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Abstract.2

Hydraulic infrastructures are commonly designed with reference to target3

values of flood peak, estimated using probabilistic techniques, such as flood4

frequency analysis. The application of these techniques underlies levels of un-5

certainty, which are sometimes quantified but normally not accounted for ex-6

plicitly in the decision regarding design discharges. The present approach aims7

at defining a procedure which enables the definition of UNcertainty COm-8

pliant DEsign (UNCODE) values of flood peaks. To pursue this goal, we first9

demonstrate the equivalence of the Standard design based on the return pe-10

riod and the cost-benefit procedure, when linear cost and damage functions11

are used. We then use this result to assign an expected cost to estimation12

errors, thus setting a framework to obtain a design flood estimator which mi-13

nimises the total expected cost. This procedure properly accounts for the un-14

certainty which is inherent in the frequency curve estimation. Applications15

of the UNCODE procedure to real cases leads to remarkable displacement16

of the design flood from the Standard values. UNCODE estimates are sy-17

stematically larger than the Standard ones, with substantial diÆerences (up18

to 55%) when large return periods or short data samples are considered.19
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1. Introduction

The practical objective of a flood frequency analysis is to obtain, for a given return pe-20

riod T , a design flood, which is generally represented by the quantile of a flood frequency21

curve corresponding to a particular T . The specific mathematical representation of the22

flood frequency curve can be obtained either using locally available data samples, or from23

regional flood frequency analysis. The application of these techniques underlies levels of24

uncertainty which have recently received increasing attention in the scientific literature:25

for example, De Michele and Rosso [2001],Cameron [2000], Brath et al. [2006], Blazkova26

and Beven [2009] Laio et al. [2011], Liang et al. [2012] and Viglione et al. [2013] have27

attained a convincing quantification of the uncertainty involved in the statistical estima-28

tion of the flood frequency curve. In the United States, the U.S. Arms Corps of29

Engineers (USACE) has been putting a lot of eÆort for more than 20 years,30

since the beginning of ’90s in developing uncertainty - compliant compre-31

hensive design flood procedure for the United States of America, as reported32

in U.S. Army Corps of Engineers(USACE) [1996]. There, the uncertainty33

implied in each step of the design flood procedure is accounted for. However,34

as highlighted in Davis et al. [2008], the USACE procedure do not provide35

decisional criteria to follow in uncertainty conditions: uncertainty has to36

be taken into account but no rules are provided to converge to final design37

values. Uncertainty can be quantified in terms of quantile standard deviation, or in38

terms of the full probability distribution of the quantile. In the case of flood frequency39

analysis this means that, for a given return period T , a probability distribution function40
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of the (single) design flood estimator can be provided. In most cases, results of the un-41

certainty analysis are provided in terms of a ”reference” frequency curve associated with42

its confidence bands (see Figure 1).43

Whatever the approach used to define a flood quantile estimator, the statistical inference44

will be aÆected by uncertainty that have both epistemic and aleatory nature[e.g., Bodo45

and Unny , 1976; Merz and Thieken, 2005]. While the latter cannot be tackled, because46

it refers to the natural variability of the events under study, the former depends on the47

amount of available data and on capacity of the inference procedure to reproduce the48

underlying hydrological processes. The most relevant sources of epistemic uncertainties49

are data availability and model selection. In a regional statistical analysis, uneven data50

sets produce eÆects that have been studied [e.g., Stedinger and Tasker , 1985; Reis et al.,51

2005] in terms of performance of the statistical procedure when a regional statistical52

analysis is performed. Accuracy and robustness of the regional estimates can be assumed53

and inference procedures can be adapted by properly weighting the initial data. Model54

selection is also a limiting factor, mainly concerned with: i) the choice of the probability55

distribution function and ii) the choice of the parameters estimation technique. Regarding56

point i), diÆerent families of probability distribution functions are available and there is a57

great amount of subjectivity in the selection of the best distribution to be adopted. This58

subjectivity is critical, because, using the same data, diÆerent probability distribution59

functions can produce quite diÆerent design values for large return periods [see e.g., Laio60

et al., 2011], even though, for low return periods, the obtained fitting is good for all61

distribution functions[Laio et al., 2009]. With regard to point ii), the uncertainty deriving62

