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[1] The effect of temperature on the flood frequency distribution in mountainous basins is
examined through a minimalist analytical model. The conceptual hypothesis on which
the model is grounded is the existence of a subtractive mechanism that reduces the
basin-contributing area in flood formation to the fraction of basin laying below
the freezing elevation at the time of occurrence of each precipitation event. This fraction
depends on the watershed hypsometric curve and on the seasonal evolution of
temperatures. Under this hypothesis, the probability distribution of the annual maximum
discharge is analytically derived, based on simple assumptions on the stochastic process of
precipitation. The shape and the moments of this distribution explicitly relate to
basin hypsometry and to the seasonality of temperatures. Qualitative results show that the
simple causative mechanisms can explain the attenuation of flood quantiles in
high-elevation basins. Model application to 57 watersheds in the Northwestern Italian
Alps effectively demonstrates the role of the hypsography in explaining the spatial
variability of the mean of the flood distribution.
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1. Introduction

[2] The study of the flood formation processes in moun-
tainous basins has traditionally received less attention than
in temperate regions. The reason is probably related to a
distinct perception of a limited flood risk in the cold
environments because of the mitigating effect exerted by
the snowfall that does not contribute immediately to runoff.
Although this perception is easy to prove using hydrologic
modeling, few attempts have been made [see e.g., Loukas,
2002] of traducing the principle of partially contributing
mountain basin into a flood frequency model. Besides the
relevance of this principle for a better understanding of the
flood processes, the topic assumes practical importance
when affording a regional flood frequency analysis in a
mountainous region. In high-elevation basins, in fact, the
difficulty of gathering observations of precipitation and
runoff makes it possibly more urgent than for the temperate
basins the need of connecting flood frequency distributions
to physically-consistent flood producing mechanisms.
[3] The ensemble of flood-producing mechanisms, in-

cluding rainfall, snowmelt, and rain-on-snow in spring, rain
on frozen ground in winter, and thundershowers in summer
[Loukas et al., 2000; Bacchi and Ranzi, 2003; Merz and
Blöschl, 2003; Singh et al., 2005] might suggest the use of
detailed hydrological models to produce the flood frequency
curve, for example, by means of Monte-Carlo simulations
[e.g., Littlewood, 2002; Rahman et al., 2002; Loukas,
2002]. Such an approach however always requires some

kind of calibration of the hydrological model parameters
(assisted by consistent data availability) that prevents the
use of these methods for flood risk assessment in ungauged
basins.
[4] An alternative statistically sound approach considers

that the different flood formation mechanisms coexisting in
mountainous basins would produce flood frequency curves
representable by mixed distributions [e.g., Waylen and Woo,
1982; Rossi et al., 1984; Buishand and Demaré, 1990; Alila
and Mtiraoui, 2002; Sivapalan et al., 2005]. This purely
statistical approach still does not prove to be effective in
regional analysis, because the flood frequency distribution
becomes heavily parameterized and, so far, the parameters
have not been connected to physical basin characteristics.
[5] A more promising avenue of research, at least for the

understanding of the dominant processes in the flood
formation, is one which introduces some physical knowl-
edge in the construction of the flood frequency curve,
usually called the derived distribution approach [see e.g.,
Eagleson, 1972; Gottschalk and Weingartner, 1998;
Iacobellis and Fiorentino, 2000; De Michele and Salvadori,
2002]. This is the approach adopted in this work, where the
flood producing mechanisms and a stochastic forcing are
transposed into a flood frequency curve in parametric and
analytical form. This kind of approach stems from the
conviction that, in complex contexts, models with a simple
and controllable framework can provide a valuable com-
promise between real processes and data. In this respect, the
philosophy of this work is akin to that of Eagleson [1978],
Milly [1994a, 1994b], Rodriguez Iturbe et al. [2001],Woods
[2003], Perona et al. [2007] among others.
[6] Simplifying, yet realistic, assumptions are made to

keep the analytical tractability of the proposed model
(sections 2 and 3). As in the cited examples, the devised
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theoretical mechanistic model find its justification in the
formulation of an analytical representation of the interaction
of the forcing processes with the system characteristics,
allowing one to easily perform a full sensitivity analysis of
model results (section 4). To answer the question if the
model structure is too simple to represent the actual out-
come of the complex combination of causative processes,
we rely on the possibility of validating the probabilistic
model. In this case, in fact, we consider also real data to
validate the overall behavior of the model and verify the
model representativeness on a large geographical scale. This
is done by comparing the observed variability of the mean
annual flood with the behavior resulting from the model
application (section 5). A discussion on the results and on
the open problems to be addressed in future research closes
the paper.

