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Abstract

Univariate shot noise models for streamflow generation at short time scales are examined in detail, to reconsider the verification

of the basic hypotheses behind the models, the problem of objectively evaluating their performances, and the importance of model

parsimony. The classical approach to model estimation is shown to produce some inconsistencies in the inverse evaluation of the

model input, in particular regarding the assumed independence and Poissonianity of the pulses; an alternative procedure for pulses

identification is proposed, which enables the mentioned hypotheses to be respected. To evaluate model performances, two indices

are proposed, respectively based on the comparison of real and generated flow duration curves (I1) and annual maxima statistics (I2).

A method for explicitly accounting for the dependence of I1 and I2 on the number of model parameters is described. An application

to seven daily streamflow time series in northern Italy demonstrates the validity of the proposed procedure for the identification of

the input and the usefulness of the performance indices in discerning among competing models.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction and scope of the paper

Synthetic streamflow data at different time resolu-

tions (hourly to yearly) are often required for planning

and management of water resources systems (see e.g.

[22]). Filtered point processes are commonly used to

generate synthetic data at short time scales (hourly to
weekly), basically for their better aptitude to reproduce

the presence of peaks and recessions that appear in daily

discharge data. In particular, filtered Poisson processes

(also named Shot Noise processes) have received consi-

derable attention in the hydrologic literature [5,17,29,

16,19,31]. Most efforts in this field have been devoted

to the definition of the (deterministic) system response

function, or to the parameter estimation methods, while
other significant problems have been somewhat

neglected. Among these, the verification of the model
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basic hypotheses, such as the independence of consecu-

tive pulses in the marked point process and the Poisso-

nianity of the distribution of their occurrences, the

problem of objectively evaluating model performances,

and the role of the number of model parameters on

the model overall efficiency.

The first point (verification of model hypotheses) is
strictly connected to the method used to estimate the

pulse sequence representing the model input, which is

meant to be the effective rainfall sequence. A typical

approach is to assign a pulse to any rise in the discharge

time series [4,19,31]; however, this procedure tends to

produce pulse sequences with a very large average num-

ber of events per year, k, and the basic hypotheses

behind the Poisson model (independence and Poissonia-
nity) tend not to be respected. A new procedure,

borrowed from statistical hydrology, is proposed here

to cope with this problem. The effective rainfall events

are selected with a modified Peak Over Threshold

approach [7] in a way that guarantees the respect of

the mentioned hypotheses (see Section 3).
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In the second part of the paper (Section 4) the prob-

lem of properly evaluating model performances is con-

sidered (see for example [11]), with the scope of

providing simple tools which enable one to compare dif-

ferent models, or applications of the same model at dif-

ferent sites. The focus is on the definition of objective
indices of performance, for example based on the dis-

tance between real and generated flow duration curves.

A point of specific interest is the analysis of the impact

of the number of parameters on model efficiency. For

synthetic daily streamflow simulation this number can

be rather large when seasonally varying parameters are

employed (e.g. 67 parameters in the Treiber and Plate

[25] model; 108 parameters in the Aksoy and Bayazit
[2] model). So far, the little attention devoted to the

use of such largely parameterized models was justified

by the fact that daily samples are rather large in size.

However, it is shown here that the temporal dependence

of daily discharges strongly reduces the information

content of available samples, increasing the relevance

of having parsimonious models. A correction term to

the mentioned indices of performance is thus introduced
to explicitly account for the number of model parame-

ters. An application to seven time series from basins in

North-Western Italy demonstrates the practical useful-

ness of the proposed techniques (Section 5).
2. Shot noise models

A shot noise process is a filtered sequence of indepen-

dent and instantaneous pulses that can be represented

as (e.g. [33])

qðtÞ ¼
XNt

i¼1

uihðt � siÞ; ð1Þ

where t is time, Nt is the total number of occurrences up

to time t, ui is the intensity of the ith pulse, h(t � si) is the
response function, and si is the time of occurrence of the

ith pulse. The random times {si} form a Poisson

sequence, i.e. the number of occurrences Nt follows a
Poisson distribution with rate k. The presence of the

summation term in (1) comes from the principle of

superimposition of effects, which reveals the underlying

assumption of linearity of the input–output relation.

