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In the framework of an integrated use, among different scales, of conceptually-based 
stochastic models of streamflows, some points related to efficient parameter estimation 
are discussed in this paper. Two classes of conceptual-stochastic models, ARMA and 
Shot-noise, are taken under consideration as equivalent to a conceptual system 
transforming the effective rainfall into runoff. Using these models, the possible benefits 
of data aggregation with regards to parameter estimates are investigated by means of a 
simulation study. The application made with reference to the ARMA(1,1) model shows 
advantageous effects of data aggregation, while the same benefits are not found for 
estimation of the conceptual parameters with corresponding Shot Noise model. 

INTRODUCTION 

Streamflow time series modelling if generally intended as the closest possible 
reproduction of the statistical features displayed by observed measures of the 
phenomenon under investigation. This is certainly what is needed in the majority of the 
practical cases for which time series are analyzed, for instance planning and management 
of water resources systems. Practical needs have lead, in the last decades, to a prevailing 
"operational" approach to time series modelling, in which little space has been left to the 
analysis of physical, observable aspects in riverflow series. On the other hand, a 
physically based approach to this problem addresses the reproduction as well as the 
interpretation of the features of the phenomenon.  

One of the requirements of a correct reproduction of the phenomenon is that the 
model related to a given scale must be conceptually compatible with the models reffered 
to smaller or aggregated scales. Even out of a conceptual approach, the problem of 
determining stochastic models for aggregated data has received so far little attention. 
Among the few papers in this field Kavvas et al. (1977) Vecchia et al. (1983) and 
Obeysekera and Salas (1986) are worth mentioning.  

With regard to the above requirement, using conceptually based models allows the 
basic advantages that the information related to a conceptual parameter can be transferred 
from a larger to a smaller scale, because its conceptual meaning does not depend on a 
particular time scale. Therefore, derivation of stochastic models from a general 
conceptual representation of the runoff process is a first step towards integration of 
models among different scales. 
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       Claps and Rossi (1992) and Murrone et al. (1992) identified stochastic models of 
streamflow series over different aggregation scales starting from a conceptual 
interpretation of the runoff process. In this conceptual-stochastic framework there are 
conceptual parameters common to models related to different scales. The point of view 
characterizing this framework, which is summarized in the next section, is that the 
analysis of streamflow series should be extended beyond the scale at which data are 
collected, taking advantage of information available from models of the aggregated data. 

The question arise if there is a particular time scale (and, consequently, a particular 
model) leading to an optional estimation of a given parameter. The choice of an optimal 
time scale is important because aggregation of data tends to reduce correlation effects due 
to runoff components with small lag time with respect to the effect produced by 
component with high lag time. At the same time aggregation reduces the number of data 
and, consequently, the quality of estimates. 

In the above approach, Claps and Rossi (1992) and Murrone et al. (1992) considered 
a limited number of time scales, such as annual, monthly, and T-day (with T ranging from 
1 to 7) and showed that conceptual parameters of models of monthly and T-day runoff are 
more efficiently estimated using different scales of aggregation. 

An attempt to introduce a more systematic procedure in the selection of the optimal 
time scale for the estimation of each parameter is made in this paper. In this direction, 
simulation experiments are performed with regards to ARMA (Box and Jenkins, 1970) 
and Shot Noise (Bernier, 1970) stochastic models equivalent to a simple conceptual 
model of the runoff process. 

 
CONCEPTUAL-STHOCASTIC MODELS AND TIME SCALES 

The rationale of conceptualization 

 
In the approach by Claps and Rossi (1992) and Murrone et al. (1992), formulation of a 
conceptual model for river runoff is founded on the "observation" of river flow series 
over different aggregation scales and on the knowledge of the main physical (climatic and 
geologic) features of basins. 

