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ABSTRACT: Based on physical considerations, the runoff process is considered as the output of a linear
conceptual system whose structure depends on the hydrogeological characteristics of the watershed. At
the monthly scale, runoff from Central-Southern Italy basins are considered as produced by two
components coming from distinct aquifers, with long-term and short-term recession, and a component
with under-month lag which includes the subsurface and the surface runoff. The system is hence
considered as made up of two linear reservoirs in parallel plus a zero-lag linear channel. The input to the
system has the meaning of effective precipitation. In this way, from volume balance equations a constant
parameters ARMA(2,2) model is obtained. Model residual has pseudo-periodic structure, since it is
proportional to the system input. The effectiveness of this model was verified either with respect to the
validity of conceptual hypotheses and as regards statistical efficiency.

INTRODUCTION

The identification of stochastic models of streamflows is usually achieved through empirical procedures,
by comparing the performances of different models with respect to the reproduction of the stochastic
features of the process, such as mean, variance and autocorrelation structure (e.g. Lawrance and
Kottegoda, 1977; Salas and Obeysekera, 1982; Noakes et al., 1985; Bowles et al., 1987). By following
this approach, modeling of monthly runoff is commonly performed through AR or ARMA models (Box
and Jenkins, 1970, Salas et al., 1980). To allow reproduction of the periodicity displayed by mean,
variance and sample autocorrelation of the runoff at monthly scale, models which require the estimation
of one or more parameters per month are preferred, i.e. PAR or PARMA (sce e.g. Noakes et al., 1985;
Jimenez et al., 1989). Their use, yet, becomes particularly critical when dealing with inadequate data or
ungauged stations, where it is difficult to assess model reliability because of the lack of significance of
the goodness-of-fit tests.

An alternative approach to model selection is the one that makes use of a-priori physical information on
the phenomenon (e.g. Klemes, 1978). This information is represented by the role that different factors,
i.e. the climate and the hydrogeology, have on the stochastic features of the runoff process. This approach
ensures model parsimony with regards to the number of parameters, and physical interpretability of
parameters.

In this paper, the latter approach is pursued, in order to establish an objective criterion for model
selection within the framework of linear models. According to this rationale, the characterization of the
runoff process is based on the identification of conceptual structures responsible for regularities within
the phenomenon. This allows tho formulate a linear conceptual model of the process, which is equivalent
to a linear system. With regard to an input process, the system behaves as a linear filter just like a linear
stochastic model acts towards the residual process.
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CONCEPTUAL BASES OF THE MONTHLY RUNOFF STOCHASTIC MODEL

Time series of runoff relative to watersheds in Central-Southern Italy were considered where the climate
is qualified by two distinct seasons within the year: autumn and winter are wet while spring and summer
are dry. In these basins, snowmelt runoff can be often neglected. These watersheds are characterized by
the geology of Apennines mountains which features the presence of several great fractured carbonate
massifs, containing large aquifers at their base.

The observation on a semi-logarithmic scale of the series of daily runoff highlights that discharges
decrease in different ways over time during spring and summer. Thus, runoff can be considered as made
up of different components: (a) a long-term baseflow, deriving from aquifers with over-year recession,
such as the ones contained in the fractured carbonate massifs; (b) a short term baseflow, coming from
aquifers where recession occurs within a few months at the end of the wet season; (c) the direct runoff
component, which has sub-monthly lag and includes the subsurface and the surface runoff. Direct runoff
at monthly time scale is proportional to the effective precipitation, in that it represents the component of
rapid response (less than one month) to the net rainfall input.

The two aquifers are considered as linear reservoirs, while the direct runoff component is regarded as the
outlet of a linear channel with zero lag. The runoff is thus considered as the outlet of a linear system (Fig.
1). The conceptual input to the system is represented by the effective rainfall, which however is not
considered a data in this problem.
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Fig.1. Conceptual model of monthly runoff

Net rainfall I, is subdivided into: al, = recharge to the over-year recession aquifer; b, = recharge to the
over-month recession aquifer; (1- @ - b)I, = direct runoff. Parameters a and b, which are, in general,

variable (they depend, for instance, on the degree of soil saturation), are considered to be constant in this
analysis, in order to simplify the representation. The other two conceptual model parameters are the
storage constants, k and g, of the two aquifers.
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Stochastic Model of Monthly Runoff

Let us consider the volume D, which outflows from a linear reservoir in a unit time interval ¢ with
reference to an inflow of volume R,. If V, , indicates the volume stored in the reservoir at the beginning
of the interval, D, is given by the linear storage equation:

D, =V, (1-¢) + R (I-1) )

In this relation, k is the storage coefficient and c, is the recession coefficient; c, equals e/, The quantity
1, is called recharge recession coefficient; it has the same meaning of ¢, but only applies to the recession
of the recharge volume. r, depends on the storage coefficient and on the form of the recharge function.

If the recharge function is an impulse input occurring at the time T € [0,1] itis 1, = e (DA (Moss and
Bryson, 1974). For uniform input, as considered in this work with reference to the monthly scale, it is

r,=k(1-¢'y.

