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SUMMARY 
 
As an attempt to improve flood risk prediction we investigate the relations between the stochastic 
processes of daily rainfall and runoff. We consider a simple stochastic model of the extreme 
precipitation in which the occurrences are mutually independent and the distribution of marks can be 
derived through the analysis of the Peak Over Threshold (POT) process. Our initial interest 
concentrates on the relationships between the mean annual number of rainfall and runoff peak events 
(Λp and Λq) at various thresholds: the mechanism of flood production and its changes are investigated 
by analysing the nature of these relationships. To this aim we consider that the watershed operates as 
a stochastic filter on the rainfall process, producing a filtered point process that reproduces occurrence 
and magnitude of floods. The analysis of the filter mechanism provides the relationships between 
stochastic parameters of maximum rainfall and discharge. Particularly, we consider a simple filter 
wherein the runoff peaks are produced after a volume abstraction on precipitation, which essentially 
limits the number of runoff events. Since Λp and Λq are parameters playing a significant role in 
Poisson-derived flood frequency distributions, we investigate the possible dependence of the obtained 
results on the hypothesis of Poissonian occurrences and on the distribution of marks, 
We derived relations between the frequency of rainfall and flood events at varying thresholds for 
several observed series of rainfall and runoff. The different patterns of the basin transformation found 
seem to confirm the stochastic nature of the basin filter and its strong relations with the hydro-geologic 
and climatic characteristics of the basin.  
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1. INTRODUCTION 
 
The research and application aspects related to regional flood frequency analysis have reached very 
good standards, but several controversial points still prevent the agreement on universally recognised 
procedures (see e.g. Bobée et al., 1993). Recent approaches agree on the necessity to maximise 
geomorphoclimatic information behind the flood formation mechanisms, either through models based 
on derived distributions (e.g. Iacobellis and Fiorentino, 2000) or by derivation of the flood curve by 
simulation (e.g. Hashemi et al., 2000). 
Less attention has been given to the possibility of a direct statistical analysis of continuous rainfall and 
runoff time series, which can provide greater detail on the transformation mechanisms with respect to 
annual maximum series. In fact, additional information deriving from continuous daily records 
improves the knowledge of the base rainfall process and increases the number of observed flood 
peaks. This procedure therefore augments the possibilities of a data-based assessment of the 
hypotheses underlying the definition of a flood frequency distribution within a geomorphoclimatic 
framework. 
The mentioned analysis can be carried out through the application of Peak Over Threshold (POT) 
techniques on daily rainfall and runoff records. Lang et al. (1999) recently pointed out pros and cons of 
POT-based flood frequency estimation. Main drawback of the technique is the difficulty to set objective 
criteria for the choice of the threshold values which, on the other hand, is a crucial point of the 
procedure.  
In this paper, analysis of continuous data is presented with a POT approach that allows one to 
naturally and objectively consider the threshold values. To this end, relations between the number of 
rainfall and runoff event over a given threshold have been linked to the magnitude of the events 
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themselves, investigating the attenuation provided by the basin over the entire range of runoff peak 
values.  
This data-based approach utilises statistical relations between rainfall and runoff peaks to explore the 
interaction between the empirical distributions of the two variables in different classes of drainage 
basins. The envisaged statistical structure is compatible with the estimation of parameters related to 
the geomorphoclimatic configuration of the basin and the consequent transfer of hydrologic 
information towards ungauged basins. 
 
 
2. POT ANALYSIS 
 
2.1 Procedures of peak selection 
 
For a given catchment we consider the time series of daily rainfall and discharge: since both variables 
vary randomly in time, they can be represented as continuous stochastic processes (sampled at the 
daily time scale). The first step towards an analysis of the relationship between extreme rain and flood 
events is to select, from the continuous time series, those values that can reasonably be considered 
as peak events. The usual procedure for peaks selection is to retain only those peaks that exceed a 
certain threshold value s0, with a procedure known as Peak Over Threshold, or POT (e.g., Todorovic, 
1978; Madsen et al. ,1997; Lang et al., 1999). Each peak event is considered to last for the whole time 
period the discharge (or rainfall) remains above the threshold (see Figure 2-1).  
This procedure of peaks selection presents some well-known difficulties in the definition of the base 
level s0 (e.g., Lang et al., 1999; Robson and Reed, 1999). With low s0 values nearly the whole time 
series is above the base level and only very few peaks are identified (in fact, if the discharge never 
downcrosses s0 a unique peak is found) while with large s0 only few very high peaks are retained. To 
have available a significant number of peaks, s0 should be taken at intermediate values, but this arises 
problems of lack of mutual independence among the peaks (that is a prerequisite to any statistical 
frequency analysis). In the usual POT procedure it is often imposed that a peak is retained only if it is 
separated from the previous one by a given number of days and if the discharge before the event 
drops well below s0. In addition, actual use of these criteria varies from one case to the other, with the 
result that a degree of subjectivity is added to the procedure.  
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Figure 2-1: Sketch of the procedure for peaks selection from the time series of daily runoff. Arrows 
represent the peaks selected with the usual POT procedure; open circles and squares are the local 
maxima and minima used in the alternative procedure for peaks selection. 
 
