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ABSTRACT. An expression of the hydrologic response of fractal networks is derived by 
means of the classical approach used in statistical-mechanics. Probabilities of the rate of 
arrivals at the outlet of mass particles instantaneously injected into the network are 
maximized accounting for some suitable constraints. The analysis of the structure of fractal 
networks allows us to meaningfully set  the required constraints, that are of the same form of 
these used by Lienhard and Meyer (1967). The resulting hydrologic response is a Weibull 
distribution whose parameters are the fractal dimension and the total length of the network. A 
comparison with the similar  form of arrival time distribution obtained by Troutman and 
Karlinger (1985) showed it to be a particular case of the more general expression relative to 
fractal networks. 
 

1. INTRODUCTION 

The study of river network morphology in view of the definition of characters of the 
basin response characteristics has received new breed since the introduction of fractal 
geometry concepts in geomorphology. It is now widely accepted that river networks are 
fractal (i.e. self-similar) objects (e.g. Mandelbrot, 1983; La Barbera and Rosso, 1989) and 
that their structure obeys some principles of least energy dissipation (e.g. Rinaldo et al., 1992; 
Fiorentino et al., 1993). Despite that, the concepts of fractal geometry have not yet been 
extensively used in the evaluation of the basin response. Probably the only attempt in this 
field is due to Marani et al. (1991) who determined the most probable response of a particular 
fractal network, the Peano plane-filling curve. 

In this paper, a framework for the definition of purely fractal networks is used in the 
search of one expression of the most probable hydrologic response of river networks. 
Following the statistical-mechanical approach of Lienhard (1964), structural properties of 
fractal networks are explicitly used in this search, leading to an IUH form based on clearly 
recognizable parameters.  



2 

2. STATISTICAL-MECHANICAL DERIVATION OF THE IUH  

Lienhard (1964), first used a statistical-mechanical approach in the search for a function 
describing the arrival times of water particles fallen onto the basin, function representing the 
basin IUH.  

The framework used by Lienhard is made up of a drainage-basin system on which N 
particles of equal mass are instantaneously injected. These particles fall on regions (states) of 
the basin  with different distances to the outlet. The distances are considered proportional to 
the arrival times of the water particles to the outlet, so the drainage-basin can be subdivided 
in a number of time partitions. Using m partitions of time, the compound probability that (N1, 
N2, ...,Nm) particles reach the basin outlet respectively at times  (t1, t2, ..., tm) is  
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with gi as the number of distinguishable ways of placing ni particles in the i-th time partition 
and with ΣNi=N. Gupta and Waymire (1983), reviewing Lienhard's approach, gave gi the 
interpretation of probabilities pi proportional to the contributing area Ci at time ti=i∆t,  so that  

p C A        1 i m   i i= ≤ ≤  (2) 

where A is the basin area. Thus pi represents the probability of having ni particles in the i-th 
contributing area.  

The most probable distribution satisfying the above requirements is obtained by 
maximizing the joint probability (1), for instance by using the principle of maximum entropy 
(Jaynes, 1957), subject to a set of constraints. In the generalization of Lienhard's approach, 
Lienhard and Meyer (1967) used the following constraints: 
1) a conservation principle: 

N Ni
i=

∞

∑ =
1  (3) 

2) a constraint on the moment of order β with respect to the origin, considering distance 
expressed in time units and based on the assumption of uniform velocity throughout the basin: 
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3) the proportionality between gi and a given power of ti: 

g =  ti i
-1c ⋅ α  (5) 

with constant c and α.  
The set ,.....)~,....,~,~

i21 NNN(  of particles that allow the maximization of (1) determines a 

discrete distribution P(ti-1≤T≤ti-1+∆t)= iN~ /N, that can be approximated with a probability 
density function f(t) according to 
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Letting ∆t tend to zero, the pdf that maximizes (1) is a generalized Gamma distribution 
(Lienhard and Meyer, 1967) 
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characterized by the three parameters α, β and k. 
In the scheme introduced by Lienhard (1964) parameters are set as α=n+1 and β=2. For 

β=1 the distribution (7) is reduced to a two-parameter Gamma while for α=β (7) becomes a 
Weibull distribution: 
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In the search for the most probable pdf of arrival times, constraints play the role of 
conditions that lead to incorporating some peculiar and clearly recognizable characteristics of 
the drainage-network system into the pdf expression. In fact, this is not the case of the 
approaches by Lienhard (1964) and Lienhard and Meyer (1967), as recognized by Marani et 
al. (1991) who dropped the dynamic constraint due to its arbitrary definition.  

