS GTOPO30 digital elevation model, 

which has a resolution of 1 km. On the basis of a stepwise regression analysis, the significant 

variables are found to be elevation, latitude, distance from the sea, and a measure of terrain 

concavity. The relationship between the average annual air temperature and the mentioned 

variables explains 92% of the variance and produces a standard error of 0.89°C. The 

temperature regime (normalized mean temperature for each of the 12 months) is reproduced 

with a two-harmonic Fourier series, with parameters estimated using stepwise regression. 

Analyses of the reconstruction errors demonstrate that the results are quite satisfactory for 

many technical purposes, particularly for large-scale climatic characterization. 

 

KEYWORDS: air temperature; spatial distribution; regression analysis; kriging; Fourier 

series; Italy. 

 

 

INTRODUCTION 

Large scale spatial variability of climatic variables, such as temperature or rainfall, has 

recently received considerable attention (e.g., Zheng and Basher, 1996; Nalder and Wein, 

1998; Prudhomme and Reed, 1999). Considering temperature, the basic variable to 
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investigate is the temperature normal, defined as a "period average, computed for a uniform 

and relatively long period comprising at least three consecutive ten-year periods" (WMO, 

1983). As regards the spatial distribution of air temperature, of particular interest are the 

studies concerning its relations with physiographic parameters (see e.g., Zheng and Basher, 

1996; Agnew and Palutikof, 2000; Ninyerola et al., 2000; Gyalistras, 2003). These studies 

start from the premise that elevation and latitude already explain much of the spatial 

variability of temperature but proceed to evaluate other factors that can have an additional 

significant influence on it, including the position of the site with respect to seas and 

continents and, on small scales, terrain attributes (aspect and morphology of the relief), 

atmospheric factors (humidity, precipitation, and wind), and maritime factors (configuration 

and aspect of coasts and effects of sea currents).  

Within this framework a few authors attempted to reproduce the spatial variability of 

climatological variables with the combined use of regression analysis and Geographic 

Information Systems (GIS), intended as a technique used to quickly compute geographical 

and morphological parameters (e.g., Prudhomme and Reed, 1999; Ninyerola et al., 2000). 

Compared to studies which address the maximum efficiency of statistical spatial interpolation 

techniques (e.g., Nalder and Wein, 1998; Lapen and Hayhoe, 2003), the approaches that 

investigate the role of a given predictor on the spatial variability of a climatic variable can 

help to improve the characterization of other climatic variables. For example, the 

regionalization of flood peak indices can certainly benefit from the results presented by 

Prudhomme and Reed (1999) on the spatial analysis of extreme precipitation. Following this 

approach, the study presented here is devoted to the selection of meaningful spatial variables 

to predict average annual and monthly air temperatures in Italy. The areal extent of the region 

under study (about 300,000 km2) makes this objective of interest for all those applications 

that require temperature estimates over medium-large areas and include, among others, 
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assessment of monthly average evapo-transpiration, relations between rainfall, temperature 

and vegetation density, or heating and cooling energy requirements.  

To date, quantitative analyses of the mean temperature variability in Italy are available 

only for limited areas. Gentilli (1959) and Paiero (1968) considered relatively small regions 

and used simple regression relationships between temperature and altitude. More recently, 

Claps and Sileo (2001) investigated the effects of elevation and latitude on the annual and 

monthly temperature normals in peninsular Southern Italy. The purpose of the present study 

is to assess the role of additional physiographic factors on the reconstruction of average 

temperature over the entire country using linear stepwise regression and kriging. Specific 

attention is devoted to the representation of the monthly temperature curve, or 'regime', 

introduced to combine the 12 relations usually considered between monthly means and 

geographic parameters (see e.g., Zheng and Basher, 1996) into a single set of regression 

equations. 

 

DEFINITION OF GEOGRAPHIC AND MORPHOMETRIC PARAMETERS 

Italy extends for about 10°30’ of latitude, which corresponds to approximately 1,200 km. 

The coasts of Sicily are only a few hundred kilometers from Africa, while the Northern 

border is part of continental Europe. This implies a great diversity of environmental and 

geographic conditions that have a strong influence on the spatial distribution of temperature. 

Analyzing national temperature maps (e.g., Ministero dei Lavori Pubblici, 1969), the most 

evident characteristic observed is the common tendency for the isotherms to follow the 

contour lines of the mountains (the Alps and the Apennines). 