With regard to the linear system shown in Fig. 1, the sum of the groundwater and direct runoff
components is given by:

D, =V, (I-cp) +al (I-r) + W (1-c)) + b1 (T-r) + (1-a-b) I, @)
Volume balance equations of the two aquifers are:

V=V ¢ +alr 3)

W =W cg+blir 4

By substituting in Eq. 2 the expressions of W, ; and V,; obtained from Egs. 3 and 4 and rearranging, we
obtain one equation in D, D, ;, D, I, I, ;, [ 5:

D -[e + cq]Dt-l + [Ckcq]Dt-z =
=(1-ar -brl-[c +cg-an(l+cy) - br(l+c)lly, + )
-larneg +brgey -],

This expression can be identified with an ARMA(2,2) stochastic model
d-®yd ;- Dyd,=8-0,8,-08, (©)

where d, equals D,- E[D,] while €, is the model residual. The structure of the residual is not that of a
white noise, as is to be expected given its hydrological meaning.

The formal correspondence between the stochastic and conceptual representations is obtained through the
relations:

D =c +c; DPy=-cey ()
c, +c -ar(l+c)-br (1+c

0 = k q k q q k. 8

= l-an-br, ®
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_ancgt by -¢Cq o)

27 l-an-by
and imposing proportionality between the residual g, and the zero mean net rainfall ig:
g,=(1-ar-br)i (10)

Through the parameters of the stochastic model expressed in Eq. 6 it is possible to estimate the
parameters and the input process of the conceptual model, by means of

D, + -\[(<1>12 +4D,) D, - .\,(q)12 + 4D,)

¢ = > ; Cq = > 11
M-N-Mbr
a = M e (12)
-(©; - )N + (@, - PYM + (1 + 2 c)(N-M) .
b= M (ocr, (133
where: N=(1-®, -0, M=(1-0,-0,)

The residual €, actually represents an estimate of the conceptual variable i, This proportionality is

affected by an error, which takes into account that the conceptual model is only an approximation of
reality. Consequently, Eq. 6 should be reconsidered, substituting €, with

g, = ¢, +E, (14)

where the quantity €', is the actual residual of the stochastic model, €, represents the component of €
which has conceptual meaning and E, is the error component, considered with zero mean and constant
variance. ARMA representation thus becomes:

d- @ dyy - @pdi =8 - 0,8 - €y (15)
In practical terms, until the characteristics of the error § are specified, reference is made to the net rainfall
estimated with error:

1
l-ark-brq

€

I't = i't +U= + U (16)

where p equals E[D,] since D, and I, are equivalent in average (Claps, 1990).

Monthly net rainfall process has complex links with climate, which induces periodicity, and with
geomorphologic and soil characteristics. This allow to define the net rainfall as a pseudo-periodic process
and, consequently, the monthly runoff stochastic model is an ARMA(2,2) model with pseudo-periodic
residual (PPR-ARMA(2,2)).
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Estimation of Parameters of the PPR-ARMA (2,2) Model

From the above discussion emerges that the model identified for monthly runoff is a constant parameters
PPR-ARMA model, in which no deseasonalization procedure is applied. Moreover, in order to preserve
the formal correspondence between the conceptual and stochastic representations of the process, no data
transformation is made. The reproduction of series skewness is referred to the probabilistic analysis of
the residual.

Least-Squares estimates of the parameters of this model have finite variance and are asymptotically
normal [Pierce 1971]. However, for reason related to the constraints imposed to the stochastic parameters
by their conceptual meaning (Claps, 1989; Claps, 1990) a non-standard estimation procedure was
utilized, based on the use of information obtained from two different time scales of aggregation. In fact,
only the over-month aquifer parameters are estimated on the monthly time scale, while the over-year
recession aquifer parameters are estimated on the annual scale (Claps, 1989, Claps, 1990).

PROBABILISTIC MODEL OF THE RESIDUAL

The residual €', is made up of a conceptual component g, which is proportional to the net rainfall I,
through Eq. 10, and an error component &, which represents a stationary and continuous variable, with
zero mean and constant variance OEZ = 0,2. The two components may be considered as uncorrelated and
the following hold:

E[e'] = E[]]; o?[e'] = 07[e(] + 0, 17)
For convenience's sake, reference is made to the net rainfall variable

&
It=(l—ark-brq) i

Because of its very meaning, the variable I, should assume only positive values and present finite
probability at the value zero. A satisfactory probabilistic representation of I, can be obtained by
considering the sum of a poissonian number of events, with parameter v, whose intensity is distributed

exponentially with parameter A. The correspondent probability density function has the expression
(Johnson and Kotz, 1971):

P[x=0]=¢" (finite probability for x=0) (18)
f(x) = e A[vix Jy(2\Ax) forx>0 (19)

where Jl(x) is the modified Bessel function of order 1. The function introduced in Egs. 16 and 19 will be

referred to as the Bessel distribution. The relations between the sample moment, and the distribution
parameters are (§ = 1/\):

iy =VB; 0,2 =2vp? (20)

