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ABSTRACT. In this paper a measure of the entropy associated with a channel network is 
defined, according to the Shannon informational definition, as the expectation of (-log p), where 

Pj is the ratio of the existing paths at the bifurcation level j to the total number of paths. Here j 
and Pj are respectively proportional to the arrival time of water to the network outlet and to the 
number of water parcels arriving from the distance j. Then, the expression for the channel 
network entropy proposed in this paper is well suited for hydrologic purposes. By analyzing a 
river network (and related sub-networks) of an Italian basin with surface area of 123 km2, it is 
shown that the network entropy is strictly related to basin characteristics such as average 
elevation, Horton order, and magnitude. 

1. Introduction 

The theory of entropy developed in thermodynamics and statistical mechanics as well as in 
communication and information sciences has recently been found to have wide ranging 
application in hydrology and water resources [for a review see Singh, 1989]. In this paper the 
attention is focused on the entropy of river networks which is thought to be of a great interest for 
understanding the basin scale hydrologic response. 

Runoff from a drainage basin occurs as a result of expenditure of energy. Quite naturally, the 
basin tends to spend the least amount of energy to produce that runoff. Producing the runoff 
hydrograph is the network of the basin. 

The links between concepts of energy dissipation and entropy, together with the related 
impact on the river flow, were first investigated by Leopold and Langbein [1962] who, by 
invoking a thermodynamic analogy for a river system along with the principle of least work, 
found some general rules affecting the hydraulic geometry of river channels. The same concepts 
were revisited by Yang [1971] who introduced the law of least rate of energy expenditure which 
states that during the evolution toward its equilibrium condition a natural stream chooses its 
course of flow in such a manner that the rate of potential energy expenditure per unit mass of 
water along this course is minimum. By considering the principle of maximum entropy 
equivalent to that of minimum rate of potential energy expenditure, Yang shed more light on 
some geomorphologic features of river systems. 

[n both Leopold and Langbein's [1962] and Yang's [1971] papers the river system to which 
the general laws of entropy and energy are applied were considered to be onc-dimensional. In 
their work, entropy was used as a powerful concept to investigate distributive properties of some 
energy-related characteristics of the river but no measurable quantity was proposed to evaluate 
the entropy from data. 
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In this paper an effort is made to seek this quantity in order to investigate the way it is 
affected by plano-altimetric variations in the river basin configuration. 

The opportunity is given by the link existing between the thermodynamic entropy and the 
informational entropy proposed by Shannon [1948], which will be shown in the next section. 

The way entropies vary from one stage of the system, e.g. network magnitude, basin order, 
mean elevation, etc. to another, produces insights into the knowledge of runoff evolution. In fact, 
the entropy accounts for the flow of information that the system has used to reach the current 
level of organization. This merits further investigation for, as a guess, one may think of water 
discharge as the main source of information used by the river system to adjust its configuration. 

2. Informational, Primary and Thermodynamic Entropies of the Channel Network 

In Thermodynamics, entropy of a system is defined in the difference form as 

dS' = (1) 

where Q is the thermal energy of the system and T is its absolute temperature. When the system 
changes from state 01 to state 02 the change in entropy is given by the curve integral 

(2) 

According to Boltzmann, the entropy S of a system is proportional to the logarithm of the 
relative probability of its state: 

S' = k log P (3) 

where k is Boltzmann's constant, being the number of states 01 ' 02 ' ... (in phase space) each 

molecule of the system can occupy. 
Let us think of a river network as an isolated system consisting of M=2n-1 links (molecules), 

each of which can occupy one of the states d = [ 1,2, ... , D], d being the topological distance of 
the link down node from the outlet. The network diameter D, as is the maximum value of d, is 
the total number of states. The number of ways to achieve a state of the system in which there are 
Md links in state d = 1,2, ... , D is 

g = M1 ! M2! ....... MD! 
M! M! 