The daily averaged streamflow, qt ¼
R t
t�1

qðtÞdt, has the
same representation as the continuous time variable

q(t) in (1), the only variation being the response func-

tion, that assumes the form hdðt � siÞ ¼
R t
t�1

hðs� siÞds
[29,33].

Application of shot-noise models to daily streamflow

generation requires the choice of the probability distri-

bution FU(u) of the random marks ui, and the definition

of the shape of the response function h. Since the focus

of this paper is on other model details, we make very
simple assumptions regarding this two points: following

Weiss [29], FU(u) is assumed to be exponential with

mean value a (fU ðuÞ ¼ 1
a e

�u=a). This corresponds to using

a Poisson–Exponential (PE) model to simulate the effec-

tive rainfall input. The assumed system response func-

tion is

hðtÞ ¼ c0dðtÞ þ
c1
k1

e�t=k1 þ c2
k2

e�t=k2 ; ð2Þ

where d(t) is the Dirac delta function, c0, c1, c2 are non-

dimensional constants subject to the constraint
c0 + c1 + c2 = 1, and k1 and k2 (with k2 > k1) are storage

coefficients (having dimension of time). As pointed out

by Murrone et al. [19], Eq. (2) corresponds to a concep-

tual model of the watershed where the effective rainfall is

partitioned into a fraction c0, which directly reaches the

basin outlet with sub-daily response time, and other

components c1 and c2 that flow through two distinct lin-

ear reservoirs with storage coefficient k1 and k2 before
reaching the outlet. We refer to the paper by Murrone

et al. [19] for a thorough discussion of the advantages

and drawbacks of the use of this response function.

Two possible strategies can be followed for the esti-

mation of the model parameters: Weiss [29] proposes

to calculate parameter values according to an analogous

of the method of moments, preserving the first two

moments and the lag-1 autocorrelation of the observed
streamflow sequence. When more than three parameters

need to be estimated, the modeled and observed

moments and autocorrelation are equated also for the

discharges aggregated at the monthly scale. In alterna-

tive, the model estimation procedure can proceed in four

steps: (i) the effective rainfall events occurrences are

identified in correspondence to the days when the

streamflow increases; the magnitude of these events is
initially taken equal to the amount of discharge incre-

ment [4,19], and the parameters of the PE model (k
and a) are estimated using the method of moments.

For convenience of exposition, this procedure will be

called the ‘‘discharge increments pulses’’, or DIP,

approach to effective rainfall identification. (ii) Once

the effective rainfall sequence is reconstructed, the

parameters of the response function h(t) are found by
minimizing the sum of quadratic distances between

observed and reconstructed data. (iii) A new pulse series

is inversely estimated through deconvolution between

the actual discharge time series and the estimated re-

sponse function. (iv) The steps (ii) and (iii) are repeated

until convergence (see [19]). This approach seems to be

more attractive than the classical approach of Weiss

[29], since it enables a first evaluation of the model
through the comparison of the reconstructed and

observed time series. Moreover, the method provides a

means to clearly separate the estimation of the stochas-

tic component (effective rainfall) from that of the deter-

ministic one (response function).
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3. Effective rainfall identification