 
To limit the subjective characters of the procedure, we decided to adopt an alternative two-steps 
method: (i) the events are identified in correspondence to all the local maxima of the time series (open 
circles in Figure 2-1); (ii) the magnitude of each event is then assigned in two alternative ways: (a) the 
actual ordinate of the maximum (method M1, gray bars in Figure 2-2), or (b) the difference between 
the maximum and the first minimum preceding the event (method M2, black bars in Figure 2-2). The 
first choice has the advantage that the actual value of the discharge is preserved, while with the 
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second method the mutual dependence of subsequent peaks is reduced. For example, consider two 
peaks very close in time (e.g. the first and the second in Figure 2-2): the magnitude of the second 
peak can result artificially increased by a value that depends on the intensity of the previous event, 
which has not yet exhausted its effects on the basin. Alternatively, if the ordinate of the minimum were 
subtracted, the mutual dependence would be eliminated (however, other sources of correlation, due 
for example to rainfall persistency, can still remain). As such, M2 events do not strictly represent the 
real discharge; rather, they approximate the effective rainfall component, i.e. the fraction of rainfall that 
becomes runoff within one day. Both M1 and M2 methods will be employed in the following of the 
paper. 
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Figure 2-2. Marked point process obtained after peak selection from the discharge time series shown 
in Figure 2-1. Gray bars: method M1; black bars: method M2. 
 
 
2.2 Basic statistical relationships and their conditions of validity 
 
Whatever procedure of peak selection is chosen, the continuous stochastic process of daily runoff is 
transformed into a marked point process (Figure 2-2), defined by the two random variables n0(∆t) 
(number of peaks in an arbitrary time interval of fixed length ∆t) and x (magnitude of the event of 
discharge or rainfall). We will show that all the information necessary for an analysis of the flood and 
rainfall extremes is contained in these two variables. 
Consider the probability distribution of the magnitude x of the peaks, FX(x): this distribution can be 
related to the frequency of occurrence of the peak values. We define first the reference frequency of 
the flood or rain events, as the expected value of the number of peaks occurring in one year: 
 
(1)      Λ0 = E(n0(∆t = 1 year))  
 
where E( ) indicates expectation. It is then possible to retain only those peaks of the marked point 
process that exceed a threshold s (see Figure 2-2), and consider their average number in one year, 
defined as Λ(s). Using the same definition given in Equation (1), Λ(s) can be denoted as 
 
(2)      Λ(s) = E(ns(∆t = 1 year))  
 
where ns(∆t ) is the number of marks in ∆t  with magnitude x ≥ s. Notice that the Λ(s) value in Figure 
2-2 results lower for the method M2 than for M1, for any threshold s. The difference is particularly 
relevant when low thresholds are considered, because the flow component eliminated with the method 
M2 can represent a significant portion of the measured runoff (see Figure 2-1, peaks between days 30 
and 50). 
There exist a simple explicit relationship between the frequencies Λ(s) and the correspondent CDF's 
of the magnitudes x: in fact, for time-discrete processes, as in our case, the probability 1− FX(s) that a 
given event is greater than s is given, by definition, by the number of events exceeding the threshold s 
divided by the total number of events:  
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where T(s) is the return period of s in years. This relationship is fairly general under some basic 
requirements that are the same as those implying the uniqueness of the CDF: 1) independent mark 
values; 2) stationary marked point process; 3) identically distributed marks.  
The necessity of the third condition is understandable, and requires due care, while the sense of the 
first two deserve specific attention. The independency issue is crucial, since some confusion may 
derive from the bivariate nature (i.e. marks and occurrence) of the marked point process defined with 
the POT procedure.  
Consider first the counting process by itself, without consideration of the presence of the marks. A 
possible representation of the process is as a sequence of experiments (e.g., one for each day when a 
daily time scale is considered) classified as successes when an event occurs and as failures when it 
does not. Independency in the occurrences requires that the experiments are independent, i.e. that 
the probability of success of the n-th experiment is not affected from the successes or failures of the 
previous (n-1) experiments. This is called memoryless property.  However, Equation (3) is valid also 
for processes that do not possess the memoryless property, because it strictly derives from the 
definition of the CDF of a time-discrete process. It follows that, even though only few distributions of 
the number of occurrences n0(∆t) (or ns(∆t)) possess the memoryless property (for example the 
Poisson and the binomial distributions), Equation (3) is valid for any distribution of n0(∆t). For example, 
in a point process where a success and a failure regularly alternate the occurrences are far from 
independent, but, provided that the magnitude of the events are independent, Equation (3) is easily 
seen to be valid. In short, the hyphothesis that the occurrences are Poisson distributed is not 
necessary for the validity of Equation (3), but it can still be very important for relating the POT 
distribution, FX(x), to the corresponding annual maxima distribution, GAM(x). In fact, in case of Poisson 
distributed occurrences the following relationship holds (e.g., Todorovic, 1978) 
 