(4) 

For large M, using Stirling's approximation log M! - M log M - M, one can get 

log g = M log M - 2: Md log Md 
d 

(5) 
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As g is proportional to the relative probability of the state, the entropy of the state is 
proportional to log g: 

S' - M log M - I Md log Md 
d 

(6) 

where Pd = Md / M is the probability of a given link being in the state d. The average entropy per 

link of the state of the system is given by S' / M. 
We define this unit average entropy as the Informational Entropy of the river Network (lEN), 

which we refer to as S: 

D 

S = - I Pd log Pd (7) 
d= 1 

The entropy, as given in equation (7), was also proposed by Shannon [1948] in Information 
theory. It is taken as a measure of the amount of information transmitted per symbol on the 
average, whereby a symbol is any of the D elements of the string transmitted by the information 
source and Pd is its probability, given each symbol is transmitted independently. If the logarithms 
are taken to the base 2 then the information is measured in terms of binary digits (bits), and if 
they are taken to the base e then the base is in nats. In the following we will use natural logs. 

The previous brief discussion provides an idea of the linkage existing between 
thermodynamical, statistical-mechanical and informational entropies. It suggests, as regards the 
river network case, that the distribution of links between topological levels is related to the 
thermodynamical processes involved with the system history. Also, entropy is a measure of the 
probability of state of the system as it provides an estimate for <-log p> which is a monotonically 
increasing function of p. This implies that the higher the entropy, the higher the probability of the 
system of being in that state. 

Entropy, as given in equation (7), can be maximized with respect to several kinds of 
constraints to provide the least biased distribution of Pd'S according to the information given by 
the constraints. If we only consider the obvious constraint 

(8) 

by maximizing S, we get Pd = liD , d = 1, 2, .... , D , which yields 

S = log D (9) 

This quantity is called Primary Entropy of the Network (PEN) [Kapur, 1990] in order to 
underline its significance as maximum value in absence of natural constraints. 

Indeed, in the real world, river networks never show the same number of links at any 
topological level, hence equation (9) is never strictly true. However, principally due to the 
flatness of S in a wide range around its maximum, equation (9) provides a good approximation to 
S in most cases, such that log D can be assumed as an efficient estimator of the entropy of the 
river network. 
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In the following, equation (7) will be used to analyze the relationships which relate, on 
average, variations of different characteristics of the drainage network. 

2.1. ENTROPY AND POTENTIAL ENERGY 

In thermodynamics it is possible to associate with the state 0i of the system the thermal energy 

Ei, which is in turn related to the probability Pi of state 0i . Maximizing S, given as in equation 

(7), under the constraints 

k 

1: PiEi =E (10) 
i=1 

k 

1: Pi = 1 (11) 
i = 1 

of which the (10) is the total energy of the system, yields the Maxwell-Boltzmann distribution, in 
which 

-E· /kT e [ 
Pi = -E. /kT 

L.J e J 
j 

(12) 

In the dynamics of a river network the potential energy is the one which plays the most 
relevant role. This energy is given, in the appropriate scale unit, by the elevation of network 
nodes above a datum. As it is reasonable that the current state of the river network is the result 
of its history from the infinite past, it is noteworthy to evaluate the entropy of the system as the 
most probable state under the constraint provided by the mean node elevation of the network. 

Let <Yd> be the mean node elevation of the upstream node of each link being in the 
topological level d and <Po be the mean node-elevation evaluated throughout the network 

(potential energy of the river network system) of diameter D. Maximizing S, as given in equation 
(7), under the constraints 

o 

1: Pd <Yd> = <y>o 
d=l 

d= 1 

gives, in analogy with equation (12), 

(13) 

(8) 
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Pd = '" _<yo> /DT' 
L.J e J 
j 
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(14) 

in which T' is assumed to be the (degenerate) temperature of the network. In principle, it can be 
thought of as a parameter whose definition will arise from the following derivations. 