Although frequently adopted, the mentioned DIP

approach presents some drawbacks and difficulties of

application: first, the presence of measurement noise

can produce small rises in discharge that should not be
mistaken for effective rainfall events to avoid distortions

in the modeling results. In fact, the DIP procedure tends

to produce pulse sequences with very large k values (see

Fig. 1a), sometimes larger than the average number of

rainy days in a year, which clearly contrasts with the

physical interpretation of pulses as effective rainfall

events. Second, the basic hypotheses that the pulses

are Poisson-distributed and that they are mutually inde-
pendent are often not respected by the estimated

sequences. For example, if the independence hypothesis

of subsequent peaks is tested by employing Kendall�s s
test at the 5% significance level (see [7] for details), the

hypothesis is rejected in most of the cases. Analogously,

when the dispersion index test of Cunnane [10] is used to

test for Poissonianity, the Poisson hypothesis at the 5%

level is often rejected (see Section 5).
A method to derive a more appropriate pulse

sequence is therefore necessary. Following Claps and

Laio [7] the pulses can be identified by following a

filtered peak over threshold (FPOT) procedure, summa-

rized as follows. (i) The peak events are found in corre-

spondence to all of the local maxima of the daily

discharge time series. (ii) A sequence of filtered peaks

(FP) is obtained by subtracting from each peak the
discharge measured at the first minimum preceding the

event. A similar approach to the selection of pulse inten-

sities was used by Pegram [20]. (iii) A threshold filter is

applied to the FP sequence to retain only the significant

peaks. (iv) The appropriate threshold s that filters out

noisy peaks is selected by testing the independence of

the peaks in the sample (Kendall�s s test) and the distri-

bution of occurrences (Cunnane [10] test for the Poisson
distribution). The threshold s is gradually increased until

the two tests are jointly met. The convergence towards

independence for large s values can be attributed to

the increase of the distance between subsequent peaks.
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Fig. 1. Comparison of estimated effective rainfall sequences with the DIP (a)

Nucetto (see Table 1).
Analogously, when the threshold s is increased the

numbers of crossings of s in disjoint time intervals tend

to become independent random variables, and this

guarantees the asymptotic convergence towards Poisso-

nianity. A formal demonstration of the asymptotic con-

vergence towards independence and Poissonianity can
be found in Cramer and Leadbetter [9, pp. 256–271]

for the case of a Gaussian stochastic process.

The adoption of the FPOT approach allows one to

avoid the deconvolution step in the peaks identification

procedure, as used by Murrone et al. [19], with substan-

tial advantages in terms of simplicity and robustness of

the procedure. Moreover, the method allows one to

obtain a pulse sequence which automatically meets the
independence and Poissonianity requirements. How-

ever, the number of selected peaks is reduced to 5–20

per year (Fig. 1b), which probably underestimates the

actual number of effective rainfall events. This result is

derived on a larger number of runoff series analyzed

by Claps and Laio [7] and can be a clue of the inade-

quacy of the Poisson independent model in the correct

reproduction of the effective rainfall behavior. More
complicate models have been proposed which account

for the mutual dependence of peaks (e.g. Markov-chain

models: see for example [26,2,30,1,3]) and for the clus-

tering of rainy days (Neymann–Scott models or similar,

e.g. [8]). However, the increased complication of such

models can hardly be properly supported, mainly due

to the shortness of the available time series (see also

the discussion in Section 4.2). This makes the simpler,
yet possibly erroneous, Poisson independent model a

good choice in many cases.

A last consideration is needed with regard to the

problem of seasonality: a periodic behavior is often

detected in riverflow time series, and its origin is traced

back to the presence of seasonality in the climatic forc-

ing. Following these lines, the response function in shot

noise models is often kept constant throughout the year,
while the parameters of the PE models for effective rain-

fall (a and k) are allowed to vary from season to season.

In the simpler approach different values of ks and as are

estimated in periods of the year wherein they are
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and FPOT (b) approaches. The example is relative to river Tanaro at
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supposed to remain constant (see [19] for a detailed

description of this and other approaches). When k varies

in time, the basic hypothesis becomes that the pulse

sequence is a non-homogeneous Poisson process; the

Kendall�s s test is still appropriate in this case, as also

is the Cunnane [10] test, since the number of events in
any time window tw is Poisson-distributed even when k
varies inside tw [21, p. 79]. In contrast, when the average

event intensity a varies in time, the sample should be

split in seasons wherein a is supposed to remain constant

before applying a goodness-of-fit test for the intensities

distribution. This produces a major loss of significance

of the test, due to the reduction of the sample sizes.