2. Model Structure

[7] The basic conceptual hypothesis on which the model
is grounded consists in the existence of an elevation-driven
subtractive mechanism that reduces the active portion of the
watershed in flood formation. This mechanism is identified
with the concept of contributing area (Ac), defined as the
portion of the basin area (A) that is immediately involved in
runoff formation. Runoff forming areas have previously been
associated mainly with soil water processes (for example,
infiltration-excess runoff, saturation-excess runoff, subsur-
face streamflow) [Eagleson, 1972;Wood and Hebson, 1986;
Blöschl and Sivapalan, 1997; Ambroise, 2004]. Here we take
a broader view and consider runoff-forming areas to be those
areas where rain falls as liquid rather than solid water. In
mountainous basins, in fact, for a given flood event, the
contributing area Ac depends on the elevation at which
transition from solid to liquid precipitation takes place,
hereafter identified, for simplicity, as the zero-degrees
isothermal, ZT(t), or freezing elevation. According to this
definition each precipitation event produces rainfall over
the fraction Ac/A of the basin below the freezing elevation
and snowfall in the upper part of the basin, the latter not
contributing directly to discharge.
[8] This study aims at quantifying the role of this parti-

tioning on flood discharge, by considering the direct runoff
(q) as the result of a mechanism that can be formulated as
follows:

q ¼ C � fc tð Þ � hþ SM tð Þ ð1Þ

where C is the peak runoff coefficient, fc(t) = Ac/A is the
contributing area fraction, with 0 � fc(t) � 1, h is the rainfall
depth and t is the Julian date. We model rainfall according
to the very common Poisson representation of storm arrivals
in time with rate l, each storm having a depth h modeled as
an exponentially distributed random variable with mean a.
A deterministic component SM(t) is added to this rainfall-
runoff component to account for the snow melting
contribution during the warm season. Possible presence of
seasonal variation in the rate l and average rainfall intensity
a could be accounted for by using a non-homogeneous
marked Poisson process for rainfall.
[9] Two different interpretations of equation (1) are

possible: h can be supposed to represent the total precipi-

tation volume in a given storm, in which case a and h are
expressed in mm and q represents the runoff volume per
unit area, again expressed in mm. Alternatively, one can
suppose to determine, for each storm event, the maximum
precipitation intensity averaged over a duration d, and call
this intensity h. For example, the duration d can be taken
equal to 1 day, in which case q is a daily discharge per unit
area, with the same units as a (for example, mm/d). The
duration can also be supposed to vary from basin to basin
and to be equal to some critical precipitation duration, for
instance the one that maximizes the instantaneous peak
discharge. When h is a precipitation intensity averaged over
a critical duration, equation (1) becomes analogous to the
standard rational formula, and q has the form of an
instantaneous discharge per unit area, again with the same
units as a (for example, mm/h or mm/d). Either of these
interpretations can be adopted without affecting the general
results of the model: in fact, the partitioning into liquid and
solid precipitation is reasonably independent of the specific
duration considered. In the following we will therefore refer
to q as a generic discharge value, except than in the final
application where we will use instantaneous discharge data
to test the model.
[10] Under these premises, the distribution of the dis-

charge q conditioned on the Julian date t, PQjT(qjt), can be
found as a derived distribution. Starting from the cumulative
distribution of the precipitation events, PH(h) = 1� exp(�h/a),
and using equation (1) one finds

PQjT qjtð Þ ¼ 1� exp � q� SM tð Þ
Ca � fc tð Þ

� �
; ð2Þ

in which SM(t) plays the role of the position parameter, and
the product Cafc(t) that of the scale parameter.
[11] According to the Bayes theorem, the marginal cu-

mulative distribution of discharge PQ(q) can then be
expressed as

PQ qð Þ ¼
Z
t

PQjT qjtð Þ � pT tð Þ � dt ð3Þ

where PQjT(qjt) is the conditional probability in equation (2)
and pT(t) is the probability density function of the date of
occurrence of the events. Supposing that the precipitation
events form an homogeneous Poisson sequence in time,
one has pT(t) = 1/365, i.e. the days of occurrence have
a uniform probability density function [e.g., Ross, 1996,
p. 66].
[12] Another consequence of the Poisson hypothesis is

that the probability distribution of the discharge annual
extremes PQAM

(q) assumes the form [e.g., Coles, 2001, p.
131]