The main purpose of this paper is to show how a fractal framework, established with a 
set of properties of the objects, can allow us to impose some meaningful constraints in the 
maximization of a joint probability expression, leading to a result analogous to (7).  

A fundamental point in this approach is that we consider uniquely the response due to 
the channel network. No hillslope or area effects are taken into account. This hypothesis is 
not too hard, if one considers the role of the geomorphological factor in the whole response of 
the basin (e.g. Rinaldo et al., 1991). Moreover, it is to be considered that only the topological 
structure of the network is taken into account, which considers segments of equal length and 
is functional to the application of the rules of construction of fractal networks. 

Characteristics and properties of the fractal objects used in this analysis are introduced 
in the next section. 

 

3. A FRAMEWORK FOR THE DEFINITION OF FRACTAL NETWORKS   

Fractal networks are built with the very simple rules of construction of self-similar objects, 
using a an initiator, which is a unit-length segment, and a generator, which is a tree-type 
combination of equal shorter segments (Mandelbrot, 1983, pp.72-73) whose length is η. 
Segments of the tree are of equal length are straight and form only square angles, so that the 
longest path in the generator tree (called topological diameter ∆1) is always the initiator and 
is made up of 1/η segments. 

After the first substitution of the initiator with the generator, each segment of the 
generator becomes an initiator and is substituted again (figure 1), in a recursive way (e.g. 
Feder, 1988, p. 16). After m multiplications, the number of segments is M = N1

m, where N1 is 
the number of segments of the generator, and the segment length is ζm=ηm.  
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In the network obtained after m multiplications the topological diameter ∆m is equal to 
(Claps and Oliveto, 1993) 

∆ ∆m =  1
m   (9) 

 
 

 

 
 

Fig. 1. Generation of a fractal tree. Parameter m is the generation index. The structure with 
m=1 is the generator. The initiator is a simple segment for all the cases considered. 

 
  
The fractal dimension of these geometric sets is defined as (e.g. Feder, 1988, p.19) 

D  =   t − 1ln
ln

N
η

 (10) 

Since we are dealing only with straight segments, this fractal dimension is to be considered as 
due only to the branching process governing network growth (is a topological fractal 
dimension). Coefficient Dt can also be called the network similarity dimension.   

 

3.1. determination of contributing areas for fractal networks 

Mandelbrot (1983) first suggested that basin area should be proportional to the fractal 
measure of the total network length. This hypothesis was adopted by Marani et al. (1991) as a 
connectivity conjecture implying constant drainage density. In this paper this hypothesis is 
extended in considering the basin area proportional to the fractal measure of the length Z of 
the network. The fractal (invariant) measure Λ of a self-similar object is (Mandelbrot, 1983) 

Λ = N D
εε  (11) 

where ε is the ruler length, Nε is the number of rulers needed to cover the object and D is the 
fractal dimension. In the case discussed, the fractal measure Zi of the complete topological 
length of a subnetwork is  

Z Mi i
Dt= ζ  (12) 

with Mi as the number of links of the subnetwork, ζ as the link length and Dt as the 
similarity dimension of the fractal network. The index m of generation is dropped here and in 
the following, without loss of generality.  
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To define contributing areas Ci Gupta and Waymire (1983) made reference to the 
schematic basin depicted in figure 2 and used cumulative areas Ai as follows:  
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 (13) 

Based on the previous hypothesis, to reformulate (13) for fractal networks the 
cumulative area Ai is substituted by the total length Zi of the subnetwork and the distance Li 
of the contributing area from the outlet is assumed as the length of the mainstream of the 
corresponding subnetwork. 