Considering Central-Southern Italy watersheds, dominated by the hydrogeological 
features of Apennine mountains, distinct components can be recognized in the runoff: (1). 
the contribution provided by aquifers located within large carbonate massifs, that has 
over-year response time to the recharge (deep groundwater runoff); (2). a component, 
which is due to both overflow springs and aquifers within geological non-carbonate 
formations, which usually run dry by the end of the dry season (seasonal groundwater 
runoff); (3). the contribution by soil drainage, having a delay of several days with respect 
to precipitation (subsurface runoff); (4). the surface runoff, having lag-time that depends 
on the size of the watershed (for the rivers analyzed by Murrone et al. (1992), this lag 
ranges between a few hours to almost two days). In some cases, the deep groundwater 
component is lacking, reducing runoff components to three. The snowmelt runoff in the 
region considered is negligible. The above runoff components assume different 
importance with respect to the time scale of aggregation, leading to conceptual models of 
increasing complexity moving from the annual to the daily scale.  
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Bases for conceptual-stochastic model building proposed for the monthly scale 
(Claps and Rossi, 1992, Claps et al, 1993) and for the daily scale (Murrone et al., 1992) 
are essentially: (1) subsurface and. groundwater systems are considered as linear 
reservoir, with storage coefficients K1, K2, K3, going from the smallest to the largest; (2). 
Runoff is the output of a conceptual system made up of the above reservoirs in parallel 
with a zero-lag linear channel reproducing the direct runoff component; (3) when a 
storage coefficient is small with respect to the time scale considered, the related 
groundwater component becomes part of direct runoff term, which is proportional to the 
system input; (4) the effective rainfall, i.e. total precipitation minus evapotranspiration, is 
the conceptual input to the system; this variable is not explicitly accounted into 
subsurface and groundwater systems at constant rates (recharge coefficients c1, c2, c3, 
respectively) over time. 

The main issues of model identification for annual, monthly and daily scales are 
summarized below. 
 
Annual scale 

 
Rossi and Silvagni (1980) first supported on conceptual basis the use of the ARMA(1,1) 
model for annual runoff series, based on the consideration that the correlation structure at 
that scale is determined by the deep groundwater runoff component. The use of this 
model for annual runoff modelling was proposed by O' Connell (1971) in virtue of its 
capacity of reproducing the long-term persistence displayed by annual runoff data. Salas 
and Smith (1981) showed how a conceptual system composed by a linear reservoir in 
parallel with a linear channel fed by a white noise input behaves as an ARMA(1,1) 
process.  

Given an effective rainfall input It which infiltrates in the rate c3It and whose part 
(1−c3)It goes in direct runoff, based on the hypothesis that the input is concentrated at the 
beginning of the interval [t−1, t]. the volume balance equations produce 

 
Dt − e−1/K3 Dt−1 = (1 − c3 e−1/K3)It − e−1/K3(1− c3)It−1 (1) 

 
where Dt is runoff in year t. This hypothesis can be removed considering different shapes 
of the within-year input function (Claps and Murrone, 1993). The hypothesis that It is a 
white noise process conducts to an ARMA(1,1) model  
 

dt − Φ dt−1  = εt − Θ εt−1 (2) 
 
in which dt equals Dt − E[Dt], Φ and Θ are the autoregressive and moving average 
coefficients, respectively, and εt is the zero-mean model residual. Conceptual and 
stochastic parameters in (2) and (3) are related by:  
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The ARMA model residual is proportional to the effective rainfall by means of: 
 

εt = (1−c3Φ){It−E[It]} = (1−c3Φ){It−E[Dt]}. (5) 
 
In absence of significant groundwater runoff Rossi and Silvagni (1980) showed that 

annual runoff in the hydrologic year is an independent process that follows a Box-Cox 
transformation of the Normal distribution. The notion of hydrologic year, which starts at 
the end of the dry season, is important because if a wet season and a dry season can be 
distinguished, the absence of significant runoff in the dry season determines absence of 
correlation in the hydrologic year runoff series. 

 
Monthly scale 
 
The assumptions recalled above on the role of the different components in streamflows 
lead to consideration that correlation effects in monthly runoff are due both to long-term 
persistence, due to the deep groundwater runoff, and to short-term persistence due to the 
seasonal groundwater runoff. The conceptual system identified by means of these 
considerations consists of two parallel linear reservoirs plus a zero-lag linear channel.  
This latter account for the sub-monthly response components included into the direct 
runoff. 