For this reason the test for the distribution of pulse
intensities, which was present in the original FPOT

procedure as a further constraint to the choice of the

threshold s [7], is not considered here.
4. Model evaluation

It is commonly accepted that the value of a stochastic
model for data generation can be defined from its ability

to reproduce the statistical features of the observed re-

cord in the generated time series. Typically, this ability

is evaluated by comparing the moments of the observed

and simulated series at different aggregation scales (e.g.

[29]) or, in some cases, the full probability density func-

tions (e.g. [26]). Two problems affect this approach to

model verification, and are considered in the following
subsections: the first relies on the lack of objective statis-

tics for the comparison, the value of the model being

often judged by a subjective visual analysis of real and

generated data. The second problem relies on the fact

that model parsimony is seldom considered explicitly.

4.1. Indices of performance

Some confusion in the assessment of model perfor-

mances derives from the use of both the reconstructed

and the generated time series as possible terms of com-

parison with the real observations. The reconstructed

time series is obtained from the convolution of the esti-

mated input pulse sequence with the system response

function. Reconstructed and observed series are easily

compared using any measure of reciprocal distance
between the two signals (see Fig. 2a and b). If this com-

parison can be significant to validate the model hypoth-

eses regarding the form of the response function, it has

in contrast no value for judging the real ability of the

model to generate time series similar to the observed

one. The real value of the model must rather be judged

by comparing observed and generated sequences. The

time correspondence of the peaks of the two series is
obviously lost in this case, and the distance between

contemporary values becomes meaningless.
In this latter case, a better option is to consider the

reciprocal distance between the observed and synthetic

cumulative distribution functions, represented as flow

duration curves. In order to build the flow duration

curves, the observed discharge dataset of size n is sorted

in ascending order, and an empirical frequency of occur-
rence F ðiÞ ¼ i

nþ1
is assigned to the ith order statistic in the

sample, qo(i) = qo(F(i)). The same procedure is followed

for the generated sample, whose size N is much larger

than n, obtaining F ðjÞ ¼ j
Nþ1

and qg(j) = qg(F(j)). The flow

duration curves are given by the F(i) and F(j) values plot-

ted versus qo(i) and qg(j); the curves are not shown in

Fig. 2 because the resulting real and generated graphs

are nearly indistinguishable. To evaluate the distance
between these curves, a value of generated discharge

with the same frequency of occurrence as qo(i), namely

qg(F(i)) need to be found. qg(F(i)) is the empirical quantile

corresponding to F(i), i.e. the jth order statistic in the

generated sample, with j ¼ Nþ1
nþ1

i (j can be conveniently

approximated to the closer integer because of the large

sample size N). The mean squared distance between

the two flow duration curves (‘‘model error variance’’)
is then evaluated as

s2 ¼
Pn

i¼1 qoðF ðiÞÞ � qgðF ðiÞÞ
� �2

n
. ð3Þ

In order to facilitate the comparison between differ-

ent applications, the value in (3) is rescaled by the vari-

ance r2 of the observed discharges, and an index of

performance similar to the coefficient of determination

of linear regression models is proposed as a measure
of model adequacy:

I1 ¼ 1� s2

r2
. ð4Þ

The closer I1 to its limit value 1, the more adequate is the

model to represent the flow duration curve. Other mea-

sures of model adequacy are easily defined by consider-
ing other characteristics of the observed and generated

sequences. For example, to test the correct reproduction

of the annual maxima (AM) statistics (see Fig. 2e and f),

a specific index can be defined as

I2 ¼ 1� s2AM

r2
AM

; ð5Þ

where s2AM ¼
Pk

j¼1
½qAM

o ðF ðjÞÞ�qAM
g ðF ðjÞÞ�2

k is the mean squared

distance between the empirical frequency curves of the

k observed AM, qAM
o , and the corresponding curves

for generated data, qAM
g , and r2

AM is the variance of

the observed AM sample.