PQAM
qð Þ ¼ exp �l � 1� PQ qð Þ

� �� �
ð4Þ

where QAM are the annual maxima of discharge and PQ(q)
is the marginal cumulative distribution of discharge in
equation (3). For a basin having very low elevations, where
the contributing area fraction is constant and equal to 1 all
over the year (i.e. the whole basin contributes to runoff)
and the snowmelt contribution is null, the expression
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equation (4) reduces to the well-known form of the Gumbel
distribution

PQAM
qð Þ ¼ exp �l � exp � q

Ca

� �� �
ð5Þ

that we will sometimes refer to as ‘‘undisturbed’’ flood
frequency distribution. The difference between the two
curves equations (4) and (5) is a measure of the relevance
of snow processes in shaping the flood frequency
distribution in mountainous areas.

3. Model Specification

[13] To specify the analytical framework behind
equation (3), the mathematical representations for fc(t) and
SM(t) are required. These representations should be necessar-
ily simple to keep the derived distribution in analytical form.

[14] In general, fc(t) depends on t by means of the
interaction between the temperature seasonality and basin
hypsometry. Seasonal variation of temperature can be repro-
duced by a diagram of daily temperatures versus the Julian
day. An example of this diagram for a mid-latitude alpine
region is given in Figure 1a, where the time scale is referred
to the period 1 February–31 January. In the model, only the
overall shape of this diagram is reproduced, by means of a
linear and symmetric curve, that we call ‘‘temperature
regime’’. From this regime, using a constant lapse rate of
temperature, one can derive the seasonal evolution of the
freezing level ZT(t). The interaction of this regime with the
basin elevation range is represented in Figure 1b, where the
rising limb of the curve follows the equation:

ZT tð Þ ¼ ZTmax � ZTmin

365=2
� t þ ZTmin ð6Þ

where ZTmax and ZTmin are the upper and lower extreme
elevations occupied by the freezing level. Reference points
are defined on the t-axis. The initial point t0 = 0, in which
ZT(t0) = ZTmin, is assumed on 1 February. The reference day
tmin is taken after the condition ZT(tmin) = zmin, with zmin =
minimum basin elevation. Accordingly, tmean and tmax are
taken after the conditions ZT(tmean) = zmean and ZT(tmax) =
zmax, where zmean and zmax are the mean and maximum basin
elevation, respectively. The symmetric time instants at
which these conditions occur in the decreasing limb of the
ZT(t) migration curve are represented in the figure as t*max,
t*mean and t*min. Thanks to this symmetry, from here onward
equations are expressed over a six-months period lasting
from t0 to et, with et = 365/2 falling on 1 August, and then
extended to the whole year. On the basis of these reference
times we define as regime RI, the time interval between t0
and tmin, as regime RII the interval between tmin and tmax

and as regime RIII the one between tmax and et. Intuitively,
regime RI coincides with the winter season, in which snow
accumulates; regime RII coincides with spring or fall
seasons and regime RIII with summer.
[15] To obtain the analytical form of the curve describing

the seasonality of the contributing area fraction fc(t), the
seasonal regime of the freezing level ZT(t) needs to be
combined with an analytical description of the watershed
hypsometry (Figure 2). More or less detailed descriptions
can be adopted for the distribution of elevations of a
catchment, that produce more or less complicated forms
for fc(t). Leaving these details to the next section, here we
focus on how the migration of the freezing level reflects into
the form of fc(t) and, in general, into the model structure. In
fact, some of the characteristics of the fc(t) curve, as for
example the fact that fc(t) is necessarily bounded between
zero (during regime RI, when there is no contributing area)
and 1 (during regime RIII, when the whole basin contrib-
utes), are valid per se and do not depend on the form of the
hypsographic curve. The macroscopic structure of the
contributing area fraction is then

fc tð Þ ¼
0 if t0 < t < tmin

0	 1 if tmin < t < tmax

1 if tmax < t <et:
8<: ð7Þ

This form, that retains the symmetric character of the
temperature regime, affects the general model structure by

Figure 1. Panel A: example of temperature regime for the
Lago Gabiet station (2340 m a.s.l.). The year starts on
February, 1st. Panel B: freezing level regime obtained from
the temperature regime using a constant temperature lapse
rate. In the figure zmax and zmin are the maximum and
minimum basin elevation, zmean is the basin average
elevation. ZTmax and ZTmin are the maximum and minimum
values of the freezing level. tmin, tmax and tmean are the
instants where the ZT(t) elevation equals zmin, zmax, and
zmean, respectively. The temporal extension of regimes RI,
RII, and RIII is indicated by braces.