The sea influence is also important, yet complex. Its buffering effect is not uniform along 

the coast of Italy. Along the Adriatic sea coast (refer to Figure 1) its effect is less evident 

compared to the coastal areas of the Tyrrhenian and the Ionian seas, which are deeper and 
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more open to the influence of the lower Mediterranean atmospheric circulation. Moreover, 

for the Adriatic sea, the mitigating effect decreases in the northerly direction. 

It is important to consider the influence exerted by the Alpine chain, which protects the 

Padana plain from cold northern winds. The Alps modify the thermal conditions of the cold 

air masses that come from the north, determining an increase in their temperature and 

producing föhn winds (e.g., American Meteorological Society, 1959). This effect can 

contribute to raise the mean air temperature values in some large alpine valleys, particularly 

in the spring months. In the same way, the Apennines chain generates climatic differences 

between the Tyrrhenian and Adriatic coastlines because of the prevailing west-to-east wind 

direction.  

Some other factors exert a smaller influence on temperature or cause significant effects 

only in limited areas. A significant example is the presence of large lakes, such as the pre-

Alpine lakes, which mitigate the temperature variations in the neighboring areas. Heat 

islands, relative to large cities, are the extreme case of local effects, because they produce an 

increase in temperatures in the areas surrounding the cities. This can increase the model 

prediction errors near the larger built-up areas. All of these local effects are not accounted for 

in this analysis. 

 

Definition of physiographic parameters  

Geographic and morphologic parameters that can influence the spatial distribution of 

mean temperatures are defined here following the criteria suggested by Prudhomme and Reed 

(1999) for the spatial mapping of extreme rainfall. The topographic and geographic factors 

selected with respect to the variability of the mean temperature are (see Figure 2):  

• Minimum absolute distance from the sea, dmin; 

• Angle α formed by the minimum distance vector and the South (Figure 2a); 
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• Distance di from the sea in the eight cardinal directions, i (Figure 2a); 

• Azimuthal angle βi of the horizon in the eight cardinal directions (Figure 2b).  

The latter variable plays the role of an obstruction factor, according to the original definition 

of Faulkner and Prudhomme (1998), and is defined as the angle subtended by the highest 

topographical barrier in the ith direction, such that XHtg i ∆∆= /β , with ∆H as the difference 

of elevation between the barrier and the station, and ∆X  as the distance between the two 

points. Note that dmin is not necessarily one of the eight distances di taken in the cardinal 

directions, because it represents the minimum distance between the station point and the 

coastline.  

The above variables were computed for each of the considered stations (see Figure 1) 

using a geographical representation of the Italian coastal line and a Digital Terrain Model 

(DTM). The DTM used is a 1 km resolution model named GTOPO30 that is distributed by 

the U.S. Geological Survey (USGS, 2006). At present, DTMs with higher resolution are 

available for the Italian territory. Our decision to use the 1 km resolution DTM was based on 

a trade-off between advantages (better resolution for computing concavities and obstructions) 

and disadvantages (need for careful validation of the stations’ position and aspect, substantial 

increase of the computational load) with respect to the objective of the analysis. 

The previously described variables were subsequently transformed and averaged in 

different ways, producing three parameters: a distance measure Ds, an aspect variable As, and 

a concavity index C. Definitions for these parameters were the result of the evaluation of the 

relations between several combinations of the basic variables and the spatial patterns 

displayed by temperature data.  

The distance measure Ds is the geometric mean of the distance from the sea in the eight 

cardinal directions: 

Ds = 8
821 *....** ddd . (1) 
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It discriminates among places that have the same minimum distance, but different average 

distances, from the sea. In directions for which the distance should be computed across the 

Alps, a fixed distance of 1,000 km was defined, which excluded consideration of the 

Northern European coastline. In practical terms, this parameter represents an index of 

continentality of the measurement site. 

The second parameter is a combined measure of aspect (orientation) and sea proximity: 

As = 
mind

cos
+
⋅

1
10 α

  (2)  

The inverse of the minimum distance from the sea reduces the influence of the aspect of the 

sea proximity on inland stations. The reason for this definition is that the aspect 

characteristics were found to be significant only for near-coast stations, producing visible 

cold ‘anomalies’ in stations of the Adriatic Sea compared to stations located on the 

Tyrrhenian and the Ionian coastlines.  

The third index is a concavity index, obtained by weighting the azimuthal angle βi in the 

eight directions: 

C= 8
8

1

210∏
=i

tg iβ  ,   (3) 

Only a few authors have considered the effect of orographic barriers on average temperatures. 