 

L i

C i

A i

 
Fig. 2. Representation of a basin shaped as a sector of circle (from Gupta and Waymire, 
1983). 

 
One can thus write (13) as the derivative of Zi with respect to the subnetwork mainstream 
length 

C Z
L
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i

i
i= d

d
d  (14) 

Since in fractal networks Li=∆i ζ, with ∆i as the subnetwork topological diameter, and given 
∆i as a discrete integer quantity, so that d∆i=1, dLi=ζ and relation (14) becomes 

C dM
dL

dL dM
di

D i

i
i

D i

i

t t= =ζ ζ
∆

  (15) 

Claps and Oliveto (1993) found for fractal networks the following relation between 
total number of links and topological diameter: 

Mi i
Dt= ∆  (16) 

holding strictly for subnetworks obtainable with repeated substitutions of the generator 
(called m-structures in Claps and Oliveto, 1993) but resulting in a very good relation for all 
others subnetworks, as can be seen in figure 3. In relation (15) and in the following, the 
network topological diameter is indicated by ∆, with no mention to the (generic) index m of 
generation; thus ∆i in (15) denotes the diameter of a subnetwork i as a part of a larger 
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network. 
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Fig. 3. Relation between magnitude and topological diameter of all subnetworks of a fractal 
network generated from the elementary tree represented in the rectangle on the right. The 
fractal dimension of the tree is Dt=1.465. 

 
Deriving relation (16) one obtains  

d
d
M Di

i
t i

D -1t

∆
∆= ⋅  (17) 

so that (15) can be rewritten as  

C Di
D

t i
D -1t t= ⋅ζ ∆  (18) 

Using Li (expressed as ∆iζ) for a meaningful comparison with the constraint (5), the 
condition imposed on (19), given constant velocity, Ci by the fractal nature of the network is  

C Di t i
D -1t= ζ L  (19) 

that leads to probabilities pi (equivalent to gi): 

p C
Z

D
Zi

i t i
Dt

= = ⋅ ⋅ −ζ L 1

 (20) 

where the constant c of (5) is represented by the ratio  

c =  D  v
Z 

  t
D 1tζ −

 (21)  

with v as the velocity. 
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Relation (20) is shown in figure 4, as compared to the topological width function, 
representing the number of links at a given with reference to  the same fractal tree used in 
figure 3, at the same distance from the outlet normalized by the total number of links.  
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Fig. 4. Topological width function of the fractal network generated from the elementary tree 
represented in the rectangle on the right. The curve depicts the approximation represented by 
relation (20).  

4. THE MOST PROBABLE HYDROLOGIC RESPONSE  

The most probable hydrologic response of fractal networks can be found invoking the 
principle of maximum entropy (Jaynes, 1957), with some constraints. The constraints we can 
add are not arbitrary and introduce in the IUH formulation peculiar characteristics of fractal 
networks. 

The first (obvious) constraint is the one ensuring that the sum of probabilities is unity: 

p n
Ni

i=1

i

i=1

∆ ∆

∑ ∑= =1
 (22) 

The second one should take into account some peculiar (physical) aspects of the network such 
as, for instance, the total length. What is of interest in the expression of the constraint is how 
structural parameters of the network appear. The total length is considered as a constraint in 
the expression  

n
N

t Zi

i=1
i
Dt

∆

∑ ⋅ ∝
 (23) 

In fact, expanding the above relation using the uniform velocity v one obtains   
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and considering (12) and (16) and taking into account that Li=∆i ζ, one can write: 
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Considering Z as a constraint means that all information given by Z is incorporated into the 
expression of the most probable response, i.e. we will derive the most probable IUH 
consistent with the information given by Z. 