from the specific parameter estimation technique is generally dependent on the bias and63
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variance of the estimators [for a more detailed analysis see Tung and Yen [2005] and64

references therein].65

Under this prospective, the definition of ”The” design flood probability distribution66

function for a given return period appears to be the result of several ’averaging’ proce-67

dures, not necessarily producing the most meaningful result. From this consideration,68

the main question and motivation behind this paper arises: can a reasonable design flood69

estimator be devised for a probability distribution function associated with its measurable70

uncertainty?71

To address this question, a model in which standard methods for flood fre-72

quency analysis are casted in a cost-benefit analysis decision framework is73

proposed. a model in which probabilistic design is casted in a cost73 benefit analysis74

decision framework is proposed In this sense, the present paper shares a similar scien-75

tific background with a recent paper by Su and Tung [2013]. However, Su and Tung76

[2013] concentrate their attention on the verification rather than design of hydraulic in-77

frastructures; moreover, they extend their analysis to diÆerent risk-based decision-making78

criteria, which is not necessary here thanks to the relation between cost-benefit analysis79

and standard flood frequency analysis established in section 2.2.80

The conceptual bases of the cost-benefit approach procedure in its traditional form81

(without uncertainty) are presented in section 2.1 and relations between standard flood82

frequency analysis and cost - benefit analysis are defined in section 2.2. The application of83

cost-benefit approach to flood frequency analysis in uncertain conditions is then described84

in section 3. The whole model is hence applied in section 5 to an extensive data set of85
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annual flow peaks from North-Western Italy basins; results are finally discussed in the86

conclusion section.87

2. The Least Total Expected Cost approach to design (without uncertainty)

2.1. Main features of a cost-benefit analysis

The cost-benefit approach is not frequently used in practice for the design of hydraulic88

infrastructures, even though some applications are available in the literature [Tung and89

Mays,1981; Ganoulis,2003 and Jonkman,2004]. In general, given x§ a decision variable, the90

purpose of a cost-benefit analysis is to obtain the optimal value of the decision variable,91

x§opt, comparing costs and benefits each choice of x§ implies. In the case of hydraulic92

infrastructures the decision variable x§ is usually the design flood q§. The optimal design93

flood estimator q§opt can be obtained by quantifying and comparing costs and damages94

related to diÆerent design floods. The above-mentioned comparison can be performed95

using the Least Total Expected Cost approach (LTEC) to design [Bao et al., 1987]. LTEC96

application requires the definition of the cost function, CF (q§ | CCC), which measures costs97

related to diÆerent design flood values q§, e.g. referred to the initial construction and to98

the maintenance phases. Costs are assumed to increase proportionally to the design flood99

q§ and are equal to 0 when q§ = 0. The relationship between cost and q§ is parametrised100

according to the type of function considered (e.g., linear, parabolic, etc.) and to a vector101

of parameters CCC. For instance, a general linear cost function is given by102

CF (q§ | CCC) = c0 + c · q§ (1)103

where c0 (the y-intercept) and c (the slope) are parameters. Figure 2b depicts an example104

of a cost function (linear, solid line). Costs are assumed to increase proportionally105
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to the design flood q§ and are equal to 0 when q§ = 0. Figure 2b depicts the106

example of the linear cost (linear, solid line) with intercept equal to 0 as107

assumed in the paper.108

The damage function DF (q§, q | DDD) measures the expenses needed to recover from109

a flooding when a discharge q greater than the design value q§ occurs. Stedinger [1997]110

encourages the use of the expected damage function for hydraulic design purposes [see also111

Goldman [1997]], but so far no clear consensus exists [see Davis et al., 1972; Beard, 1990;112

Beard, 1997 and Beard, 1998] about the e±ciency of the expected damage probability to113

obtain flood estimators.114

However, models for flood damage evaluation have recently benefited from a great eÆort115

of research [e.g. Merz and Thieken, 2009; Merz et al., 2010; Vogel and Scherbaum, 2012;116