(4)     ))(1(0)( xF
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From Equation (4) derives that an exponential distribution of the marks produces Gumbel-distributed 
annual maxima, while the GEV distribution is obtained with Pareto-distributed magnitudes of the 
events (e.g. Madsen et al., 1997).  
Even more important for validity of Equation (3) is the independence among the magnitudes of the 
events: we clarified in Section 2.1 possible methods to minimize the chance of selecting correlated 
peaks. 
Given independency, the stationarity requirement is not fundamental to the definition of (3), since an 
analogous equation accounting for the time dependency can be easily written as  
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where λ0(t) represents the rate of occurrences of the events, i.e. the mean number of events in the 
time interval [t,t+∆t], with 0→∆t , while λ (s,t) is the correspondent rate for the events with magnitude 
exceeding s. The relationship between the rates λ  and the frequencies Λ is  
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When the stationarity condition holds, one has Λ(s)=λ(s)∆t  and Λ0=λ0 ∆t, and ∆t cancels out from the 
ratio on the left hand side of Equation (5), giving Equation (3). At a first instance we have assumed 
stationarity, using Equation (3) at a yearly time scale even in presence of different climatic regimes for 
the italian rivers (see e.g. Claps and Villani, 2001). Otherwise, one may divide the dataset in m parts 
representing the different climatic regimes and apply Equation (5) to each subset of data: In this 
second case one ends up with m different CDF's of the magnitudes of the peaks. Typically m=4 is 
sufficient even for climates with strong seasonalities: in an application to daily rainfall in Southern Italy, 
Sirangelo and Iiritano (1999) show that m=2 could be a good compromise between detailed time 
series description and practical calibration. However, when the method M2 is used for peaks selection, 
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a strong seasonal component of the discharges, due for example to snow melting baseflow, is 
eliminated. 
 
 
3.  ANALYSIS OF FLOOD PRODUCTION MECHANISMS 
 
Peak selection procedures detailed in Section 2.1 are applied in the following to the time series of 
rainfall p and runoff q (expressed in mm). The average number of rain events in one year defines the 
value of Λ0p while Λ0q defines the average number of flood events. It is then possible to find the 
number of rain and flood events with magnitude exceeding s, obtaining two different relationships 
between s and the frequencies of occurrence, Λp(s) and Λq(s). These relationships, along with the Λ0p 
and Λ0q values, completely define the empirical CDF’s of rainfall and discharge peaks by means of 
Equation (3). An example of the possible shapes of the above relationships is given in Figure 3-1, 
where a logarithmic scale is used for the vertical axis to allow a greater detail in the low frequencies 
zone, more representative for the extreme events, and also to easily recognise if the probability 
distributions of the magnitudes are exponential, in which case they would plot as straight lines. The 
two frequency-threshold relations for rainfall and discharge are then compared in order to analyse if 
there are changes in the flood production mechanisms that can be related to the frequency of 
occurrence of the events. First, a value λ for the frequency of the events is set; then the corresponding 
thresholds, sq and sp are found for rainfall and runoff (see Figure 3-1).  
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Figure 3-1. Graphical representation of the procedure adopted for obtaining the ∆s(λ) relationship. 
Diamonds represent the frequency-threshold relation for the rainfall events; circles and squares are 
related to runoff events obtained with methods M1 and M2 for peaks selection, respectively.   
 