4.2. Model parsimony

A major problem with the indices of performance

approach is that the number of parameters is not expli-

citly accounted for in model evaluation. This implies a
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Fig. 2. Shot noise model performances for river Tanaro at Nucetto (see Table 1): observed and reconstructed time series (a and b), generated data

with annual (ann.) or monthly parameters (seas.) (c and d), and annual maxima statistics (e and f). Left panels refer to the DIP approach to effective

rainfall estimation, right panels to the FPOT approach.
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tendency to favor models with a large number of adjust-
able parameters, without considering the sampling

errors associated with parameter estimates [28]. As a

limit example, when non-parametric techniques are

employed (e.g. [23,24]), one can obtain a perfect equiva-

lence of the frequency distribution of the real and gener-

ated series. The indices I1 and I2 would equal 1 in this

case, but the generated samples are little more than

duplicates of the real time series, and they tend to
mechanically reproduce sampling errors. Speaking

in terms of extreme-value frequency analysis, a non-

parametric method can be considered as the analogous

of a polynomial passing through all of the points in

the sample, while a good data generation model is the

analogous of a probability distribution fitted to the data.

When the latter is correctly chosen, it has clear advanta-

ges towards the former, for example the possibility to
provide adequate extrapolations. Moreover, the smaller

is the number of parameters, the more robust is the
model; the above considerations should help clarify
the need to explicitly account for model parsimony.

As a first guess, one could think of simply correcting

Eq. (3) with a similar approach as that followed in mul-

tivariate regression analysis, i.e. by multiplying the error

variance s2 by a term n
n�p, where p is the number of adjust-

able parameters. In non-parametric models, p is instead

the number of constraints imposed to the kernel proba-

bility density estimator, which approximates n when
the bandwidth tends to zero [23]. With a sample size n

of the order of 103–104 (365 multiplied by the number

of years of observations), the role of the number of

parameters would seem negligible at a first sight, p being

of the order of 10–100. However, the daily discharge time

series are strongly autocorrelated, and this causes a

dramatic drop of the information content in a sample

of given size. This loss of information was accounted
for in an ad hoc manner by Eshete and Vandewiele

[11], by constructing the frequency curves using a
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subsample of observations consisting of one value each

2 months, which corresponds to having a sample size re-

duced of a factor 6/365. A manner of facing this problem

with a more systematic approach is by defining an

‘‘equivalent’’ sample size, ne, as the size of a sample of

independent data having the same marginal distribution
and providing the same amount of information as the

original autocorrelated sample. ne, rather than n, will

then be considered to correct s2 for the presence of

adjustable parameters. A similar approach was followed,

in a different context, by Yevjevich [32, pp. 45–46].

In order to determine ne, we make the hypothesis that

the amount of information of a given sample can be

measured in terms of the standard error of estimation
of the sample moments: the smaller the standard error,

the larger the information provided by the sample.

Define the rth moment as yr ¼ 1
n

Pn
i¼1q

r
i (non-central

moments are considered for simplicity of exposition),

and consider the case when all the random variables

qi, i = 1, . . . ,n are identically distributed, with mean l,
variance r2, and covariance cov(qi,qj) = r2q(i � j),

where q( ) is the autocorrelation coefficient (q(0) = 1).
Standard sampling error theory, based on the Taylor

expansion of the non-linear function qri around the

mean, provides the relation (e.g. [15, pp. 246–247])