Merz et al., 2013 and Vogel and Merz, 2013]. In very general terms, damage functions117

can be related to the discharge q by means of a function with a threshold:118

DF (q§, q | DDD) =

(
¢ (q§, q | DDD) if q > q§

0 if q ∑ q§
. (2)119

In equation 2 the function ¢ depends on the design flood q§, on the discharge q of the120

flooding event and on a vector of parameters DDD associated to the type of the function ¢121

(e.g., linear, parabolic, etc.). To exemplify, Figure 2a depicts a piecewise linear damage122

function,123

¢ (q§, q | DDD) = d0 + d · (q ° q§) , (3)124

where d0 and d are parameters. If q > q§, the damage increases proportionally to the125

amount of the discharge excess q ° q§. Both the design flood estimator q§ and the actual126
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discharge q are random variables. In order to calculate the Expected Damage (ED)127

corresponding to a design flood it is necessary to apply the Expected Value operator,128

e.g. the integral over the whole domain of the random variable q of the damage function129

¢ (q§, q | DDD) multiplied by the flood probability distribution function p (q | £££) (where £££130

is the set of parameters of the probability distribution function). The relation is:131

ED (q§ | DDD,£££) =

Z 1

q§
¢ (q§, q | DDD) · p (q | £££) dq. (4)132

Note that the domain of integration starts at the value q§ because the damage function133

is equal to 0 for values lower than q§. The Expected Damage function ED (q§ | DDD,£££), as134

depicted in Figure 2b, is therefore a function of q§ and allows one to define the optimal135

design discharge q§opt. The latter comes from summing up construction costs CF and136

Expected Damage (which of course decreases with the increasing of the security level137

related to q§) and searching for a minimum of the Total Expected Cost (CTOT , fig. 2b).138

Therefore, the Total Expected Cost function can be defined as:139

CTOT (q§ | CCC,DDD,£££) = CF (q§ | CCC) +

Z 1

q§
¢ (q§, q | DDD) · p (q | £££) dq. (5)140

Searching for the minimum of CTOT allows one to select the optimal design flood estimator141

as142

q§opt = argmin
q§

[CTOT (q§ | CCC,DDD,£££)]. (6)143

2.2. Relations between flood frequency analysis and cost-benefit analysis

Once q§opt is obtained, it is interesting to compare this value with the design flood value144

qT obtained from standard flood frequency analysis. When a return period T is set,145

this is equivalent to setting a non-exceedance probability 1 ° 1
T

for the design flood and146
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calculating the corresponding quantile,147

qT = P°1
q

µ
1° 1

T

ØØØØ£££
∂

, (7)148

where Pq is the the cumulative distribution function and P°1
q is its inverse, i.e. the quantile149

function.150

On the other hand, q§opt derived from LTEC depends on DF (q§, q | DDD) and CF (q§ | CCC).151

If linear functions are used for both terms, as in equations (3) and (1), q§opt from the LTEC152

procedure comes to be equal to qT based only on the condition d
c

= T , where d and c are153

defined in equations (3) and (1). This equivalence can be analytically demonstrated by154

rewriting equation (5) using piecewise linear cost and damage functions as follows:155

CTOT (q§ | c, d,£££) = c · q§ +

Z 1

q§
d · (q ° q§) · p (q | £££) dq. (8)156

Taking the derivative of the total expected cost function with respect to q§ and setting it157

to 0, one obtains158

d

c
=

1

1° Pq(q§ | £££)
= T. (9)159

In other words, designing an hydraulic infrastructure with a return period T is analytically160

equivalent to applying a cost-benefit approach with linear cost and damage functions and161

with d = c · T . Validity of equations (8) and (9) can be recognized considering that162

the linear functions (3) and (1) can be seen as the result of expanding more complicated163

cost and damage functions in a Taylor series, and truncating these expansions to the164

first order. Suppose to fix the value of T : once the return period is set, the slope of the165

damage function is implicitly assumed to be T°times larger than the slope of the cost166

function, d = c · T , because d
c

= T acts as a magnifying factor of damage vs167
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cost. This means that: i) this condition can be applied even if the actual168

costs of the infrastructure are unknown; ii) the global number of parameters169

of equation (8) is exactly the same as that of the traditional flood frequency170