 
The difference between sp and sq represents the rainfall loss for that given frequency, namely 
 
(7)            ∆s(λ)= sp (λ) − sq (λ) 
 
The meaning of ∆s(λ) can be more clear if one considers a simple mechanism of runoff production. 
Introducing Φ as an abstraction term (P− Q), it can be demonstrated that Φ equals ∆s for each 
λ, provided the rainfall-runoff transformation is deterministic. For this reason, ∆s is assumed as a 
meaningful control variable in the comparison of rainfall and runoff frequency distributions. In addition, 
consideration of ∆s makes it possible the above comparison even when the time series of the two 
variables (P and Q) are measured in non-overlapping years, which often happens when short time 
series of daily rainfall and runoff are available. This is actually the case of the application presented in 
the following section. Another important advantage of this procedure is that it works at the coarse level 
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of average values (see Equation (2)), thus eliminating the problem of correctly matching the single 
rainfall and discharge peaks working at the scale of the event.   
Working at equal frequency values λ hampers the usage of an analogous of this procedure with 
annual maximum data, because in that case the actual frequencies of occurrences are found only in 
an indirect manner using relations valid in special cases (e.g., Equation (3) and (4) when the 
occurrences are Poisson distributed). 
 
 
4. CASE STUDY 
 
35 time series of daily data of runoff and areal rainfall are analysed to evaluate the possibility of 
highlighting different flood production mechanisms. Drainage basins are mostly located in the North-
West of Italy, in the Piemonte region. The Alps influence the majority of basins in the considered 
group, but some basins are located in a different (Apennine) context. Although not really covering the 
entire climatic and geologic variety available in Italy, this datasets represent a significant starting point 
with regard to the mechanisms of flood formation they show.  
In some cases, available datasets are not sufficiently long to rely on the resulting information. We 
decided that reliable data should present a Λ(s) relationship comparable in shape to that obtained 
from the analysis of the annual maxima of rainfall and runoff, as resulting from an independent, and 
tested, dataset (SIVAPI, 1999).  
Evaluating the frequency-threshold diagram (Λ(s),s) and the corresponding loss-frequency plot (∆s, 
Λ(s)),  we found basin responses which can be grouped as follows:  
i. the loss ∆s increases steadily with decreasing frequencies (Figure 4-1b); 
ii. ∆s reaches a maximum for rare events and then decreases (or reaches a plateau) (Figure 4-

1d); 
iii. the relationship between ∆s and frequency presents multiple curvatures (Figure 4-1f).  
 
Trying to understand more quantitatively the physical mechanisms underlying these different patterns, 
one may analyse simple theoretical models of the rainfall-runoff transformation. The simpler possibility 
is to consider the flood amount (in mm over a day) produced by a constant abstraction Φ on the 
rainfall depth P,  namely Q = P − Φ . In this case the loss ∆s coincides with the abstraction Φ, and 
remains constants with varying frequencies. This model seems to be able to interpret only small 
portions of the loss-frequencies relations (e.g., the plateau for intermediate frequencies in Figure 4-1f).  
A somewhat more general model considers a linear relationship between rainfall and runoff: Q = α (P 
− Φ), where α is a routing coefficient, to be taken in the range [0,1], that depends on climate, size and 
geomorphological characteristics of the basin. In this case the abstraction Φ does not correspond to 
the actual loss ∆s, and the latter increases with decreasing frequencies, because the difference is 
proportional to P. All patterns showing increasing ∆s up to low frequencies are compatible with such 
simple model, but the variety of curves found require further analyses on the actual role of the 
coefficient α. 
To discriminate among the above patterns one can also compare the mutual shape of the Λ(s) curves 
for the rainfall and runoff processes. The point is to evaluate if and how these curves follow different 
patterns and to relate them to the cases described above. We will refer to type a curves for those 
showing a linear shape in the semilog Λ(s) diagram, to type b for those presenting a marked upward 
curvature in the diagram (high skewness) and to type c curves for the case of downward curvature. 
Examples of a and b curves are given by the relationships for precipitation in Figure 4-1a and 4-1e, 
respectively. 
The differences in basin response (i to iii above) can therefore be referred to three main categories of 
rainfall and runoff curves:   
i) Almost-linear response, with both rainfall and runoff following the type a pattern. A typical example is 
given in Figures 4-1a and 4-1b for river Rutor, in Nortwestern Italy, having area of 49 km2 and average 
elevation of 2616 m a.s.l. The behaviour here can be interpreted with a linear relationship between 
precipitation and discharge. Many high-elevation basins among those considered seem to belong to 
this category. Note the marked difference on the low peaks between curves produced by the M1 and 
M2 procedures, due to the removal of the glacial baseflow in summer. The case of rainfall and runoff 
both of type b is also present but does not necessarily reflects simple linearity in the response. 
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Figure 4-1. Left panels report examples of the frequency-threshold relationships for rainfall (diamonds) 
and runoff; right panels show relations between the current loss and the discharge frequency (in all 
cases, circles correspond to method M1 for peaks selection, squares to method M2). Note the 
reversed scale in the diagrams on the right. 
 