W01402 ALLAMANO ET AL.: EFFECTS OF ELEVATION ON FLOOD FREQUENCY DISTRIBUTION

3 of 12

W01402



inducing a redistribution of the probabilities of occurrence
of the events along the year. With reference to the three
aforementioned regimes, the marginal cumulative distribu-
tion of discharge PQ(q) in equation (3) can then be
expressed as the combination of the corresponding
probabilities pertaining to periods RI, RII and RIII

PQ qð Þ ¼ WI � PI qð Þ þWII � PII qð Þ þWIII � PIII qð Þ ð8Þ

where the weights WI, WII, and WIII depend on the relative
durations of regimes RI, RII and RIII (see Appendix A for
details). However, since fc(t) = 0 between t0 and tmin implies
a null probability of occurrence of the events during regime
RI (i.e., PI(q) = 0), equation (8) becomes

PQ qð Þ ¼ WII � PII qð Þ þWIII � PIII qð Þ; ð9Þ

where WII and WIII sum up to 1. Another consequence of
fc(t) = 0 during regime RI is that the average annual number
of flood events in equation (4) reduces from l to

l* ¼ l �
et � tmin

365=2
¼ l � ZTmax � zmin

ZTmax � ZTmin

: ð10Þ

[16] Before specifying expressions for PII(q) and PIII(q),
the other main causative mechanism in equation (1) has to
be specified. Snowmelt SM(t) is again assumed to depend
on the temperature regime and, as a consequence, on the
Julian day t. In winter, for example, it is reasonable to
consider SM(t) close to zero, as fc(t), while the snowmelt
tends to increase during regime RII and to reach its
maximum during regime RIII. The behavior of SM(t) is
therefore similar to that of fc(t). For simplicity we then
assume SM(t) to be a linear function of fc(t) as

SM tð Þ ¼ SM* � fc tð Þ ð11Þ

where the coefficient SM* derives by an equivalence
between the total volume of accumulated snow and the
total melted volume:

R

365

Z ~t

0

1� fc tð Þð Þ � dt ¼ SM* �
Z ~t

0

fc tð Þ � dt; ð12Þ

being R the total annual rainfall amount.

[17] On the basis of the specification of the forms of fc(t)
and SM(t), we can now define the probability distribution
pertaining to periods RII and RIII. For the regime RIII
(where fc(t) = 1) the expression for PIII(q) can be derived
from equation (2) as

PIII qð Þ ¼ 1� exp � q� SM*

Ca

� �
ð13Þ

where the dependency on t has disappeared.
[18] The derivation of PII(q), which is a key point of

the procedure, directly depends on the form of fc(t).
Two hypotheses on the form of fc(t) have been made: a
very simple description (1), called ‘‘threshold model’’,
that considers the whole basin as hypothetically concen-
trated at its mean elevation zmean and a more realistic
description (2), called ‘‘hypsometric model’’, in which
elevations are represented by means of an hypsometric
curve.

3.1. Threshold Model (a)

[19] In the threshold model the whole basin area is
considered to be concentrated at the mean basin elevation.
As a consequence, zmin 
 zmean 
 zmax, tmin 
 tmean
 tmax,
and regime RII disappears. The seasonal curve of the
contributing area fraction (equation (7)) reduces to the
symmetric step function

fc tð Þ ¼ 0 if t < tmean

1 if t > tmean;

�
ð14Þ

where the switching times correspond to the instants when
the zero degrees isothermal regime crosses the mean
watershed elevation. This is exemplified in Figure 3, panels
A and B, where two watersheds, having different mean
elevation, are considered.
[20] The snowmelt coefficient is obtained by introducing

equation (14) in equation (12), as

SM* ¼ R

365
� 365=2R 365=2

tmean
fc tð Þdt

� 1

24 35 ¼ R

365
� tmean

Ts=2
; ð15Þ

where Ts = (t*mean � tmean) is the time interval when the
freezing elevation overcomes the watershed mean elevation

Figure 2. Schematic representation of the interaction of the freezing level elevation ZT(t) with the basin
elevations, represented by the hypsometric curve on the right side. The contributing fraction Ac(t) of the
basin is painted in white and lies below the freezing level ZT(t).
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(regime RIII) and snowmelt occurs. Equation (11) reduces
to