Re-parameterizing equation (14) yields: 

where 

a=DT' 

D 

= }: e -<Yd> /a 
d=l 

Taking the mean of equation (15) we get 

D D 

<y>D = }: Pd <y d> 
d=l 

-a }: Pd Pd) 
d=l 

and, by inserting equation (7) 

<y>D = -a log + a S 

(15) 

(16) 

(17) 

(18) 

(19) 

Due to the generality of the hypotheses underlying equation (19), it should hold for any sub-
network. The a and f3 parameters, being dependent upon D and T " might in principle vary from 
one sub-network to another. However, for the system as a whole, the distribution of potential 
energy within the system is constrained by two fundamental quantities D and T ' measured with 
respect to the entire system. This is reasonable as, in analogy with thermodynamics, T ' can be 
thought of as proportional to the energy content of the system. The entropy, as defined in 
equation (7), calculated with probabilities defined in equation (14) is called [after Kapur, 1990] 
Thermodynamic Entropy. Under these assumptions, a and parameters are easily derived as 
follows. 

If we define <Pb the mean of the elevations of nodes owing to a subbasin with topological 

diameter 0, at the source of each channel we have <y>b = O. We also have S=O in sources, hence 

equation (19) will give log = O. This means = 1 and 

<y>b = a S (20) 

The a parameter can be eliminated by use of equation (9) to obtain 
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and 

<y>D 
<y>/) = log D S 

<y>/) = <PD log D 

Finally, In following equations (16), (20) and (21), we get: 

<y>/) 
T ' = --'--"'-

DlogD 
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(21) 

(22) 

(23) 

which gives the quantity that acts as the (degenerate) temperature of the network. It is 
proportional to the energy of the system, as in thermodynamics. The multiplying coefficient is 
inversely proportional to a monotonically increasing function of D. 

3. River Profiles 

The longitudinal profile of the channel elevations ean be derived by exploiting equations (9) 
and (19). If one consider that, in a channel network of diameter 8 with uniform width function 
and links elevation fall, the total elevation fall H/) from the upstream node to the outlet is twice 

the mean elevation <y>/) of the entire network (relative to tho outlet elevation, as we will refer to 

hereafter), we can introduce a relationship 

8 <y>/) 
H---/) - <d>/) (24) 

which can be regarded as a good approximation for any general case. In the (24), <d>/) is the 

topological distance of the centroid of the sub-basin width function from its outlet. 
Thus, by multiplying both sides of equation (19) by 8/ <d>/), one get 

H = -a' log + a' S (25) 

in which H is an estimate of the elevation fall from the source to the outlet of the main channel of 
the network whose entropy is S, and a' is given by mUltiplying a as in equation (16) for the 
network diameter divided by <d>/). 

The a' and parameters can be evaluated as in the case of equation (19) (see also equation 
(20) and (21) ). Thus, equation (25) becomes 

HD 
H=a'S =--S 

log D 
(26) 
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Let Yo be the elevation of the upstream node of the channel and y{) be the elevation of the 

downstream node being at a distance {) from the source. Then, by substituting S via equation (9), 
the elevation profile of the channel of topological length D is given by 

Ho 
y{) = Yo - log D log {) {) <!: 1 (27) 

4. Entropy, Strahler Order, Magnitude and Fractal Dimension 

Let a network have Strahler order Q. Then a Strahler channel (or stream) of order w, 
2 s w s Q, is defined as the sequence of links of order w whose last link drains either into a 

link of order w' > w or into the outlet. Let RB and RL respectively the bifurcation and the stream 

length ratio: 

RB = N(w-l; Q) / N(w; Q) (28) 

(29) 

where N(w; Q) is the number of streams of order w in the basin network of order Q and L(w; Q) 
is the related average length. 

Since scaling in length does not affect RL ' one can think of RL as the ratio of the number of 

links of order w to the number of links of order w-1. The number of first order streams N(1;Q) is 
said to be the magnitude of the network and it will be hereafter referred to as n. The total number 
of links in the network is M=21l-1. As the network order increases, the uncertainty about the 
topological level each link can occupy increases, so that one expects the entropy per link, as 
defined in equation (7), to increase. 