analysis. This means that the application of the linear cost - benefit model171

itself does not introduced further sources of uncertainty to the traditional172

inference procedure, i.e. flood frequency analysis. Lot of eÆort has recently173

been put in developing damage models and risk analysis procedure which are174

essential to calculate, let say, ”real” damage functions. These functions are175

usually non-linear and their parameters are calibrated on past flood scenarios176

or synthetic flood scenarios. Normally, te shape of the damage function177

plays a role (Arnell [1989]) the uncertainty associated to these functions178

is high (Merz and Thieken, 2009, Apel, 2010). The application of non-179

linear damage functions would introduce more parameters in the model, and,180

above all, more uncertainty. Though simple, the proposed linear model has181

the value of being exactly an equivalent formulation of the traditional flood182

frequency analysis.183

this condition can be applied even if the actual costs of the infrastructure are unknown.184

Once this simplified, yet complete, LTEC procedure to obtain q§opt is set, we can take185

into account the eÆects of parametric uncertainty on a LTEC procedure. This is described186

in the following section.187

3. The Least total expected cost approach to design with uncertainty

Probability distribution functions p(q | £££) of flood peaks describe the quantiles of a ran-188

dom variable q based on a set of parameters £££ that are estimated according to a best-fit189
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criterion which adapts the cumulative probability function to the sample cumulative fre-190

quencies. Parameter estimates are themselves random variables: therefore the estimated191

values are uncertain and this uncertainty propagates to the whole flood frequency curve.192

When considering parameters £££ as random variables, a framework is needed to account193

for uncertainty in the definition of the flood quantile qT . One of the techniques aiming194

at accounting for this uncertainty is the Bayesian approach, first introduced in statistical195

hydrology by Wood and Rodriguez-Iturbe [1975] and Stedinger [1983]. In the Bayesian196

approach the pdf p(q | £££) is multiplied by the parameters pdf h(£££) and integrated in the197

parameter space, according to the Total Probability theorem [Kuczera, 1999], as follows:198

ep(q) =

Z

£££

p (q | £££) · h (£££) d£££. (10)199

Stedinger [1983] called ep(q) the design flood distribution or design flood expected probabi-200

lity [see also Kuczera [1999] and references therein]. The parameter distribution function201

h(£££) describes how precisely the estimates of parameters are known [Kuczera, 1999]. As202

the number of parameter of the set £££ is usually more than 1, the distribution h(£££) is203

generally a multivariate function.204

Substituting in equation (8) p (q | £££) with the design flood distribution of equation (10)205

one obtains206

eCTOT (q§ | c, d) = c · q§ +

Z 1

q§
d · (q ° q§) · ep(q)dq =207

= c · q§ +

Z 1

q§
d · (q ° q§) ·

Z

£££

p (q | £££) · h (£££) d£££dq,208

(11)209
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where eCTOT (q§ | c, d) is the Total Linear Expected Cost function in uncertain conditions.210

As this paper is focused on at-site flood frequency analysis, the a-prior211

contribution in the definition of the Bayes’ rule is neglected. However, there212

is no restriction in taking into account this contribution, which is highly213

recomended when avaiable (see Stedinger [1997], Kuczera [1999]), both in214

equation (10) and equation (11).215

The estimator corresponding to the minimum of eCTOT (q§ | c, d) is the UNcertainty COm-216

pliant DEsign (UNCODE) flood estimator which will be called q§unc in the following:217

q§unc = argmin
q§

eCTOT (q§ | c, d) . (12)218

It is important to remark that, when introducing parameter uncertainty to the219

linear model, the relationship of equation (9) still holds. This implies that220

the global number of parameters of equation (11) remains the same as that221

of equation (8) (LTEC without uncertainty, see section 2.2).222

using the relationship d
c

= T , the global number of parameters of equation (11) remains223

the same as that of equation (8) (LTEC without uncertainty); In fact, c acts as a scaling224

factor for the total cost and does not aÆect the position of the minimum. Therefore,225

diÆerences between the design flood estimators q§unc and qT = q§opt can be fully ascribed to226

consideration related to parametric uncertainty.227

4. Model implementation

4.1. Numerical instances

This section is devoted to describe how the symbolic model of equation (11) can be228

implemented in practice to obtain optimal design flood estimators q§unc under uncertainty.229
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First of all, the integral of the design flood distribution in equation (10) must be solved.230