The continuous part of the Bessel distribution can be approximated to a Normal distribution and, in
particular, to a square root Normal distribution (Johnson and Kotz, 1971). By considering this

approximation, if oyz is the (constant) variance of the variable y=\/x , through first order analysis we get
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1 B
Oyz ~Z0x2 u,l o= 5 (21)

In this way it is possible to establish a correspondence between the first two moments of I;:
o?[1,] = 2Bu[1] 22)
From Eq. 16, the second of the relations in Eq. 17 and Eq. 22, we get
o2

Ol =5 +2Bu = m+2pu (23)

In Eq. 23 ¢ equals (1 - a r - b 1), m is proportional to the error variance and f has the meaning of a

climatic parameter which is function of the average intensity of events. Both m and [ are assumed to be
constant, i.e. season-independent. By means of Eq. 23 0,2 can be estimated through a linear regression.

The linearity hypothesis described in Eq. 23 can be verified by analyzing the net rainfall series deriving
from the model application. This constitutes also an indirect check on the assumed hypothesis on the
distribution of the residual €', considered the sum of a Normal and a Bessel random variable.

APPLICATION TO RIVERFLOW TIME SERIES IN CENTRAL-SOUTHERN ITALY
An application of the proposed procedure was carried out on three time series of monthly runoff relative
to gauging stations on rivers in Central-Southern Italy (Table 1). Table 2 shows the estimates obtained

for the stochastic and conceptual parameters.

Table 1. Characteristics of the stations and the time series considered

Station Area obs. Mean Annual Rainfall
(Km?)  (years) (mm)

1 Giovenco at Pescina 139 11 277

2 Nera at Torre Orsina 1445 25 606

3 Tiber at Rome 16545 50 448

Table 2. Estimates of the PPR-ARMA(2,2) model monthly runoff parameters.

Station a b k q D, D, 0, 0,
(months) (months)
1 0.61 0.277 353 2.23 1.61 -.621 1.35 -.387
2 0.71 0.256 50.4 3.56 1.74 =741 1.19 -.228
3 0.53 0.363 40.6 1.66 1.52 -.535 1.16 -.202

By using the net input estimated by means of Eq. 16, the reconstructed over-month and over-year
groundwater runoff can be examined, partly so as to validate the conceptual parameters estimates. An
example of the reconstruction of groundwater runoff is shown in Fig. 2, in which it is to note the
goodness of the reconstruction of the minima of the observed series.
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Fig. 2. Reconstruction of the groundwater streamflow: River Tiber at Rome, years 1921 - 1935.

The regression model of the estimated net rainfall variance with respect to the mean was then applied,
according to Eq. 23, with results which can be considered as confirming the assumption of linear
dependence, since the coefficients 0?2 / ¢? were found to vary from 470 to 3000 mm?2 with R? varying

between 0.43 and 0.86. The hypothesis that the two characteristic parameters, 0,2 /c2 and {3 , are constant
from month to month allows to reduce the error associated with the sample estimate, even if this means
paying a price in not taking into account parameter heterogeneity within the year. Considering the
shortness of the single station data set, which is made up of 12 data, the regression analysis could also be
made on regional basis. In this case the hypothesis of parameter homogeneity within a region could be
checked.

In order to test model's statistical efficiency, a comparison was made with the PAR(1) model, which was
fitted to the logarithm of the dimensionless runoff data, as suggested by Noakes et al. (1985). The
comparison of the statistical performances of the two models was based on the R2, without taking the
probabilistic analysis of the residual into account.

The PPR-ARMA modecl shows higher R? than the PAR(1) (Table 3). Since the PPR-ARMA requires the
estimation of 12 mean monthly valuves, of the error and the residual variance and of 4 stochastic
parameters while the PAR(1) requires the estimation of 12 means, 12 variances and 12 autoregressive
parameters, even better results would arise by considering the adjusted R?, whose value decreases when
the number of parameters to estimate increases.

Table 3. R? values for PAR(1) and PPR-ARMA(2,2) models.

Station 1 2 3
R2 PAR(1) 417 .682 .363
R2?2 PPR-ARMA(2,2) 551 745 .496
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CONCLUSIONS

The advantages of following a conceptually-based approach in runoff modelling are as follows: (a) the
use of a-priori informations provides an objective criterion for model identification and tends to
determine parsimony in the number of parameters; (b) model parameters are physically interpretable. In
such a way, parameters can be validated even in situations of limited data; (c) it is made possible, in
principle, to evaluate model parameters even in ungauged stations.

In this paper, with regard to the monthly runoff process, an ARMA(2,2) stochastic model with pseudo-
periodic residual (PPR-ARMA) is identified by considering the runoff as the sum of different processes,
each one with a characteristic time scale. A priori informations, concerning the characteristic time scale
of each sub-process, are introduced in the statistical criteria used in the estimation. Parameters accounting
for long-term persistence are actually estimated on the annual time scale while only parameters connected
with short-term persistence are estimated on the monthly scale.

The connection established between model residual and net rainfall allows to estimate the latter process,
which is modeled by means of a mixed probability distribution depending only on the monthly means
and en a climatic parameter which can be considered constant within the year.
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