In this section the relationship between the expected value of S and the network order is 
analyzed. The implications of the derived laws are also discussed. To this end we consider the 
entropy in the primary form S = In D. For a Hortonian network we have 

(30) 

This expression corresponds to a geometric progression of base RL ' which can be expressed in 

the form 

1- R Q 
D= L 

1 - RL 
(31) 
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which implies 

RL -1 
[ 

Q ] 
In D = In RL -1 (32) 

Letting Q tend to infinity, the member at right hand side of (32) becomes: 

lim [In (RL Q - 1) -In (RL - 1)] = Q In (RJ -In (RL - 1) (33) 
00 

This expression provides a direct linear relationship between Sand Q, in which the Strahler 
order can be thought of as a measure of the network complexity: 

S = Q In (RJ - In (RL - 1) (34) 

It is noteworthy to point out that an increase in entropy from order Q 1 to Q2' (Q2 > Ql) 

accounts for a reduction in availability of energy of the system or, in other words, for the work 
done by the system to evolve from state Q 1 to state Q2. This is in agreement with equation (26) 
in which an increase of the entropy of the network corresponds to a reduction of the outlet 
elevation and hence to a loss of availability of potential energy. 

Magnitude (n) is perhaps the most important characteristic of the network as it can serve as a 
surrogate for the watershed area. The relationship between Sand n is derived by equation (34), 
given 

and 

In n 
Q = 1 + In RB 

In RL [ RL ] 
S = In n In RB + In RL _ 1 

It is noteworthy to note that equations (9) and (37) yield 

D=Cnl/F 

where: 

(35) 

(36) 

(37) 

(38) 

(39) 

The scaling coefficient F can be considered as the topological expression of the fractal 
dimension of the network, given 
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(40) 

[Le. Tarboton et aI., 1990] in which D and D I are the fractal dimensions of the entire network and 
of the main stream respectively. If RB= 4 and RL = 2 we have F= 2 and C = 2. 

By substituting equation(39) in (37) one obtains 

(41) 

S. Comparison With Real World Data 

In ordcr to asscss the theoretical assumptions and to check the validity of the interconnections 
which entropy seems to show with the Strahler order, elevation and topological diamcter, a 
natural channel network has been taken under consideration, namely, the River Arcidiaconata, 
located in southern Italy, whose charactcristics are described in table I. The topological width 
function of the channel network (no. of streams vs. topological distancc) is showed in figurc 1. 

table 1. General data of the River Arcidiaconata channel network [from Copertino et aI., 1991]. 

Surfacc (lan2) Perimeter (Ian) Drainage 1st. Order 
Density (lan-i) Streams Frcq. 

123.9 59.5 2.24 2.05 

Mean Magnitude RB RL 
Topo1.Dist. 

25.08 254 4.12 2.35 

2nd Order 3rd Order 4th Order 5th Order 
Streams Streams Streams Streams 

66 17 3 1 

Mean Maximum Minimum 
Elevation Elevation Elevation 
(m a.s.l.) (m a.s.l.) (m a.s.l.) 

538 894 237 

Thc hypothcsis of validity of thc primary entropy is tested in figurc 2, in which entropies, 
calculated for each link through cquation (7), are compared with thc logarithm of the topological 
distance d . The comparison is reasonably good with rcspect to other major causes of 
approximation, yct thc deviation betwecn the two quantities is systematically increasing. It is 
noteworthy that the figure under discussion resembles very much the deviation bctween the 
observcd and theoretical mainstream profiles computed by Yang [1971] under the hypothesis of 
uniform drop of Strahlcr streams. 
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Figure 1. River Arcidiaconata. Width function (number of links at same topological distance from the 
outlet vs. topological distance). 
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Figure 2. River Arcidiaconata. Deviation of observed entropies from theoretical primary entropy. 
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The goodness of fit of equation (22) to observed data is shown in figure 3, which refers to the 
main (longest topologically) channel. It is recognized that the theoretical equation accounts well 
for the actual mean elevation trend. 