An analytical solution of the Expected Probability model of equation (10) exists only if231

p (q | £££) is a 2-parameter Lognormal distribution [Wood and Rodriguez-Iturbe, 1975 and232

Stedinger , 1983]. For other probability distributions, numerical techniques must be used.233

A numerical Monte-Carlo simulation technique is adopted here, as described in Kuczera234

[1999]. In particular, considering that the cost and the damage functions are independent235

on the set of parameters £££, the order of integration can be changed and equation (11)236

can be rewritten as:237

eCTOT (q§ | c, d) =

Z

£££

µ
c · q§ +

Z 1

q§
d · (q ° q§)· p(q | £££)dq

∂
· h (£££) d£££ =238

=

Z

£££

CTOT (q§ | c, d,£££) · h(£££)d£££,239

(13)240

Using equation (13), the numerical integration procedure is implemented according to the241

following main steps:242

1. the vector £££ of parameters is randomly sampled k times from the corresponding243

multivariate parameter pdf h (£££), obtaining the parameters set {£££k, k = 1, . . . , M};244

2. once the parameter sets are sampled, equation (8) is applied to each of them. A245

set of total expected cost functions is then obtained, one for each set of parameters (see246

Figure 3, dotted grey lines).247

3. the CTOT curves are averaged together, obtaining an average total expected cost248

function (see solid line in Figure 3);249

D R A F T March 19, 2014, 12:37pm D R A F T



X - 14 A.BOTTO AT AL.: UNCERTAINTY-COMPLIANT DESIGN-FLOOD ESTIMATION

4. the value of q§ corresponding to the minimum of the function is selected as the250

optimal design flood estimator in uncertain conditions, q§unc.251

In step 1 of the Monte-Carlo procedure, the pdf h (£££) of the distribution parameters252

is required. In general terms, h (£££) depends both on the type of probability distribution253

function p (q | £££), and on the parameters estimation technique. Here, the L-moments254

technique for parameter estimation is used [see e.g. Stedinger et al. [1993]]. In uncertain255

conditions, the application of the L-moments estimation technique is particularly conve-256

nient, as demonstrated by Hosking and Wallis [1997], because the pdf of the L-moments257

depends only weakly on the discharge pdf p (q | £££): in fact, L-moments tend to be nor-258

mally distributed even with small samples [Hosking and Wallis , 1997]. Once the pdf of259

the L-moments is available, the multivariate distribution of parameters can be obtained260

as a derived distribution (note that the relationship between parameters and L-moments261

is not linear). In terms of the numerical application this means that: i) firstly, the L-262

moments pdfs are obtained consistently with the available sample of data; ii) a family of263

k L-moment sets is randomly sampled from their pdf’s; iii) the set of k parameter vectors264

£££ required in the step 1 of the above-described procedure is obtained from the correspon-265

ding L-moments set , as derived distributions (note that the transformation is266

non-linear).267

For analytical convenience L-moments ratios are often used instead of L-moments: if q̄268

is the mean discharge, equal to the L-moment of order one, ø2 (also defined as L-CV) is269

the ratio between the L-moment of the second order and q̄ and ø3, or L-CA, is the ratio270

between the L-moment of the third order and the L-moment of the second order. Here,271

simple formulas reported in Viglione [2007] were used to obtain the pdfs of the L-moments272
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ratios q̄, ø2, ø3. More in detail, ø2, ø3 are described by a bivariate Normal distribution273

because ø2, ø3 are correlated, while q̄ is described by a univariate Normal distribution274

because q̄ is typically independent on ø2 and ø3 [further details are reported in Hosking275

and Wallis [1997]; Elamir and Seheult [2004] and Viglione [2010]].276

4.2. Comparison between standard and UNCODE flood quantiles

The UNCODE flood estimators qunc, computed as described above, can be quite diÆe-277

rent from the values obtained from the Standard design flood estimators qT , called here278

the Standard ones. The diÆerences between the two can be assessed in terms of deviation279

of their confidence probability, CP , a non-exceedance probability associated to qT and280

qunc, computed on the confidence bands. Confidence bands are calculated ac-281

cording to the following steps: i) L-moments ratios are sampled from their282

relative probability distribution functions; ii) from each samples, parameters283