varðyrÞ ¼
Xn
i¼1

Xn
j¼1

oyr
oqi

����
qi¼l

oyr
oqj

�����
qj¼l

covðqi; qjÞ

¼ rlr�1

n

� �2
r2
Xn
i¼1

Xn
j¼1

qði� jÞ. ð6Þ

Considerations of symmetry of q(k), analogous to those

invoked by Vanmarcke [27, p. 116], enable one to sim-

plify (6) as

varðyrÞ ¼
r2l2r�2

n2
r2 2

Xn
i¼1

ðn� iÞqðiÞ þ n

 !
. ð7Þ

Eq. (7) with r = 1 provides the exact variance for the

sample mean y1 (e.g. [13]), while for higher order

moments Eq. (7) is an approximation valid to the order

of n�2. When the qi are independent, the approximate

standard error in (7) reads

varindðyrÞ ¼
r2l2r�2

n
r2. ð8Þ

The reduction of information content of a correlated

sample with respect to an independent sample of the
same size can be determined by taking the ratio of the

standard errors of estimation of the sample moments,

rinf ¼
varindðyrÞ
varðyrÞ

. ð9Þ

The equivalent sample size is finally determined as

ne = rinf Æ n. Straightforward calculations allow one to

find
ne ¼
n2

nþ 2
Pn

i¼1ðn� iÞqðiÞ . ð10Þ

Eq. (10) is rather general, since it neither depends on

the order r of the considered moment, nor on the mean

and variance of the random variables, qi. However,

Eq. (10) depends on an initial hypothesis that the

random variables qi are identically distributed, an

hypothesis that is not verified for periodic time series.

In this case, the actual value of rinf would depend on
the order of the considered sample moment. The com-

putation of rinf is thus related to the standard error of

estimation of the sample mean y1 only (not to that of

all moments yr). Considering an annual periodicity

(which is typical for geophysical time series), Eq. (9)

then reads,

rann ¼
varindðy1Þ
varðy1Þ

¼
P365

i¼1varðqiÞP365

i¼1

P365

j¼1covðqi; qjÞ
; ð11Þ

where var(qi) is the variance of the discharge in the ith

day of the year, which is variable with i for a periodic

process, and cov(qi,qj) is the covariance between the dis-

charge in the ith and in the jth days of the year, i.e the

covariance calculated ‘‘over realization’’ in the terminol-

ogy of Mitosek [18]. The reduction of information con-

tent of a dependent sample can be considerable for

riverflows, with rann coefficients of the order of 0.02–
0.1 (see Table 3 in Section 5).

In conclusion, the error variance s2 in (3) is corrected

as s2 ne
ne�p, and the index I1 becomes

I1ðpÞ ¼ 1� s2

r2

ne
ne � p

. ð12Þ

Analogously, the effect of the number p of adjustable

parameters on the second index yields

I2ðpÞ ¼ 1� s2AM

r2
AM

ne
ne � p

. ð13Þ
5. Application

Seven time series of daily runoff are considered in the

present analysis, relative to drainage basins located in

the North-West of Italy. The basins analyzed cover a

variety of climatic and geologic features, but the mor-

phology and climate of the Alps influence the majority

of them. We report in Table 1 some characteristic fea-

tures of the drainage basins and of the daily runoff time

series. Note the marked differences in drainage areas A
and average elevations hm. Record length in years, ny,

also shows a great variability.

Table 2 reports the estimated parameters for the shot

noise model when the FPOT (values in italic) or DIP



Table 1

Characteristic features of the seven drainage basins considered in the

application

Name A (km2) hm (m a.s.l) ny (years)