The theoretical profile of the main stream, obtained by equation (27) is shown in figure 4, in 
comparison with the actual one. It is worthwhile remarking the closeness of the two profiles, 
amongst which the theoretical one is based upon the knowledge of the maximum elevation and 
the total drop of the stream only. An even better behavior is displayed by the profile computed by 
mean of the calculated Informational Entropy, as shown in figure 5. A linear regression on the 
pairs {Informational Entropy, Actual Elevation} can be seen (figure 6) to display the same 
coefficients of the theoretical relationship (27) . 

The last two variables with which entropy has been related are the Strahler order and the 
network magnitude. In figure 7 the calculated informational entropies averaged with the order 
(whose values are reported in table 2 compared with theoretical curves (equation 32) referred to 
as the primary entropy approximation. 

table 2. Average entropies of links owing to streams of different Horton-Strahler orders. 

1 2 3 4 5 
o 0.979 1.77 3.10 3.68 

Figure 8 shows how the theoretical curve S(n) varies for different F and RL (equation (41)) 

while in figure 9 actual data of magnitude of each link of the network with n > 10 are compared 
with the regression power law suggested by the equation (38), which is an asymptotically derived 
one. 

6. Conclusions 

Theoretical derivations, based upon general entropy laws, provide explanation for well-known 
empirical observations, are consistent with the results of other theories and produce insights into 
the understanding of yet unaccounted for river-basin characteristics. In particular, the 
informational entropy of the network is shown to be related to the thermodynamic entropy and, 
in turn, it accounts for the distribution of potential energy throughout the network. Empirical 
measures of the organization level of the network, such as the Strahler order, are shown to be 
strictly related to entropy. 

The primary (unconstrained) entropy is shown to account for most of the informational 
(observed) entropy. Yet, discrepancy between them tends to increase with the length of the 
network, thus suggesting that the effect of the available potential energy tends to be more 
significant as the network grows. 

The results of the study suggest the use of the informational entropy of a river network as 
significant quantity for further understanding the hydrologic behavior of river systems. 
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Figure 3. River Arcidiaconata. Observed and theoretical dependence between informational entro-
py and mean relative elevation of sub-catchment with varying topological diameter (main stream) 
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Figure 4. River Arcidiaconata. Actual and theoretical (primary entropy) elevation profile of the 
main stream. 
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Figure 5. River Arcidiaconata. Actual and calculated (Informational Entropy) elevation profile of 
the main stream. 
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Figure 6. River Arcidiaconata. Linear regression between Elevation and Informational Entropy 
for the main stream. 
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Figure 7_ River Arcidiaconata_ Theoretical relationships between Primary Entropy and Strahler 
Order for different values or RL and calculated IEN_ 
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Figure 8_ River Arcidiaconata_ Theoretical Relationship between Primary Entropy and 
Magnitude for different values or RL and F _ 
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Figure 9. River Arcidiaconata. Theoretical Relationship between Primary Entropy and 
Magnitude for n > 10 (asymptotic law) and calculated average lENs. 
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8. Notation 

d topological distance of the link down node from the outlet 
D network diameter (maximum value of d) 
Ei potential energy of the state i 

k Boltzmann's constant 
Ho total elevation fall from the upstream node to the outlet of a channel of diameter {j 

H total elevation fall from the source to the outlet of the main channel of the network 
L(w; Q) average length of order w in the basin network of order Q 
n Magnitude of the network (number of first order streams) 
N( w; Q) number of streams of order w in the basin network of order Q 
N(l;Q) (n) number of first order streams (magnitude of the network) 
P d probability of a given link being in the state d 
Q thermal energy 
RB ,RL bifurcation and stream length ratio 

S' thermodynamic entropy 
S network entropy 
T temperature 
T' degenerate temperature of the network 
Yo elevation of the upstream node of the channel 

Yo elevation of the downstream node being at a distance {j from the source 

<y d> mean node elevation of the upstream node of each link being in the topological level d 

<y>D mean node elevation evaluated throughout the network of diameter D 

<y>o mean of the elevations of nodes owing to a subbasin with topological diameter {j 

a, coefficients of the law «y d>' Pd) 
a system state 
w Strahler order of a generic channel (or stream) 
Q Strahler order of the network 