are estimated, imposing a specific probability distribution function (derived284

distribution); iii) quantiles are computed for a given exceedance probability285

from each samples (quantile extraction), so that for each exceedance proba-286

bility (or return period, as reported in the figures) an empirical probability287

distribution function of quantiles is obtained. Derived distributions estima-288

tion and quantile esxtraction are both non-linear transformations. Note that289

the L-moments ratios, and consequently the parameters and the applied pro-290

bability distribution function used to derive the confidence bands are exactly291

the same as those applied to calculate the optimal design flood estimators,292

qunc, whose sampling hypothesis and procedure have been described in section293
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4.1. Otherwise, the confidence bands and the optimal design flood estimators294

reported over them would not be consistent to each other.295

The meaning of CP can be explained by an example: in Figure 4, panel a), confidence296

bands computed for a sample of data are displayed. For a given return period, say T = 500297

years, the Standard design flood quantile is estimated (as displayed by the squared point).298

The UNCODE estimate is represented by the the triangle-shaped point, and the pdf of299

the flood quantile is depicted on the right (see also Figure 1). Considering the position of300

the Standard and of the UNCODE design floods on the flood quantile pdf (Figure 4 panel301

b), the CP for each estimator is defined as its non-exceedance probability computed on302

the quantile flood probability curve. The comparison between the two estimates can be303

assessed through a coe±cient ∞ defined as ∞ = (CPunc°CPT ) where CPunc and CPT are304

respectively the confidence probability of the UNCODE and of the Standard estimates305

as illustrated in Figure 5, panel a, b and c. Since the L-moments pdfs are normal, the306

Standard design flood estimate qT converges towards the median and its CP is thus always307

equal to 0.5. Therefore, the domain of ∞ spans from °0.5 to +0.5, where the positive308

values of ∞ indicate UNCODE estimates larger than the Standard ones.309

5. Application to real-world flood data sets

The procedure described in the preceding paragraphs has been applied to a set of 10310

series of annual maxima of flood peaks from sub-catchments of the Po river located in the311

North–West of Italy. In Table 1 some basic information about the considered flood records312

are reported. A 3-parameters Lognormal probability distribution has been first used to fit313

the flood records, as suggested in previous studies [Laio et al., 2011], but the Generalised314

Extreme Value (GEV) pdf has also been applied to check if the choice of the probability315

D R A F T March 19, 2014, 12:37pm D R A F T



A.BOTTO AT AL.: UNCERTAINTY-COMPLIANT DESIGN-FLOOD ESTIMATION X - 17

distribution function plays a significant role in determining the outcome of the procedure.316

Simulations are based on the selection of 5 return periods {T = 50, 100, 200, 500, 1000317

years} and k = 10000 sets of sampled L-moments ratios, generated from the corresponding318

probability distribution functions (see section 4.1).319

The model is at first applied in non-uncertain conditions: this isachieved by setting to 0320

the standard deviation of the L-moment ratios distribution functions; no dispersion is then321

obtained and the Standard and UNCODE design flood estimators converge, as expected,322

to the same value, located on the median curve of the confidence bands (dotted line in323

Figure 3). This trivial case is useful to check the accuracy of the numerical procedure.324

This is achieved by setting converging to 0 (i.e. meaning a value which325

can be considered small if compared to the values of discharge data applied,326

around 3 or 4 orders of magnitude inferior) the standard deviation of the327

L-moment ratios distribution functions so that no dispersion is obtained;328

in other word, this means that parameter uncertainty is not taken into ac-329

count. This trivial case is useful to check the correctness of the numerical330

procedure, which is expected to converge to the standard qT, as analytically331

demonstrated by equation (8) and (9). As expected, the Standard and UN-332

CODE design flood estimators converge to the same value, located on the333

median curve of the confidence bands (dotted line in Figure 4). When uncer-334

tainty is fully taken into account, the procedure produces only positive ∞ values, regardless335

of the return period T . This indicates that the uncertainty-compliant design flood is sy-336

stematically larger than the Standard value, consistent to what is reported by and337