SM tð Þ ¼ 0 if t 2 Ts
SM* if t =2 Ts

�
ð16Þ

where snowmelt is produced at a constant rate SM* during
Ts, while snow is considered to accumulate during the
remaining period, that lasts [365 � Ts] days. An increase in
the mean basin elevation induces a reduction of the interval
Ts and an increase in the accumulated volume, being SM* in
equation (15) inversely proportional to Ts.
[21] Given the above assumptions,WIII = 1 in equation (9)

and PQ(q) assumes the form outlined in equation (13). The
flood distribution is found by introducing l* and PQ(q) into
equation (4), obtaining

PQAM
qð Þ ¼ exp �l* � exp � q� SM*

Ca

� �� �
: ð17Þ

This curve is plotted as a solid black line in Figure 4 for two
basins having different mean elevations. In the same
diagram the grey thick line represents the undisturbed flood
frequency distribution (equation (5)). Further comments on
the shapes of these functions and an explanation for the
dashed black curve are given in the following section.

3.2. Hypsometric Model (b)

[22] A more realistic representation of the distribution of
elevations within a watershed is given by the hypsometric

curve, which is the cumulative frequency curve of eleva-
tions of all the points in a basin. A mathematical approx-
imation of the empirical hypsometric curve is used by
adopting the one-parameter function [Strahler, 1952]:

z� zmin

zmax � zmin

¼ fc tð Þ
1þ z � 1� fc tð Þð Þ ; ð18Þ

where z (with zmin < z < zmax) is the elevation that partitions
the watershed into a contributing and non-contributing area
and z is a parameter controlling the flexure of the curve, that
assumes only values greater than �1. Setting the freezing
elevation ZT(t) for z in equation (18), one finds a piecewise
expression for the contributing area fraction

fc tð Þ ¼

0 t0 < t < tmin

1þ zð Þ ZT tð Þ � zminð Þ
z ZT tð Þ � zminð Þ þ zmax � zmin

tmin < t < tmax

1 tmax < t <et:

8>>><>>>: ð19Þ

In this case the no-flood interval is [t0 � tmin], which
produces l* according to equation (10).
[23] Given the above assumptions, the hypsometric mod-

el further specifies into different sub-cases, that refer to
watersheds interacting with the ZT(t) curve in different ways
(see Table 1): a case (b1) which refers to a watershed having
zmin > ZTmin and zmax < ZTmax (called ‘‘bounded water-
shed’’), where all regimes RI, RII, and RIII actually exist; a
case (b2) (called ‘‘high-elevationwatershed’’) which presents

Figure 3. Contributing area fraction, fc(t), as a function of the Julian day in various configurations. All
curves have the same parameter set: z = 3.3, ZTmin = 0 m, ZTmax = 3000 m, zmin = 1200 m, except for zmax

that is 2000 m for panels A and C and 4000 m for panels B and D. Panel A: fc(t) curve for a bounded
watershed obtained with the threshold model. Panel B: fc(t) for a high-elevation watershed obtained with
the threshold model. Panel C: fc(t) curve for a bounded watershed obtained using the hypsometric model.
Panel D: fc(t) for a high-elevation watershed resulting from the hypsometric model.
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zmax > ZTmax and consequently admits regimes RI and RII
only; a case (b3), having zmin � ZTmin and zmax � ZTmax

(called ‘‘warm bounded watershed’’) and a case (b4), having
zmin � ZTmin and zmax > ZTmax (called ‘‘warm high-
elevation watershed’’). Cases (b1) and (b2) are the most
common at mid-latitudes, where the zero degrees isother-
mal can be assumed to range between ZTmin = 0 m a.s.l. in
February and approximately ZTmax = 3000 m a.s.l. in
August (ensuring that zmin > ZTmin), while the other cases
refer to warmer climates where ZTmin > 0 m a.s.l in
February. In Appendix A the discharge probability dis-
tributions are derived for all these cases however in the
application only cases (b1) and (b2) are taken into
account.
[24] The seasonal representation of fc(t) for the bounded

watershed is shown in Figure 3c and the analytical form
of PQ(q) is provided in equation (A5). An example of the
resulting cumulative probability function PQAM