Gentilli (1959) considered the shape of the terrain and noticed that, at the same elevation, 

prediction in areas with concave topography resulted in negative temperature anomalies (i.e., 

cooler terrain) because of cold air stagnation in the concave areas. He defined a qualitative 

topographic index in an attempt to improve temperature-elevation regressions. Faulkner and 

Prudhomme (1998), and less explicitly Ninyerola et al. (2000), referred to ‘obstruction’ 

factors (with respect to wind directions) in their analyses, but no explicit consideration of a 

concavity effect on air temperature was found in the literature.  
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Temperature data and digital terrain model 

Temperature data recorded in 738 stations distributed throughout Italy (Figure 1) were 

used in this study. Monthly and annual minimum and maximum temperature normals, 

computed as the average of the daily measurements, were published in a coordinated 

collection (Petrarca et al., 1999), which is the most comprehensive systematic temperature 

database available in Italy. In this database, about 85% of the stations have at least 30 years 

of observation, and the remaining 94 stations have at least 20 years of record. Monthly and 

annual normals were therefore obtained by averaging minimum and maximum values. 

In datasets with uneven record lengths, some caution should be applied in the data 

preparation for regressions, as discussed for instance by Robeson and Janis (1998). We did 

not make corrections to the data based on the shorter series, considering that the small biases 

mentioned by Robeson and Janis (1998) would not significantly affect the statistical 

connections between temperature and the predictors. Moreover, even considering the 

temperature trends detected in Italy (e.g., Nanni et al., 1998, Brunetti et al., 2000), a 10-year 

discrepancy would not produce significant heterogeneity on the mean. However, quantitative 

evaluation of the possible effects of this decision will be presented in the discussion of 

results. 

The spatial distribution of the stations is quite even, but the stations are not evenly 

distributed with elevation. Only 7% of the stations are located above 1200 m a.s.l, while 12% 

of the Italian territory lies above that elevation (see Table 1). Stations at elevations less than 

100 m a.s.l. are 28% of the total, but the areas below that elevation cover 23% of the country 

surface. 
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ANALYSIS OF THE MEAN ANNUAL TEMPERATURE 

The sample of annual normals (Ta) for the set of 738 stations was related to the 

geographic predictors described in the previous section, by means of a stepwise regression 

procedure. This procedure produces multiple regression models of increased complexity, 

according to the number of independent variables considered (Table 2). In addition to the 

coefficient of determination (R2) and the test of coefficients significance (Tstat), Table 2 

reports the percent of stations that fall in each error class (<1°C up to >3°C), so as to provide 

a further indicator of the improvement achieved with the introduction of each new variable. 

Apart from elevation and latitude, the value of geographic information in the explanation 

of Ta is questionable. The role of the sea, represented by variables As and Ds, is significant, 

as indicated by Tstat, but their inclusion in the regression model does not produce significant 

increases in R2 (see Table 2). Considering also the results of the cross-validation procedure 

(described below), the best model for annual normals remains based only on elevation (E) 

and latitude (L), as follows:  

aT̂  = 43.59 – 0.0054 E – 0.6601 L,  (4) 

where elevation is expressed in m a.s.l., and latitude is in hexadecimal degrees. This model 

explains 92.4% of the variance and gives a standard error of estimate of 0.894°C. The 

estimated average thermal gradient is 1°C for 184 m of altitude and 0.66°C for each degree of 

latitude, which is in good agreement with values in the literature (e.g., Pinna, 1977). 

 

Cross-validation of the annual temperature estimates 

According to an approach commonly adopted in the evaluation of the spatial variability of 

geophysical variables, a cross-validation assessment was made to verify the performance of 

the regression model of Equation 4. Following Wilks (1995), the idea is to remove iteratively 

one station from the complete sample, and to re-evaluate the model without that station to 
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have the possibility to compute the estimation error. Using these at-station errors, a global 

root mean square error (RMSE) is then computed, which allows one to rate the performance 

of the regression model. This technique resembles the Jackknifing procedure, except for the 

use of the results, being Jackknifing typically used to evaluate the variance of parameter 

estimates. 

In our application, the RMSE was evaluated on the results of the five different regression 

models presented in Table 2, to evaluate the increase in efficiency produced by the 

introduction of each new explicative variable. It is evident from Figure 3 that the use of more 

than two variables (E and L) produces negligible decrease in RMSE, confirming that even the 

high values attained by Tstat for Ds and As cannot justify their inclusion in the regression 

model. 

 

Spatial analysis of the annual temperature residuals  

To verify the quality of the results of estimates obtainable with Equation 4 we tested the 

residuals of the regression model for normality, by plotting their Cumulative Frequency (CF) 

on normal probability paper, and also against the presence of unaccounted autocorrelation. 