Stedinger [1983], who demostrated the non central t distribution of a quantile338
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estimate with normal distribution and by Arnell [1989] who did numerical339

experiments given the assumpion of non-central t distribution. This can be340

recognized from Figure 6, where the estimated coe±cients ∞ for 5 diÆerent return periods341

and for each series are reported. The solid black line is the mean value of ∞ obtained from342

the 10 series for each return period; it can be seen that ∞ increase quite linearly (in the343

semi-logarithmic scale) for increasing return period T . The increment is marginal when344

low return periods are considered, but becomes critical for return periods larger than 100345

years.346

When the GEV distribution is considered all ∞ values remain positive, regardless of the347

return period T , with ∞ increasing for increasing return period T (except for the case of348

the Dora Riparia a Oulx for T = 50 years); Figure 7 reports the results obtained with the349

GEV distribution for each series, together with the mean curve (solid black line).350

Solid black lines in Figure 6 and Figure 7 show that, in average, coe±cients ∞ are351

positive both for LN3 and GEV (with a range spanning from 0.05 to 0.24 for high return352

periods); the increment is almost linear with T in semi-logarithmic scale, with higher353

slope in the case of the LN3 distribution.354

5.1. EÆect of sample length

In evaluating the results of the above procedure, it is quite important to consider the355

diÆerent content of information that resides in hydrological records of diÆerent length.356

To investigate the eÆects of sample size in the deviation of qunc from qT , a numerical357

experiment has been made by using LN3 and GEV distributions on the longest available358

flood series, Dora Baltea at Tavagnasco (n = 82). The eÆect of sample size has been359

investigated by considering estimates obtained by hypothetical shorter samples. 6 diÆerent360
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lengths {n = 82, 70, 55, 40, 25, 10} were considered. The samples preserve the same mean361

and L-moments ratios of the original series, but the related standard deviation increases362

with decreasing length of the sample, following Viglione [2007].363

The UNCODE and Standard design flood estimates for 5 return periods T were then364

computed based on each sub-sample characteristics. Analysis of results show that the365

increased variance from short samples determines an increment in the value of the ∞366

coe±cient for any return period T . As an example, for the return period T = 100 years the367

coe±cient ∞ is 0.1 for the full-length series and increases to 0.145 for the sub-sample with368

n = 25. These results are displayed in Figure 8. The fact that ∞ increases with decreasing369

n implies that the UNCODE estimator is very far apart form the Standard one when370

small samples are considered: in fact, the distance between qT and qunc increases both371

because the UNCODE estimator moves away from the median value (in fact, ∞ increases)372

and because the distribution of design values spans a larger range, due to the greater373

uncertainty (i.e., even when ∞ is fixed, qunc ° qT will be larger in smaller samples). This374

is apparent in Figure 9, where the confidence bands of two diÆerent sub-sampled series,375

n = 82 and n = 25, are depicted, to provide a clearer context in which the diÆerence376

between qT and qunc is obtained. Note that the design flood increases of a 1.5 factor for377

T=100 years when n=25.378

6. Discussion and conclusions

The present work considers the eÆect of the parametric uncertainties in the estimation379

of design flood quantile. A ”design” model has been developed in which parametric380

uncertainties and cost-benefit analysis are integrated in the standard flood frequency381

analysis. It has been demonstrated that the standard flood frequency analysis estimator382
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and the design flood estimator provided by the cost-benefit analysis (without uncertainty)383

with linear damage and cost functions are equal when the ratio between the slope of the384

damage and the cost function is equal to T . This analytical result is a key concept in385

the whole subsequent inference procedure: it demonstrates that these two techniques,386

the standard flood frequency analysis and the cost-benefit analysis, are totally equivalent387

when uncertainty is neglected; moreover, the cost-benefit analysis does not introduce388

any further uncertainty in the flood frequency analysis. In the presence of uncertainty,389

the economic-driven approach is then used to obtained a design flood estimator which390

corresponds to the minimum of the total cost (where the total cost is the sum of the391

costs to build the hydraulic infrastructure and the damages which might occur in case of392

overflow). The devised procedure leads to the UNcertainty COpliant DEsign value that393

can be quite diÆerent from the Standard one. To assess the displacement in the design394

values induced by uncertainty practical applications have been implemented for 10 time395

series of Italian catchments. Results show that the UNCODE design flood estimates are396

systematically larger than the Standard ones, with the diÆerence becoming more and more397

substantial for high return periods (T > 100 years). This suggests that the standard flood398

frequency procedures may lead to underestimated design floods. Results are negligibly399

influenced by the type of probability distribution functions considered, while sample length400

plays a role: short sample length moves the UNCODE flood estimator to even larger401

values, recasting under a new light the role of data availability in flood frequency analysis.402