Ayasse at Champorcher 42 2392 22

Borbera at Baracche 202 880 14

Bormida at Cassine 1483 493 12

Chisone at S. Martino 580 1751 26

Orco at Pont Canavese 617 1930 29

Scrivia at Serravalle 605 695 14

Tanaro at Nucetto 375 1227 29

Drainage area A, average elevation hm, and record length ny are

reported for each station.
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approaches are adopted to obtain an initial estimate of

the effective rainfall, and the procedure described in

Section 2 is followed for determining the coefficients

c0, c1, c2, k1 and k2 of the response function. We refer

to Giordano [12] for an extended graphical presentation

of the modeling results. The main differences between

the two procedures are in the estimates of a and k (last

two columns), with the DIP model producing pulse
sequences with more frequent and smaller events. The

reasons behind these differences are fully explained in

Section 3. The results in Table 2 refer to parameters esti-

mated on an annual time basis, but analogous results are

found when a and k are allowed to vary on a monthly

scale (see Fig. 2c and d). The differences in a and k
values also affect the storage coefficients k1 and k2, that

tend to be larger when the FPOT approach is adopted,
probably as a consequence of the reduced number of

peaks.

As for the evaluation of the models, the independence

and Poissonianity hypotheses deserve a first comment:

when applied to the DIP pulse sequences, both hypoth-

eses are rejected at the 5% significance level for all of the
Table 2

Estimated parameters of the system response function (c0, c1, c2, k1 and k2) a

riverflow time series, when the DIP or the FPOT (values in italic) procedure

c0 c1 c2

Ayasse at Champorcher 0.06 0.08 0.86

0.05 0.17 0.78

Borbera at Baracche 0.10 0.20 0.70

0.08 0.19 0.73

Bormida at Cassine 0.12 0.48 0.40

0.12 0.38 0.50

Chisone at S. Martino 0.06 0.28 0.66

0.04 0.14 0.82

Orco at Pont Canavese 0.10 0.18 0.72

0.06 0.13 0.81

Scrivia at Serravalle 0.12 0.34 0.54

0.12 0.28 0.60

Tanaro at Nucetto 0.10 0.25 0.65

0.09 0.21 0.70
seven basins. The independence condition in particular

is not even met when the significance level is decreased

to 1% or lower. In contrast, both tests are automatically

passed when the FPOT approach is followed. Regarding

the performance indices, Table 3 reports a summary of

the results for the seven considered river basins. The first
two columns show the information reduction coefficient

rann in (11) and the equivalent sample size ne, that can be

as low as 140 days despite the fact that the available

sample size is never smaller than 12 years, or 4380 data.

The remaining columns in Table 3 report the indices of

performance I1 and I2, calculated in three different cases:

first (columns 3 and 4) the observed and reconstructed

data are compared: these indices have no real value in
the judgement of the quality of the models, but they

are reported for the sake of comparison of the DIP

and FPOT approaches (see below). The other columns

refer to the comparison of observed and generated data,

either with annual parameters (columns 5 and 6), in

which case p = 6, or with seasonally varying a and k
values (13 ‘‘months’’ of 28 days each, for a total of

30 parameters: results in columns 7 and 8). Again, the
values obtained with the FPOT procedure are reported

in italic.

The I1 index shows a smaller variability than the I2,

but for both the general tendency is for the DIP

approach to produce better results in the reconstruction

phase, while the FPOT procedure is generally better in

generation. The reason behind this behavior is that the

increased number of pulses in the DIP approach brings
the reconstructed curve closer to the observed one, but

then the mentioned problems with the modeling hypoth-

eses affect the results in the generation phase. In fact,

one generates an effective rainfall sequence with inde-

pendent Poisson distributed pulses, but estimates a
nd of the effective rainfall PE model (a and k) for the seven considered

s are used for effective rainfall identification

k1 (d) k2 (d) a (mm) k (1/year)