Residuals' CF was fairly linear in the probability paper, as could be expected in consideration 

of the low sample skewness coefficient (which was -0.1). Therefore the assumption of 

normality was upheld. The autocorrelation function values were found within the 5% 

confidence bands, demonstrating also incorrelation in the residuals. However, observing the 

residuals on a map, some coherent spatial patterns of anomalies are still apparent. It was then 

decided to carry out additional analyses to account for the presence of spatial correlation, 

using a kriging approach (e.g., Cressie, 1993). The objective was to improve the prediction of 

annual normals from Equation 4 by adding a correction factor ereg, obtained by kriging, for 
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every point of the 1 km spatial grid covering Italy. Therefore, the prediction model of Ta 

assumes the form: 

regaa eTT += ˆ  (5) 

where aT̂  is estimated through Equation 4 and ereg is the residual component estimated by 

kriging.  

The kriging procedure measures the spatial correlation in the errors of Equation 4 through 

the computation of the sample semi-variogram, which is the function γ(h) that measures one 

half of the average squared difference of data values separated by the lag distance h, and the 

subsequent fitting of the coefficients of a theoretical semi-variogram function (see Figure 4). 

The theoretical model here selected is an exponential function with a vertical offset (nugget). 

The model, represented as a solid line in Figure 4, shows a nugget of 0.35 and a range of 80 

km. The latter value represents the distance at which the correlation effects become 

negligible, while the former indicates the part of the estimation error that will remain 

unexplained even after kriging. 

 To better qualify this result we can consider that the average distance between a given 

station and the nearest one is 13 km and that a circle with diameter 80 km contains, on 

average, 36 stations. In essence, this demonstrates the existence of a spatial correlation that 

should be accounted for in the prediction of temperature values. On the other hand, 

considering that the sill (total spatial variance) is 0.76, the significant amount assumed by the 

nugget means that about half of the total variance remains unexplained. The mean annual 

temperature estimate obtained by means of Equation 5 explains 97.9% of the variance and 

gives a standard error of estimate of 0.472°C. Since the estimated mean annual temperature 

has a role in the reconstruction of the monthly values, as shown in the application section, it 

was judged reasonable to sum up the kriging correction factor to the regression model, in 

order to minimize the prediction error. 
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Figure 5 reproduces the map of residuals computed with the kriging model in the 1-km 

grid of Italy. In the figure, structures of spatial organization of the error anomalies are quite 

evident, confirming that there is matter for further investigation, which possibly requires 

additional, or more detailed, geographical predictors. 

Summarizing, the determination of the average annual temperature at a given point (i,j) in 

the Italian 1-km grid can be achieved as follows: 

1. evaluation of parameters E and L for the given pixel having position (i,j) in the digital 

terrain model matrix;  

2. evaluation of aT̂  from Equation 4; 

3. selection of the kriged residual term ereg(i,j) from the map in Figure 5;  

4. evaluation of the final predicted temperature by means of Equation 5. 

 

MONTHLY TEMPERATURES ANALYSIS 

The temperature regime is meant to be the curve of the 12 monthly mean temperatures 

within the year. Rather than estimating the monthly temperature normals by separate 

regression equations (e.g., Zheng and Basher, 1996) the whole parameterized curve of the 

temperature regime is estimated here at each grid point in the Italian territory. In this way we 

try to build a single model that can demonstrate possible causal relations between some 

geographical predictors and the within-year variability of temperatures. Such relations are not 

evident when regression models are built for individual months (see e.g. Ninyerola et al., 

2000, with regard to the role of continentality in the 12 mean monthly air temperatures). 

Examining the temperature regime in different areas of Italy one recognizes that the 

coldest month is January for all stations. In some peninsular and coastal locations, because of 

the sea influence, the mean temperature in January is only slightly different from that in 

February, while in continental areas the mean in the two months differ considerably, reaching 
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differences of 4°C. This difference tends to decrease again for mountain sites above 1,000 m 

a.s.l. 

With regard to the warmest months, the most ‘inland’ areas of Italy (i.e., the Padana 

plain) have mean temperatures in July that are markedly higher than those of August. This 

difference decreases in central Italy and almost disappears in the south and in the islands. The 

annual range of average temperatures varies over the Italian territory between 13°C and 

23°C, increasing with the latitude and the distance from the sea, and decreasing with the 

elevation.  