The share c3It of the effective rainfall is the recharge of the over-year groundwater, 
with storage coefficient K3, while c2It is the recharge of the seasonal groundwater, with 
storage coefficient K3. All cj and Kj parameters are kept constant. Approximations 
determined by the latter assumption are compensated by parsimony in the number of 
parameters and by the greater significance given to the characteristics of the input It, 
considered as a periodic-independent process. Periodic variability of the recharge 
coefficients c2 and c3 is substantially due to the variability in soil moisture, which is a 
product of rainfall periodic variability.  

Claps and Rossi (1992) and Claps et al. (1993) have shown that volume balance 
equations for the conceptual model under exam are equivalent to an ARMA(2,2) 
stochastic process with periodic-independent residual (PIR-ARMA), expressed as 

 
dt − Φ1 dt-1 − Φ2 dt-2 = εt − Θ1 εt-1 − Θ2 εt-2 (6) 
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with dt and εt having mean zero. The formal correspondence between the stochastic and 
conceptual representations is obtained through the relations: 
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where N = (1 − Φ1 − Φ2), M = (1 − Θ1 − Θ2), and r3=k3(1−e−1/K3) and r2=k2(1−e−1/K2). In 
addition, in the conceptual scheme proportionality is required between the residual εt and 
the zero-mean net rainfall it according to the relation 
 

εt = (1 − a r3 − b r2)it (11)  
 

If the over-year groundwater component is negligible, for instance in practically 
impermeable basins, the conceptual system reduces to one reservoir in parallel with a 
linear channel, underlying a PIR-ARMA(1,1) stochastic process.  

Probability distribution of monthly effective rainfall is assumed by Claps and Rossi 
(1992) as the sum of a Bessel distribution (Benjamin and Cornell, 1970, p. 310), arising 
from the sum of a Poissonian number of exponentially distributed events, and a Gaussian 
error term. A Box-Cox transformation of non zero data was also proposed by Claps 
(1992). 

To preserve the formal correspondence between the conceptual and stochastic 
representations of the process, neither deseasonalization nor transformation procedures 
are applied on recorded data.  
 
T-day scale: multiple Shot Noise model 

 
The Shot Noise (Bernier, 1970) is a continuous-time stochastic process representing a 
phenomenon whose value, at a certain time, is determined additively by the effects of a 
random number of previous events. This process is determined by knowledge of: (1) the 
occurrence times of events, τi; (2) the input impulses intensity related to the events, Yi; 
and (3) the response function of the system, h(·), describing the propagation in time of the 
effects of each impulse. 
       The hypotheses made for this kind of process are: (a). the h(·) function is continuous, 
infinitesimal for t tending to infinity and integrable; (b) intensities Yi are random 
variables independent and identically distributed, with finite variance; and (c) event 
occurrence times τi are generated by homogeneous Poisson process. The process is 



CONCEPTUALLY-BASED STREAMFLOW MODELS 

 426

stationary if its origin tends to −∞, meaning that the origin must be far enough by the time 
under consideration. Runoff D can be thus expressed, in continuous time, as 
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where N(τ) is the realization of the Poisson process of occurrences. 

  In the conceptual framework considered (Murrone et al., 1992) the response 
function h(·) is a linear combination of responses of the conceptual elements. If the 
surface network is considered to behave as a linear reservoir, h(·) is expressed as  

 
h(s) = c0 1/K0 e

−1/Κ0s  +  c11/K1e
−1/Κ1s  +  c21/K2 e

−1/Κ2s  +  c31/K3e
−1/Κ3s (13)  

 
with s = τ−τi. The basin response is defined by 8 parameters: the four storage coefficients, 
Kj, and the four recharge coefficients, cj, of which only 7 are to be estimated given the 
volume continuity condition, Σci = 1. The cj coefficients represent the share of runoff 
produced, in average, by each component. To limit the number of parameters and to take 
advantage by the linearity hypotheses, coefficients ci and Kj are considered constant, i.e. 
the response function h(·) is kept constant.  
The process (12) has infinite memory, which represents the current effect of previous 
inputs to the system. This effect can be evaluated at a fixed initial time t0 = 0 by knowing 
the groundwater runoff quota at that time. At the beginning of the hydrological year 
(October 1 in our case), the seasonal and subsurface groundwater contributions are 
negligible relative to the deep groundwater runoff. Therefore the value D0 of discharge at 
that time can be a good preliminary estimate of the groundwater runoff amount, thus 
expressing (12) as: 
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The discretized form of the continuous process (14) is obtained by its integration over the 
interval [(t-1)T, tT], where t = 1, 2, … is the index describing the set of sampling instants 
and T is the sampling time interval. If the aggregation occurs on a T-day scale and 
integration is applied according to the linearity and stationary hypotheses, the following 
discretized formulation is obtained: 
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where Yt