Indeed, a scarce data availability does not only increase the amplitude of the confidence403

bands, but also moves to larger values the design value minimising the expected cost,404

i.e. the UNCODE estimator. Due to the flexibility of the UNCODE approach,405
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many improvments to the models, such as non-linear cost-damage functions,406

a prior information and non-stationarity analysis (Salas and Obeysekera407

[2014]), could be further investigated in the future.408
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Table 1. Summary of the 10 series used in the case study.

Station number Name Acronym Record length[n] A [km2̂] Hm[m]

1 Dora Baltea a Tavagnasco DBATA 82 3320.85 2087
2 Tanaro a Farigliano TANFA 69 1502.15 945
3 Stura di Lanzo a Lanzo SLALA 64 578.31 1780
4 Bormida a Spigno a Valla BSPVA 52 68.46 468
5 Dora Riparia a Oulx DRIOU 43 260.04 2164
6 Rutor a Promise RUTPR 33 45.76 2525
7 Corsaglia a Presa Molline CORPM 25 89.31 1525
8 Po a Carignano POCA 16 3955.59 1101
9 Belbo a Castelnuovo Belbo BELCA 13 420.75 372
10 Malone a Brandizzo MALBR 10 333.37 439

a Footnote text here.
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Figure 1. Uncertainty evaluation and definition of the confidence bands. Suppose to fix a

return period T = 500 years (panel a): in the case uncertainties are accounted for, it is possible

to obtain a probability distribution function of design flood estimator q§ (panel b) instead of a

single value for the specific T .
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Figure 2. Panel a) Construction of the expected damage function: suppose to fix the value

of the design flood estimator q§ = 500 m3/s: by doing this, the damage function is defined

according to equation (2); the integral of the product of the damage function and the flood

probability distribution function is equal to the single value of the expected damage function,

ED corresponding to q§ = 500 m3/s, as presented in equation (4). Panel b)The total expected

cost function, CTOT is built as the sum of the cost function, CF , and the expected damage

function, ED.
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Figure 3. Numerical implementation of the method to obtain the UNCODE flood estimator.

Each of the dotted curves represent a total expected cost function obtained from diÆerent sets

of parameters, £k£k£k, randomly sampled from the relevant distribution function. The solid curve

stands for the average expected cost function. The minimum of the curve is the UNCODE

estimator, q§unc (only three sampled total expected cost functions are reported here out of the

10000 used).
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Figure 4. CP definition: given a return period T = 500 years, and the corresponding q§unc

estimator, CP is the non-exceedance probability of the UNCODE estimator, measured on the

design flood probability distribution (coloured area in panel b). Note that the CP for qT is equal

to 0.5.
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Figure 5. Standard design flood estimators corresponds to a confidence probability (as depicted

in figure4) equal to 0.5 (panel a); UNCODE estimators present a value of CP larger than 0.5

(panel b); the diÆerence between Standard design flood estimators and UNCODE estimators can

be appreciated using the coe±cient ∞ (panel c).
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Figure 6. Coe±cient ∞ calculated on the 10 series for the LN3 pdf. The black solid line is

obtained by averaging the 10 series.
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Figure 7. Coe±cients ∞ calculated on the 10 series for the GEV pdf. The black solid line is

obtained by averaging the 10 series.
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Figure 8. Dora Baltea at Tavagnasco confidence coe±cient in case of sub-sampling. Sub-sample

lengths are n=10,25,40,55,70,82. Each point represents the value of the confidence coe±cient of

a specific sub-sample for a return period T = 100 years.
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Figure 9. Influence of the sample length on the confidence bands: the figure depicts the

diÆerent dispersion around the median of the confidence bands in the case of full sample, n = 82

(on panel a) and n = 25 (on panel b) for the Dora Baltea at Tavagnasco record.
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