 

Fitting the temperature regime by Fourier series 

The sequence of 12 monthly temperature normals T(j) can be well approximated by 

means of sinusoidal curves obtained by Fourier series: 
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where j = month of the year (1 to 12); A0 = mean of T(j); τ (= 12) fundamental period of the 

cycle; N = number of the harmonics; Ai = amplitude, φi = phase, and τi period of the ith 

harmonic. For the estimation of the Fourier series parameters the cosine argument in 

Equation 6 can be decomposed to a polynomial form: 
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where )cos( iiii nAb φ= , )sin( iiii nAc φ−=  and A0 are parameters that can be estimated by 

least squares, and where iin ττ= . The amplitude and phase of the ith harmonic can then be 

obtained as: 
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Having selected a model to estimate the spatial variability of the mean annual temperatures, 

only the monthly deviations from the annual mean were analyzed, considering two 

alternatives:  

(a) a non-dimensional temperature regime t(j), where 

t(j)= T(j) / Ta ,  (9)  

with Ta as the mean annual temperature. From Equation 9 one obtains that in Equation 7 A0=1 

(see Figure 6a);  

(b) a zero-mean temperature regime, where t(j) is obtained as  

t(j)= T(j) −Ta.  (10)  

The above relation produces A0=0 (see Figure 6b).  

Five stations that have substantially different geographic features (described in Table 3) 

were selected to compare these two alternatives. The shape of the zero-mean temperature 

regime curve (alternative b) is less variable, from one station to another, than that of the other 

curve. Giordano (2002) showed that the model for representation of the alternative b was 

more accurate than the one for the first alternative. The assessment was made on the quality 

of reconstruction of the regime curves in all of the considered stations. Results from the 

alternative b were better in terms of R2 of the estimation of the Fourier coefficients and of the 

RMSE computed with the estimated curves. So, the zero-mean temperature regime 

(alternative b) was used in the subsequent analyses.  

The first attempt to reconstruct the zero-mean temperature regime was made with a one-

harmonic Fourier series, with τ1 =12 months. Parameters A1 and φ1, estimated for each 

temperature station, were correlated with the stations’ geographical and morphological 
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parameters using the stepwise procedure. Results are reported in Tables 4 and 5. The most 

efficient models found for amplitude and phase are: 

AsDsLE
CAsDsLEA

⋅−⋅+⋅+⋅−=
⋅−⋅−⋅+⋅+⋅−=

00954.0000114.00197.0000035.061.1
4413.01704.000184.01209.000044.015.4

1

1

φ
 (11) 

Compared to the model for annual normals, here the introduction of the new geographic 

variables can be recognized to be effective, producing a significant increase in R2, even 

though the final value is not particularly high. All of the values of the Tstat assume values 

greater than 2, which indicates that the parameter coefficients are all significant and the 

variables are to be kept in the model. 

Even though the model results are fair, significant errors occur in correspondence to the 

highest and lowest values of the curve, in particular when these values persist for two or more 

consecutive months. To improve the representation, a second Fourier wave with τ2 =6 months 

was introduced: 
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In this case, least squares regressions of the four parameters on all of the stations produce 

estimates of A1 and φ1 identical to those obtained considering only one harmonic. The 

analysis on the second harmonic parameters shows that A2 can be considered constant in 

space, with an average value of 0.75 and a spatial standard deviation of 0.204. On the other 

hand, φ2 is strongly related to geographic parameters (Table 6). The regression model for the 

second harmonic is:  

DsLE
A

⋅−⋅−⋅+=
=

00044.00458.000016.000.4
75.0

2

2

φ
 (13) 

Influence of the parameters included in Equation 13 can be recognized in terms of the sign of 

the variation they induce on the phase. In fact, an increase in L and Ds values (which means 

going northwise and away from the sea) produces an increase in the summer peak, while an 
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increase in E (which means moving to high elevations) produces the opposite effect. This is 

in agreement with the actual observations discussed at the beginning of the section. 

The final model for the temperature regime in Italy is then represented by Equations 10 

and 12, with the four parameters obtained respectively by Equations 11 and 13. 