* represents the sum of impulses occurred during the interval [(t-1)T, tT] and the 
integrated response is expressed as: 
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The function hs represents the response of the system determined by a unit volume 
impulse of effective rainfall, uniformly distributed within the interval. 

When a scale of aggregation T is chosen as considerably larger than the surface 
runoff lag-time, the surface runoff component can be considered as the output of a zero-
lag linear channel, which has response function c0 δ(0), with δ(·) as the Dirac delta 
function. This reduces to six the number of parameters to be estimated.  

The structure of daily precipitation has been represented as uncorrelated, like in 
Poisson white noise models (Bernier, 1970) or characterized by Markovian arrival 
process (see e.g. Kron et al., 1990) or described with models based on the arrival of 
clusters of cells, such as the Neyman-Scott instantaneous pulse model (e.g. Cowpertwait 
and O'Connell, 1992). The distribution considered in the simulation for daily data is a 
Bessel distribution, corresponding to a Poisson white noise probabilistic model. 
 
SIMULATION STUDY 

 
Prerequisites to the simulation  

 
For the reasons expounded in the introduction, the simulation study undertaken here aims 
preliminary to set a number of basic points in evaluating theoretically the effects of 
aggregation on parameter estimation. The problem here is not to identify the most correct 
model (as, for instance, in Jakeman and Hornenberg, 1993) but to understand if there are 
peculiar scales for estimation of parameters of a given model with pre-determined 
structure, as in Claps et al. 1993. Simple hypotheses in terms of input and system 
structure were adopted for the simulation, to grasp the basics of the positive or negative 
effects of aggregation in time. 
   A linear system was considered, which consisted of one linear reservoir, with storage 
coefficient K, and one linear channel, in parallel, with lag-zero. As shown with reference 
to annual runoff, this system, fed by stochastic input, is equivalent to an ARMA(1,1) 
model when the input is a continuous process. For input as a point process this system is 
equivalent to a single Shot Noise model (as compared to the multiple version arising from 
the presence of more than one reservoir). 

For each set of “true” parameters c and K (written in bold) of the linear system, 
20000 output data were generated. On the data obtained from the Gaussian input, 
parameters of the ARMA(1, 1) model were estimated and expressed, through (3), in terms 
of conceptual parameter estimates ĉ  and K̂ . Shot Noise model parameters were 
estimated on data generated from Bessel input. This first 10000 synthetic runoff data 
were not considered in the estimation, as warm-up length. (Salas et al., 1980, p.356) This 
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length was set well beyond the suggested limits, to definitely eliminate possible “starting 
condition” effect. 

The recharge coefficient c, indicating the amount of input entering the reservoir, 
ranged from 0.5 to 1. In the model of annual runoff c is less than 1 while the case c = 
1corresponds to the model of a spring (see Claps and Murrone, 1993). The storage 
coefficient K was set in a range from 2 to 120 time units (t.u.). The ‘time unit’ is one unit 
of the time scale at which input and output data are generated and is also called the days 
because what is important is to indicate the value of the parameters in terms of a multiple 
of the scale of generation. Accordingly, time scales at different levels of aggregation are 
identified in number of time units. 

In a preliminary set of simulations, the effect of the input standard deviation σ was 
recognized as null for Gaussian data and practically negligible for Bessel data. For this 
reason, only one level of input variability was considered for each distribution, namely 
σ = 1/3 for Gaussian input and σ = 3 for Bessel input. For both case the mean was set to 
1. 
To allow comparison of parameter estimates made on data obtained with the same “true” 
values but in different conditions, standard errors of parameters and the explained 
variance R2 were used. R2 is defined as 1−σ2

ε/σ2, where σ2
ε indicates the residual 

variance (taken as the variance of the surface runoff component in the Shot Noise model) 
and σ2 indicates the variance of the synthetic runoff series. 
 