The second member of (25) is equivalent to the constant k in Lienhard and Meyer 
(1967): 

k =
⋅
Z

2 vDt   (26) 

The third constraint is represented by relation (20). We have now relations (20), (22) and (25) 
as constraints equivalent to these used by Lienhard and Meyer (1967), with α=β=Dt resulting 
by construction for fractal networks. Equivalent constraints and equivalent framework 
produce the same IUH form as Lienhard and Meyer (1967). Therefore, according to (8), the 
most probable IUH is 
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that, substituting k, becomes  
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4.1. Comparison with previous related works 

Troutman and Karlinger (1985), using the topological framework developed by Shreve 
(1966,1967), derived the exact and asymptotic (for large n) IUH using different dynamic 
equations to characterize the residence time distribution of the water particles. For all 
dynamic equations, the expected IUH constrained to the knowledge of magnitude, is a 
Weibull function, depending only on n, on the average link length l,¯ and on the celerity c:  
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with λ=c / l,¯ .  Parameters of expressions (29) and (28) of the Weibull distribution are related 
by: 

4 Z
2 v2 Dt

n
λ

=
⋅ ;         Dt=2 (30) 

In the comparison it is also assumed ζ=l,¯, v=c and  M=2n. 
Distribution (28) is plotted in figures 5 and 6 for Dt varying between 1 and 2, using ζ=1 

(so that Z=M) and v=1. In figure 5, Z is fixed at 200 and the curves obtained for different Dt 
are compared with that arising from (29), with c=1 and l,¯=1. We are using both c and v with 
the same meaning of parameters converting length to time. In figure 5 it can be seen that the 
Troutman and Karlinger IUH has a peak that corresponds to that of the case Dt=1.6 but a 
greater average travel time. Comparison of figures 5 and 6 shows the difference in the effects 
of variation of Dt with fixed M and fixed ∆. In the first case (figure 5) the increase of Dt ,with 
Z fixed, implies a decrease of ∆, according to (16), and a corresponding decrease of the 
average travel time with an increased peak. On the other hand, if ∆ is fixed (figure 6), the 
increase of Dt corresponds to a considerable expansion of the magnitude but to a relatively 
small increase of E[t]. Table 1 allows us to compare magnitude and topological diameters 
producing the IUH curves in both figures.  

Looking at the mean travel times reported in table 1 it can be clearly recognized that in 
a fractal framework the key parameter for the determination of the value of E[t] is the 
topological diameter. Extending this result to real world networks, the main stream length 
(and of course the average velocity) turns out to be the controlling factor for E[t]. Thus the 
fractal framework can give an explanation to the empirical evidence of the role of area or 
magnitude in the hydrologic response, since both variables could be related to the mainstream 
length through relations of the type of (16). 
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Fig. 5. Forms of the IUH of fractal networks for fractal dimension Dt varying from 1.0 to 2.0, 
step 0.1. The segment length and the velocities are taken as unit values. Total length equals 
magnitude and both are fixed to Z=M=200. Due to relation (16), the topological diameter of 
the network decreases with increasing Dt .  
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Fig. 6. Forms of the IUH of fractal networks for fractal dimension Dt varying from 1.0 to 2.0, 
step 0.1. The segment length and the velocities are taken as unit values. The topological 
diameter is set as ∆=30. Due to relation (16), total length and magnitude increase with 
increasing Dt .  

4.2. Moments of the IUH of fractal networks 

The first moment of distribution (8) is:  

[ ] 





Γ

α
α 1+1 k=tE 1/  (31) 

and can be expressed as a function of parameters of the impulse response of fractal networks: 
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and of the Troutman and Karlinger IUH parameters: 
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where α is fixed to 2. To compare these average travel times we have plotted (32) against Dt 
for different values of Z. Assuming ζ=1, Z equals M and the comparison is meaningful. To 
provide a significant comparison between the mean travel times of the Troutman and 
Karlinger IUH and of the IUH of fractal networks we have plotted their ratio for different 
values of Z and with Dt varying from 1 to 2. figure 7 shows that increasing the magnitude this 
ratio tends to attain unity in correspondence of  Dt≈1.65, which is compatible with the 
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position of the curves represented in figure 5. It seems also evident that for diverging 
magnitude the fractal dimension that ensure equality of the first moments does not exceed 1.7. 
 