 

Quality of the monthly temperatures estimates  

To test the quality of the estimates obtained by the multiple regressions, monthly mean 

temperatures are reconstructed using the following combined model: 

⎟
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with aT  obtained by means of Equation 5 and A1, A2, φ1, φ2 obtained through Equation 11 and 

Equation 13. The performance indices used for testing the estimates in each of the 738 

stations are: 

• Root mean square error (RMSE) of reconstruction of the 12 monthly mean values:  

[ ]2
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)(ˆ)(

12
1 ∑

=

−=
j

jTjTRMSE  (15) 

• Maximum Absolute Error (MAE) in the 12 months: 

))](ˆ)((max[ jTjTabsMAE −=  (16) 

The RMSE values obtained on the whole sample of stations has a mean value 0.53°C, a 

maximum value 2.2°C, and a minimum value 0.12°C. The MAE obtained on the whole 

sample of stations has a mean value 0.99°C, a maximum value 3.8°C, and a minimum value 

0.22°C. The use of just one harmonic for the temperature regime produces a mean RMSE 

equal to 0.74°C and a mean MAE equal to 1.39°C. This quantifies the improvement achieved 

with the introduction of the second harmonic. The above results compare well with those 

achieved by Zheng and Basher (1996) and Gyalistras (2003). 
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DISCUSSION AND CONCLUSIONS 

The first result of the application presented above relates to the mean annual temperature 

regression model, which explains 92% of the variance and presents a RMSE of reconstruction 

(through cross-validation) of 0.89°C. These estimates are improved by application of the 

kriging technique, which reduces uncertainty by incorporating the spatial correlation effect 

recognized by the analysis of the variogram. The final standard error characterizing the mean 

annual temperature is of 0.472°C.  

To comment on this result, we must first consider that in this application the temperatures 

time series were assumed to be stationary. This means that the whole available sample of 

stations has been analyzed, regardless of the fact that the record length is not the same for all 

stations. This choice could imply a structural inhomogeneity in the available sample, whose 

effects depend on the existence of a temperature trend in time. For Italy, Nanni et al. (1998) 

and Brunetti et al. (2000) estimated a positive trend of 0.7°C in a century (Northern Italy), 

which means an average of 0.07°C variation in a decade. Considering the overall RMSE 

resulting from the cross-validation (0.90°C) and the fact that this analysis relates to average 

temperature variability in space (and its dependence on geographic parameters) the 

assumption of stationarity can be considered acceptable. 

Regarding monthly mean temperatures, the spatial variation of the within-year pattern 

(temperature regime) is found to depend linearly on ‘continentality’, concavity, and ‘coastal 

aspect’, in addition to the usual elevation and latitude predictors. The parameters of the two-

harmonics Fourier series reproducing the regime have been related to the above predictors 

through a linear multivariate model. This made it unnecessary to have 12 different models, 

one for the mean temperature of each month. 
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What is interesting in this approach is that the results of the regression analysis have 

shown that some geographic parameters have an influence on the amplitude and phase of the 

temperature regime, and that their role is quite clearly intelligible. Similar analyses can reveal 

the importance of other parameters in different geographic contexts. Even more interesting 

could be the extension of this kind of analysis to the monthly mean of daily minimum or 

maximum temperature, that have a significant impact in the estimation of average net 

radiation in large areas. 

Extension of the present study to other regions would involve a preliminary analysis on 

the candidate geographic predictors. They should be necessarily related to the size of the 

region considered and to its position with respect to seas and continents. In this sense, it is 

interesting to compare the parameters used here with those used in New Zealand (Zheng and 

Basher, 1996), whose geographic configuration is similar to Italy. 

Further developments of this study involve the possibility to improve the quality of 

estimates. Improvements can derive from a more accurate morphological representation of 

the landscape (through a higher resolution DTM), and from additional investigations on 

factors that could explain the spatial correlation of residuals. In particular, local conditions, 

such as the effects of the great Alpine lakes, and the relationship between temperature 

anomalies and vegetation and precipitation (e.g., Zheng and Basher, 1996) can be explicitly 

investigated. 
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TABLE CAPTIONS 

 

Table 1. Distribution of the temperature stations of the database with elevation and related 

percent of the area of the Italian territory. 

Table 2. Synthesis of the results of the stepwise regression for the annual temperature normal. 

The columns named ‘Error Distribution' report the percent of station presenting 

reconstruction errors (e) of different amounts, indicated in each column. Variables defined in 

text. 

Table 3. Characteristics of the temperature stations considered in Figure 6. 

Table 4. Synthesis of the results of the stepwise procedure for the amplitude A1. Variables 

defined in text. 

Table 5. Synthesis of the results of stepwise procedure for the phase φ1. 

Table 6. Synthesis of the results of the stepwise procedure for the second harmonic phase φ2. 



 22

FIGURE CAPTIONS 

 

Figure 1: Digital elevation model and temperature stations. 

Figure 2:  Morphological variables calculated for each station using the geographic 

representation of the coast-line and a Digital Terrain Model: (a) Angle α formed by the 

minimum distance vector and the South; (b) azimuthal angle β of horizon in a generic 

direction. 