Application 
 
Main points to focus with the aid of simulations are: (1) In which manner the resolution 
of a linear reservoir depends on the relative mean (coefficient c) of its output with respect 
to total runoff? (2) Is there a prefential scale for the estimation of the storage coefficient?  
Results of parameter estimation simulated data, reported below, suggest a number of 
comments. 
 
ARMA(1,1) model  

 
The following comments arise from estimation of ĉ  and K̂  through the ARMA(1,1) 
model: 
1. Results of parameter estimation, reported in Table 1a to 1c (referred to c = 0.5, c = 0.8 
and c = 1, respectively), show that aggregation reduces the variance of the fraction of 
input not entering the reservoir, producing higher values of the explained variance R2. 
The obvious exception is the case c=1, in which there is no pure white noise component. 
For the case c=1, the model fitted to the data is still the ARMA(1,1), for it is the most 
general model of a single linear reservoir with generic within-period form of the input 
function (Claps and Murrone, 1993). This adds information in providing an estimate of c, 
obtained through (4).  

2. A progressive increase in the standard error of the estimates also occurs with the 
aggregation, due uniquely to the decrease in the number of data. Table 2 shows that 
estimations made on the reference scale (1 t.u.) over limited samples produce standard 
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error greater than the corresponding standard errors for data aggregated on 7, 15 and 30 
t.u. 

3. For c<1, K is clearly underestimated. This tendency becomes more noticeable 
with increasing K and with decreasing c. Values found for R2, which decreases in the 
same circumstances, reflect the poor estimate of K. A tendency toward a preferential 
scale for parameter estimation is not recognizable from the results in Table1a and 1b. 

4. More understandable results are obtained by estimating ĉ  and K̂  on scales 
aggregated in unit steps, from 1 to 15 t.u. In this regard, Figures 1-3, clearly shows that 
when K is much greater than the reference scale, aggregation produces better conditions 
for parameter estimation. The progressive increase in ĉ  and K̂  up to a sill (Figure 1), 
give sufficient indications on these benefits. Therefore the preferential scale must be the 
one in correspondence of which the sill is reached (7 t.u. for this case), as a trade-off 
between the increase in R2 and the decrease in the standard error of estimates.  

 
Based on the results reported above, it seems that the preferential scale decreases 

with increasing c and with decreasing K (in general one should speak in terms of 
nondimentional preferential scale, i.e. divided by K). Figure 2, with c=0.5 and K=15 
confirm this tendency showing a substantial constancy both in ĉ  and K̂ , that would 
indicate that the sill is reached at the reference scale. On the other hand, when c=1 the 
reference scale is the best one for estimation regardless of K, since quality of estimates 
degrades with aggregation ( see the decrease of ĉ  and R2 in Table 1c and the decrease of 
ĉ  in Figure 3). 

 
TABLE 1a. Estimations from: ARMA(1,1) model, Gaussian input, c = 0.5 (scale in t.u.) 