1.2 19.7 25.9 48.4

7.0 32.5 87.0 14.4

2.4 53.6 49.9 16.6

3.3 76.3 108.6 7.6

2.2 55.8 31.2 16.6

2.5 89.1 63.1 8.1

6.3 220.0 40.1 17.1

5.1 126.0 143.0 4.8

2.1 61.9 37.1 26.6

3.1 135.0 130.5 7.5

2.0 43.7 27.2 28.9

2.7 56.9 52.2 15.0

2.0 135.3 43.0 20.4

2.9 205.7 93.9 9.3



Table 3

Performance indices I1 (Eq. (12)) and I2 (Eq. (13)) for the seven considered riverflow time series, when the DIP or the FPOT (values in italic)

procedures are used for effective rainfall identification

rann ne (d) Reconstructed Gen. annual Gen. seasonal

I1 I2 I1 I2 I1 I2

Ayasse at Champorcher 0.027 220 1.00 0.95 0.74 �1.23 0.95 �0.07

0.99 0.92 0.95 0.82 0.99 0.91

Borbera at Baracche 0.027 140 0.97 0.95 0.85 0.37 0.87 0.56

0.97 0.99 0.93 0.71 0.94 0.79

Bormida at Cassine 0.090 393 0.98 0.94 0.87 0.40 0.90 0.55

0.95 0.97 0.96 0.92 0.96 0.94

Chisone at S. Martino 0.030 282 0.94 0.95 0.80 0.32 0.85 0.48

0.97 0.99 0.97 0.83 0.97 0.88

Orco at Pont Canavese 0.042 445 1.00 0.99 0.94 0.49 0.98 0.83

0.98 0.98 0.99 0.90 0.99 0.95

Scrivia at Serravalle 0.059 300 0.99 0.88 0.92 �0.32 0.94 �0.02

0.98 0.98 0.96 0.92 0.97 0.92

Tanaro at Nucetto 0.045 475 0.96 0.93 0.88 0.24 0.93 0.57

0.94 0.99 0.95 0.82 0.95 0.87

The first two columns contain the annual information reduction coefficient, from Eq. (11), and the effective sample size.
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and k from a pulse sequence that does not have these

characteristics, introducing a distortion in the model.

An additional comment regards the use of the seasonal

modeling of effective rainfall, which produces a general

improvement of modeling results despite the increased

number of parameters. Finally, it is worth mentioning

that the reproduction of the annual maxima statistics

with the FPOT approach is satisfactory even when sea-
sonality is not accounted for, which represents a sub-

stantial advantage towards other commonly adopted

models (see [14] for a discussion).
6. Conclusions and future developments

The rationale behind daily streamflow generation by
shot noise models is discussed here, with reference to

some crucial aspects of model specification and verifica-

tion. In particular, the identification of the effective rain-

fall sequence and the evaluation of model performances

in relation to parsimony have been examined, also by

means of model application to a set of seven stations.

The obtained results have indicated the necessity, in

future applications, to provide greater attention to the
verification of statistical assumptions and to the objec-

tive presentation of model results. More in detail, issues

that require additional investigations are: (i) the use of

an exponential (or other) distribution for pulse intensi-

ties (see Section 2) needs to be verified using appropriate

goodness-of-fit tests. Preliminary analyses in this direc-

tion have shown that the exponential distribution is

seldom adequate, while two-parameter distributions
(e.g. Generalized Pareto as in [7] or Gamma as in [19]
or [31]) provide a better representation, even if at the

expense of an increase of the number of parameters.

(ii) In order to verify the model performances, other

statistics similar to the indices I1 and I2 could be pro-

posed, possibly based on the comparison of the autocor-

relation structure of the observed and generated time

series, or on other characteristics more strictly con-

nected to the final use of the models (statistics of flow
volumes, annual minima, . . .). For a fair comparison

between different model structures (shot-noise versus

Markov chain models, seasonally varying versus

constant parameters, . . .), special attention should be

provided to the number of model parameters, for exam-

ple following the procedure described in Section 4. (iii)

The choice of the system response function should be

derived from a better comprehension of the relations
between the model structure and the physical mecha-

nisms in the rainfall-runoff transformation. Appropri-

ate tools to validate this choice should be developed,

for example based on tests of linearity versus non-linear-

ity, or on specific data-based verifications of the

adopted shape, possibly starting from well established

methods to determine the empirical response function

(e.g. [6]).
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