Figure 3: Root Mean Square Errors and R2 evaluated through the cross-validation procedure 

applied to the annual normals. k is the number of variables used in the regression (see Table 

2). 

Figure 4: Sample semi-variogram of the residuals of regression (4) and estimated exponential 

with nugget model (solid line). 

Figure 5: Spatial distribution of the kriged residuals. 

Figure 6: Diagrams for the 5 stations reported in table 3. (a) Non-dimensional temperature 

regime; (b) Zero-mean temperature regime. 
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TABLES 

 

Table 1. Distribution of the temperature stations of the database with elevation and related 

percentages of the area of the Italian territory. 

 

Elevation (m a.s.l.) # Stations % Stations % Area
E<100 209 28% 23%

100<E<800 400 54% 54%
800<E<1200 78 11% 11%

E>1200 51 7% 12%  

Old: 

Elevation (m a.s.l.) # stations % Stations % Area 

E<100 209 28% 23% 

100<E<800 400 54% 54% 

800<E<1200 78 11% 11% 

E>1200 51 7% 12% 
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Table 2. Synthesis of the results of the stepwise regression for the annual temperature normal. The columns named ‘Error Distribution' report the 

percent of station presenting reconstruction errors (e) of different amounts, indicated in each column. Variables defined in text. 

 

Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat e<1 1<e<2 2<e<3 e>3
1 0.646 15.77 155 -0.006429 -36.7 - - - - - - - - 30.5 35.8 23.3 10.4
2 0.924 43.59 81 -0.005428 -64.8 -0.6601 -51.9 - - - - - - 76.7 19.9 2.7 0.7
3 0.926 40.17 45.3 -0.005261 -58.1 -0.5745 -26.4 -0.001166 -4.82 - - - - 76.4 20.9 2 0.7
4 0.927 40.33 45.7 -0.005216 -57.3 -0.5808 -26.7 -0.001004 -4.08 0.07015 3.12 - - 76.6 20.6 2.2 0.7
5 0.927 40.22 45.3 -0.005271 -53.5 -0.5804 -26.7 -0.00109 -4.23 0.06722 2.97 0.1046 1.12 76.8 20.5 2 0.7

Error Distribution (% stations)L Ds As C
Step R2 Constant E

 
 
 
 

Constant E L Ds As C Error Distribution (% stations) 
STEP R2 

Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat e<1 1<e<2 2<e<3 e>3 

1 0.646 15.77 154.57 -0.006429 -36.65         30.5 35.8 23.3 10.4 

2 0.924 43.59 80.98 -0.005428 -64.76 -0.6601 -51.87       76.7 19.9 2.7 0.7 

3 0.926 40.17 45.33 -0.005261 -58.14 -0.5745 -26.41 -0.001166 -4.82     76.4 20.9 2.0 0.7 

4 0.927 40.33 45.70 -0.005216 -57.26 -0.5808 -26.74 -0.001004 -4.08 0.07015 3.12   76.6 20.6 2.2 0.7 

5 0.927 40.22 45.29 -0.005271 -53.51 -0.5804 -26.73 -0.001090 -4.23 0.06722 2.97 0.1046 1.12 76.8 20.5 2.0 0.7 
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Table 3. Characteristics of the temperature stations considered in Figure 6. Latitude is in 

decimal degrees. 

Province Station E  (m a.s.l.) L (°) d min  (Km) T a  (°C)
AO Aosta 583 45.73 212 10.9
SO Bormio 1225 46.46 304 7.7
AN Ancona 103 43.61 1 14.7
SA Battipaglia 72 40.6 10 15.9
CT Catania 75 37.5 3 18.3  

 
 

Province Station E (m a.s.l.) L(°) dmin (Km) Ta (°C) 

AO Aosta 583 45.73 212 10.9 

SO Bormio 1225 46.46 304 7.7 

AN Ancona 103 43.61 1 14.7 

SA Battipaglia 72 40.60 10 15.9 

CT Catania 75 37.50 3 18.3 
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Table 4. Synthesis of the results of the stepwise procedure for the amplitude A1.  Variables defined in text. 