 
scale K(t.u.) c Φ Θ R2 K(t.u.) c Φ Θ R2 

  K=120     K=90    
1 10.49 0.227 0.909 0.884 0.002 17.01 0.322 0.943 0.917 0.004

7 104.5 0.490 0.935 0.877 0.029 89.53 0.508 0.925 0.853 0.037

15 96.18 0.508 0.856 0.727 0.063 81.30 0.524 0.832 0.677 0.078

30 83.31 0.528 0.698 0.457 0.100 72.00 0.548 0.659 0.383 0.117

60 84.12 0.538 0.490 0.171 0.111 73.20 0.553 0.441 0.102 0.117

  K=60     K=30    
1 29.08 0.461 0.966 0.938 0.008 22.74 0.509 0.957 0.914 0.018

7 67.72 0.522 0.902 0.805 0.051 34.42 0.513 0.816 0.657 0.074

15 61.82 0.537 0.785 0.588 0.098 36.08 0.537 0.660 0.393 0.117

30 57.12 0.565 0.592 0.272 0.135 36.30 0.559 0.438 0.092 0.128

60 57.82 0.557 0.354 0.012 0.111 36.67 0.523 0.195 -0.084 0.069

  K=15      K=7    
1 13.14 0.515 0.927 0.855 0.033 7.22 0.529 0.871 0.744 0.059

7 14.78 0.492 0.623 0.380 0.090 6.33 0.491 0.331 0.048 0.083

15 18.63 0.505 0.447 0.154 0.098 7.63 0.471 0.140 -0.083 0.046

30 25.99 0.483 0.315 0.041 0.078     
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TABLE 1b. Estimations from: ARMA(1,1) model, Gaussian input, c = 0.8 (scale in t.u.) 
 

scale K(t.u.) c Φ Θ R2 K(t.u.) c Φ Θ R2 
  K=120     K=90    
1 83.24 0.784 0.988 0.946 0.067 71.23 0.795 0.986 0.934 0.089

7 119.9 0.799 0.943 0.746 0.273 95.48 0.806 0.929 0.683 0.317

15 120.4 0.811 0.883 0.507 0.398 96.02 0.814 0.855 0.413 0.430

30 109.8 0.816 0.761 0.164 0.456 90.78 0.820 0.719 0.068 0.462

60 109.6 0.791 0.578 -0.079 0.386 87.66 0.781 0.504 -0.141 0.350

  K=60     K=30    
1 55.27 0.809 0.982 0.910 0.126 29.45 0.811 0.967 0.835 0.205

7 64.34 0.806 0.897 0.565 0.369 30.44 0.796 0.795 0.289 0.414

15 67.23 0.812 0.800 0.266 0.448 33.87 0.787 0.642 0.017 0.399

30 67.80 0.812 0.643 -0.039 0.436 40.41 0.747 0.476 -0.109 0.303

60 62.46 0.750 0.383 -0.192 0.273 36.44 0.654 0.193 -0.188 0.126

  K=15      K=7    
1 15.57 0.813 0.938 0.707 0.300 7.59 0.814 0.877 0.481 0.398

7 14.36 0.780 0.614 -0.008 0.384 6.59 0.743 0.345 -0.207 0.255

15 15.57 0.733 0.381 -0.168 0.255 5.51 0.762 0.066 -0.265 0.093

30 27.79 0.596 0.340 -0.039 0.137     
 

TABLE 1c. Estimations from: ARMA(1,1) model, Gaussian input, c = 1.0 (scale in t.u.) 
 

scale K(t.u.) c Φ Θ R2 K(t.u.) c Φ Θ R2 
  K=120     K=90    
1 128.8 1.000 0.992 -0.981 0.996 98.27 1.000 0.990 -0.980 0.995

7 124.1 0.985 0.945 -0.301 0.937 94.22 0.980 0.928 -0.300 0.917

15 132.7 0.968 0.893 -0.260 0.863 99.47 0.957 0.860 -0.258 0.823

30 135.2 0.938 0.801 -0.252 0.752 104.7 0.920 0.751 -0.242 0.691

60 115.7 0.878 0.596 -0.285 0.546 89.46 0.848 0.511 -0.277 0.458

  K=60     K=30    
1 66.11 1.000 0.985 -0.980 0.993 32.74 1.000 0.970 -0.977 0.985

7 62.92 0.971 0.895 -0.299 0.878 30.81 0.943 0.797 -0.299 0.767

15 65.88 0.937 0.796 -0.255 0.747 32.13 0.879 0.627 -0.253 0.555

30 73.47 0.884 0.665 -0.221 0.581 41.82 0.781 0.488 -0.158 0.348

60 63.00 0.791 0.386 -0.253 0.326 36.34 0.663 0.192 -0.196 0.134

  K=15      K=7    
1 16.14 1.000 0.940 -0.969 0.969 7.46 1.000 0.875 -0.947 0.933

7 14.97 0.893 0.627 -0.303 0.585 6.82 0.812 0.358 -0.304 0.330

15 15.08 0.793 0.370 -0.266 0.309 4.98 0.858 0.049 -0.304 0.103

30 29.16 0.602 0.358 -0.030 0.144     
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TABLE 2. ARMA(1,1) model: standard errors of estimates made on different scales 
compared to s.e. of estimates made on limited samples (case considered K=60, c=0.5). 
 