 
Dt 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
            
∆(M=200) 200 124 83 59 44 34 27 23 19 16 14  
E[t] 100.0 63.48 43.66 31.91 24.45 19.45 15.94 13.40 11.49 10.02 8.86 
            
M(∆=30) 30 42 59 83 117 164 231 324 456 641 900  
E[t] 15.00 15.42 15.84 16.26 16.67 17.06 17.44 17.80 18.15 18.48 18.80 
 
Tab. 1. Mean travel times E[t], with Dt varying, in the two cases of M and ∆ fixed. 
Topological diameters ∆ for fixed M and total number of links M for fixed ∆ are also 
indicated.  
 

An additional comparison can be made with the first moment of the IUH derived by 
Marani et al. (1991) for the Peano network, whose characteristics are described in the 
mentioned paper. The above authors derive E[t] as 

[ ] ( )
v
,L

2
3tE ΩΩ=  (34) 

that can be compared to the expression (33), considering that L(Ω,Ω) is the length of the 
stream of order Ω in the a Peano network of order Ω. Given that, since Marani et al. (1991) 
assume for this plane-filling curve (Dt=2): 

L( ) = R ( )B
( 1)/2Ω Ω ΩΩ, − ε , 

with ε(Ω) as the ruler, and given n=RB
Ω−1, from the Horton law of stream numbers, setting 

λ=ε(Ω)/v as assumed previously for fractal objects, makes (34) as   

E t n n= =3
2

1 0 846
π

π
λ

π
λ

.
 (35) 

This allows us to use the curves reported in figure 7 for a comparison with this mean travel 
time, by making reference to the ordinate 0.846 of the diagram.  
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Fig. 7. Ratio EF[t] / ETK[t] of the first moment of the travel time distribution for fractal 
networks (EF[t]) and for the scheme used by Troutman and Karlinger (ETK[t]). It is assumed 
ζ=1 and c=v=1. Magnitude n varies between 50 and 500 with step 50. 
 

The second moment of the Weibull distribution (8) with respect to the origin is  
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leading, in the case of fractal network, to  
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Computing values assumed by (37) for the same set of parameters used in table 1, the 
results reported in table 2 show that, when the topological diameter is fixed, there is a 
minimum of (37) for Dt=1.4÷1.5 while M2 monotonically decreases with increasing Dt when 
the magnitude is fixed. It is worth remarking that values of Dt minimizing the second moment 
produce IUH with low peaks (figure 7). Moreover they in the range of topological fractal 
dimensions Dt of the branching estimated by Claps and  Oliveto (1993) on some river basins 
in Southern Italy using the informational entropy of the network (Fiorentino and Claps, 
1992). 
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Dt 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
            
∆(M=200) 200 124 83 59 44 34 27 23 19 16 14  
M2[t] 2000

0 
7369 3242 1631 911 553 358 245 176 130 100 

            
M(∆=30) 30 42 59 83 117 164 231 324 456 641 900  
M2[t] 450.0 434.5 426.5 423.3 423.2 425.3 428.7 433.2 438.4 444.0 450.0 

 
Tab. 2. Second moment M2[t]with respect to the origin, with Dt varying, in the two cases of M 
and ∆ fixed.  

 

5. CONCLUSIONS 

A Weibull distribution with clearly defined parameters is obtained as the travel time 
distribution of a mass injected instantaneously in a fractal network. The maximization of the 
joint probability defining the arrival time distribution is made under three constraints which 
incorporate properties of fractal networks. This constitutes a step forward with respect to 
previous works in this field (e.g.  Lienhard, 1964; Lienhard and Meyer, 1967;  Marani et al., 
1991) where the definition of constraints is either arbitrary or incomplete. Parameters driving 
the hydrologic response of fractal networks are the total network length and the fractal 
dimension, explicitly appearing in the arrival time distribution function.  

The first moment of the distribution depends fundamentally on the network topological 
diameter. Translated in terms of real world rivers this result substantiates the significance of 
the mainstream length in the estimation methods to the basin lag time.  

The influence of the fractal dimension is evident both in the peak discharge and in the 
second moment with respect to the origin, the latter presenting minima for Dt=1.4÷1.5. These 
values are of particular interest based on the results of an analysis of the fractal structure of 
river networks which was carried out by Claps and Oliveto (1993). 
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