 

Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat
1 0.005 8.89 166 0.000171 1.86 - - - - - - - -
2 0.398 -1.46 -3.08 -0.000219 -2.97 0.2455 21.9 - - - - - -
3 0.461 4.11 5.48 -0.000524 -6.79 0.1061 5.77 0.001897 9.27 - - - -
4 0.528 3.67 5.22 -0.000626 -8.58 0.1226 7.08 0.001476 7.53 -0.18275 -10.2 - -
5 0.551 4.15 6 -0.000444 -5.74 0.1209 7.16 0.001839 9.18 -0.17041 -9.69 -0.4413 -6.09

Step R2 Constant E L Ds As C

 

 

Constant E L Ds As C 
STEP R2 

Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat 

1 0.005 8.89 166.04 0.000171 1.86         

2 0.398 -1.46 -3.08 -0.000219 -2.97 0.2455 21.91       

3 0.461 4.11 5.48 -0.000524 -6.79 0.1061 5.77 0.001897 9.27     

4 0.528 3.67 5.22 -0.000626 -8.58 0.1226 7.08 0.001476 7.53 -0.18275 -10.22   

5 0.551 4.15 6.00 -0.000444 -5.74 0.1209 7.16 0.001839 9.18 -0.17041 -9.69 -0.4413 -6.09 
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Table 5. Synthesis of the results of stepwise procedure for the phase φ1.  

Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat
1 0.029 2.44 527 0.000037 4.7 - - - - - - - -
2 0.731 1.23 44.3 -0.000008 -1.91 0.0288 43.8 - - - - - -
3 0.773 1.63 38.1 -0.00003 -6.85 0.0188 18 0.000136 11.6 - - - -
4 0.797 1.61 39.6 -0.000035 -8.43 0.0197 19.8 0.000114 10.1 -0.00954 -9.26 - -
5 0.798 1.61 39.7 -0.000032 -7.06 0.0196 19.8 0.00012 10.2 -0.00931 -9 -0.0079 -1.85

L Ds As C
Step R2 Constant E

 

 

Constant E L Ds As C 
STEP R2 

Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat 

1 0.029 2.44 526.84 0.000037 4.70         

2 0.731 1.23 44.29 -0.000008 -1.91 0.0288 43.82       

3 0.773 1.63 38.14 -0.000030 -6.85 0.0188 17.96 0.000136 11.63     

4 0.797 1.61 39.64 -0.000035 -8.43 0.0197 19.75 0.000114 10.06 -0.00954 -9.26   

5 0.798 1.61 39.66 -0.000032 -7.06 0.0196 19.75 0.000120 10.18 -0.00931 -9.00 -0.0079 -1.85 
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Table 6. Synthesis of the results of the stepwise procedure for the second harmonic phase φ2. 

Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat
1 0.003 2 147 -0.000034 -1.47 - - - - - - - -
2 0.621 5.3 55.4 0.00009 6.05 -0.0784 -34.6 - - - - - -
3 0.674 4 27 0.000162 10.6 -0.0458 -12.6 -0.000444 -10.9 - - - -
4 0.675 4.01 27 0.000164 10.6 -0.0462 -12.6 -0.000434 -10.5 0.00442 1.17 - -
5 0.676 4.04 27 0.000175 10.5 -0.0463 -12.7 -0.000412 -9.5 0.00515 1.35 -0.0262 -1.67

L Ds As C
Step R2 Constant E

 

 

Constant E L Ds As C 
STEP R2 

Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat Coefficient Tstat 

1 0.003 2.00 146.70 -0.000034 -1.47         

2 0.621 5.30 55.37 0.000090 6.05 -0.0784 -34.61       

3 0.674 4.00 26.95 0.000162 10.57 -0.0458 -12.56 -0.000444 -10.94     

4 0.675 4.01 26.97 0.000164 10.63 -0.0462 -12.62 -0.000434 -10.46 0.00442 1.17   

5 0.676 4.04 27.02 0.000175 10.46 -0.0463 -12.66 -0.000412 -9.50 0.00515 1.35 -0.0262 -1.67 
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FIGURES 

Figure 1: Digital elevation model and temperature stations in Italy. 
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Figure 2: Morphological variables calculated for each station using the geographic 

representation of the coast-line and a Digital Terrain Model: (a) Angle α formed by the 

minimum distance vector and the South; (b) azimuthal angle β of horizon in a generic 

direction. 

 

 (a)    (b) 
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Figure 3: Root Mean Square Errors and R2 evaluated through the cross-validation procedure 

applied to annual normals. k is the number of variables used in the regression (see Table 2). 
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Figure 4: Sample of the residuals of regression (4) and estimated exponential with nugget 

model (solid line). 
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Figure 5: Spatial distribution of the kriged residuals. 
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Figure 6: Diagrams for the 5 stations reported in Table 3. (a) Non-dimensional temperature 

regime; (b) Zero-mean temperature regime. 
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