 aggregated  limited sample
n. of data Φ Θ std. err. Φ std. err. Θ  Φ Θ std. err. Φ std. err. Θ
1448 0.902 0.805 0.0309 0.0429  0.6473 0.6061 0.1826 0.1906 

666 0.785 0.588 0.0636 0.0838  0.4936 0.4596 0.345 0.3526 

333 0.592 0.272 0.1180 0.1407  0.2146 0.1833 0.5067 0.5124 

 
Shot noise model 
 
The first consideration arising from the observation of Tables 3-4 and Figure 4 is that 
aggregation has quite different effects on the Shot Noise model estimates than for the 
ARMA model. With the Shot Noise model there are no evident benefits arising from 
aggregation, since best estimates are always obtained at the reference scale. The 
increasing bias of the estimated values of both parameters with aggregation does not 
leave much room for other considerations.  

This outcome could be due to the alterations that aggregation induces in the impulse 
occurrence and intensity and reflects the different characters peculiar to this class of 
models. The positive aspect of this behavior is that even very large storage constants can 
be identified (with some bias) at minimum scale.  

Another interesting aspect is the reduced increase of c reduces negative effect of 
aggregation on the estimate ĉ . This could be due to the reduced alteration of the white 
noise component, with aggregation, occurring when c increases. 
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Figure 1. Arma(1,1) model: Parameter estimates on aggregated data 

(c=0.5, K=120 t.u.). 
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Figure 2. Arma(1,1) model: Parameter estimates on aggregated data 

(c=0.5, K=15 t.u.) 
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Figure 3. Arma(1,1) model: Parameter estimates on aggregated data 

(c=1, K=120 t.u.). 
TABLE 3. Estimations from: shot noise model, Bessel input, conceptual model of one 

reservoir with a linear channel (K=60). 
 C1=0.5   C1=0.8   C1=1   

scale c1 K  R2 c1 K  R2 c1 K  R2 
1 0.532 48.52 0.026 0.813 55.19 0.092 0.993 66.39 0.933 

7 0.704 49.54 0.210 0.872 77.68 0.386 0.969 110.56 0.796 

15 0.756 82.36 0.242 0.896 112.24 0.474 0.953 172.23 0.707 

30 0.837 214.76 0.263 0.912 261.86 0.419 0.942 229.29 0.613 



P. CLAPS AND F. MURRONE 

 433

TABLE 4. Estimations from: shot noise model, Bessel input, (c=0.5, K=120). 
 

 C1=0.5   
scale c1 K  R2 
1 0.533 87.11 0.018 
7 0.695 69.35 0.158 
15 0.766 162.39 0.175 
30 0.837 339.92 0.216 
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Figure 4. Shot noise model: Parameter estimates on aggregated data 

(c=0.5, K=60 t.u.). 
 

FINAL REMARKS 

 
In a conceptually-based stochastic framework for the analysis of the runoff data at 
different scales, a simulation study undertaken to assess possible effects of aggregation on 
parameter estimation. A simple linear conceptual system, made up of a linear reservoir 
and linear channel, was used to generate runoff data from Gaussian and Bessel input, and 
a conceptually based ARMA(1,1) model and a single Shot Noise model were respectively 
fitted to the data, providing estimates of the conceptual parameters. 
Analysis of the results emerging by re-estimation of "true" parameters by means of these 
models showed that aggregation plays a significant role in achieving correct estimates for 
the ARMA(1,1) model. In particular, optimal aggregation scale is the one at which both 
estimates of the conceptual parameters attain a "sill" level, which is shown to correspond 
to the least biased value. On the other hand, aggregation does not produce the same effect 
on the Shot Noise model, for which the scale of generation was found to be the most 
significant for parameter estimation.  
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Although a more extensive work is needed to test the effect of aggregation on estimation 
of parameters of more complex systems, these results constitute an interesting starting 
point as a theoretical support to the use of integrated conceptually-based models. 
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