ii) “parabolic” response, with type a rainfalls and type b runoff. An example is given by river Grana 
(Figures 4-1c and 4-1d), again in Northwestern Italy (area of 109 km2 and average elevation of 1540 m 
a.s.l.). A marked change in the floods generation mechanism seems to occur here, with the magnitude 
of the rare floods that results strongly increased by the reduced absorption of rainfall by the soil. 
Possible causes for this behaviour are changes in the runoff production mechanism (from an 

a) b)

c) d)

e) f) 
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infiltration capacity to a saturation from below mechanism) or differences in the areal coverage of 
precipitation when “normal” or rare events are considered. The geomorphological and climatic 
characteristics of the basins belonging to this category are currently under investigation with data from 
additional basins.   
iii) “mixed” nonlinear response, with type b rainfalls and type a runoff. An example is river Agri (area of 
174 km2 and average elevation of 933 m a.s.l.) in Southern Italy (Figures 4-1e and 4-1f). In this case 
the loss-frequency relation tends to assume one of the shapes described above, but then deviates 
upward due to the greater intensity of the extreme rain events. The fact that ∆s increases again after it 
has reached stability shows that the capacity of the soil was not exhausted yet notwithstanding the 
downward curvature of the ∆s(λ)  relationship. This requires a very high absorption capacity of the soil, 
which is found on highly permeable basins (the river Agri basin, for example, is mainly constituted by 
fractured limestone).  
Figure 4-1 deserves further comments. Notice how the shape of the relationships in the right panels 
tends to be insensitive to the choice of the peak selection procedure (method M1 or M2). This is 
common to all of the data analysed and is quite important. In fact, we have seen that method M2 
minimises the problems deriving from seasonal components and from the possible lack of 
independence among the marks. The fact that the relations found with method M1 are very similar to 
those obtained with method M2 demonstrates that, in all the series considered here, seasonality and 
mutual dependence do not really influence the results. The case of river Rutor, for instance, shows 
that a marked seasonality in the runoff can produce a deviation only in the lower part of the 
relationship (Figure 4-1b). The method adopted in this paper seems therefore rather robust.     
A second important comment regards the fact that only part of the diagrams in Figures 4-1b, 4-1d and 
4-1f are actually meaningful in terms of design floods. In other words, the left part of the diagrams 
concerns very frequent events, in which the increase of the loss at decreasing frequencies 
corresponds to the increasing absorption capacity of the soil with not very intense rainfalls. The 
interesting part of the figures, in terms of annual maxima, are instead on the side of low frequency 
events (right side). This fact must be carefully considered when using models of transformation that 
look unsuitable in the side of low frequencies. 
 
 
5. CONCLUSIONS 
 
The Peak Over Threshold analysis of continuous rainfall and runoff daily data presented in this paper 
aims to highlight phenomenological mechanisms dominating the flood formation in different 
physiographic and climatic contexts. An objective procedure was devised for identification of the 
rainfall and runoff peaks and a simple method for removal of runoff dependence and baseflow effects 
was proposed. Scope of the analysis is to demonstrate that the relation between the number of flood 
and rain events exceeding different thresholds can provide meaningful information on the basin 
transformation. Qualitative information is deduced by drawing diagrams of loss variation versus the 
frequency of the observed events; quantitative information can be deduced using simple models of the 
transformation and estimating relevant parameters. The latter step is currently being investigated and 
is only quickly sketched here.  
Markedly different patterns of runoff formation were found on a set of 35 rainfall and runoff time series 
recorded in Italian rivers, and exploratory justification were provided for their shapes, using also 
rainfall and runoff frequency curves. These patterns show differences in the mechanisms of basin 
transformation not easily recognisable from observation of the annual maximum frequency curve. 
Simple models of constant and proportional abstraction were preliminarily suggested for partial 
explanation of the observed patterns; derivation of analytical curves from these models under different 
hypotheses is currently under way. 
In view of a thorough specification of the patterns of non-linearity in the rainfall-runoff transformation 
presented in this paper, climatic issues also require to be integrated in the procedure, being the 
climatic regime an important source of dissimilarity among basins. Seasonal analyses performed on 
the same class of data (e.g. Merz et al., 1999; Claps and Villani, 2001) can possibly provide a 
significant added value to the results shown here.  
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