(q) is plot-
ted (as a dashed line) in Figure 4a, beside the undisturbed
flood frequency distribution (grey thick line) and the one
obtained with the threshold simplification (solid line). The

parameter values are assigned to reproduce the typical
situation in a temperate basin. Both curves (dashed and
solid), compared to the undisturbed one (equation (5)),
show a leftward shift, that is more marked for the curve
resulting from the hypsometric model. The curves are
also compared on a Gumbel probability plot (Figure 4c),
where one can observe that the shift between the
undisturbed and threshold curve is constant while the
hypsometric curve deviates moving to higher elevations.
This behavior can be ascribed to the form of the
snowmelt function SM(t), that is constant in the threshold
model and time-dependent in the hypsometric model (see
Appendix A1 for details).
[25] For a high-elevation watershed the fc(t) curve is

represented in Figure 3d. The procedure for the derivation
of the PQ(q) remains almost the same, except for the
absence of regime RIII. The corresponding PQAM

(q) is
plotted (as a dashed line) in Figure 4b, compared to the
undisturbed curve (grey thick line) and to the one obtained
with the threshold simplification (solid line). Analogously
to the previous case, the curves are also compared on a

Table 1. Overview of the Cases Taken Into Account in This Studya

Bounded
zmin > ZTmin; zmax < ZTmax

High-Elevation
zmin > ZTmin; zmax > ZTmax

Warm-Bounded
zmin � ZTmin; zmax < ZTmax

Warm-High
zmin � ZTmin; zmax > ZTmax

Threshold model (a1) RI, RIII (a2) RI, RIII (a3) RIII (a4) RIII
Hypsometric model (b1) RI, RII, RIII (b2) RI, RII (b3) RII, RIII (b4) RII

aColumns contain the basin typologies, rows the simplified (threshold) and hypsometric model formulations. Columns-rows crossings contain the
regimes that actually occur under each formulation, being fc(t) = 0 during regime RI, fc(t) = 1 during regime RIII and 0 < fc(t) < 1 during regime RII.

Figure 4. Cumulative probability functions PQAM
(q) resulting from the threshold and hypsometric

models (respectively, black solid and dashed lines) compared to the form of the undisturbed flood
frequency distribution (grey thick line). The same probability functions are compared on a Gumbel
probability plot (panels C–D). All curves are related to the same parameter set: C = 0.5, a = 40 mm/d,
l = 20 [1/yr], z = 3.3, zmin = 1200 m, except for zmax that is 2000 m for curves in A and C and 4000 m
for curves in B and D. As a consequence, panels A and C refer to the bounded watershed typology,
panels B and D to the high-elevation case.
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Gumbel probability plot (Figure 4d) where a more marked
shift than in the bounded watershed case is observed.

4. Model Sensitivity

[26] In this section the attitude of the model to represent
realistically flood processes in mountainous basins is ex-
plored using ‘‘synthetic’’ case-studies, identified by differ-
ent parameter sets that trace back to the cases of bounded
and high-elevation watersheds (see Table 1 for an overview
of all the possible cases). In general the following classes of
parameters have to be specified:
[27] (1) Geometric parameters, describing watershed

hypsometry, such as the maximum (zmax) and minimum
(zmin) elevations of the watershed and the parameter z
controlling the shape of the hypsometric curve. z results

from the equivalence between the integral of the hypsomet-
ric curve and the normalized mean watershed elevation.
[28] (2) Climatic parameters at the basin scale, i.e. a and

l for the rainfall model and the total annual rainfall R. To
keep the analytical tractability of the model we assume a
and l to be constant all over the year. The introduction of a
seasonal regime of a and l, in fact, would be more realistic
but would make the model much more complicated. We
also assume R to be proportional to a through a parameter k,
so that a becomes the scale parameter of the model.
[29] (3) Climatic parameters related to the macro-region,

such as the maximum (ZTmax) and minimum (ZTmin) values
of the freezing level migration curve. Observe that by
setting the two limits on the ZT(t) one assumes that the
temperature regime of the region has already been trans-
posed into the freezing level curve. This is done using a
constant temperature lapse rate (that usually ranges between
5� 	 7�C every 1000 m of elevation).
[30] In our analysis, the degrees of freedom of the

parameters space are further reduced by setting the temper-
ature lapse rate to 7�C/1000 m, with a consequent range of
the freezing level going from ZTmin = 0 m a.s.l. to ZTmax =
3000 m a.s.l. during the year. It is also assumed that the
parameter k is constant, defining the total annual rainfall as
R = 30 � a.
[31] In Figures 5a and 5b the mean values of the

simulated specific peak discharges as well as their coef-
ficients of variation are related to the mean watershed
elevation. Stars, circles and plus signs allow one to discern
among three different parameter sets. Solid lines refer to the
threshold model, dashed lines to the hypsometric model.
The negative slope of the curves in panel A is due to the
effect of the reduction of the contributing area with eleva-
tion, formally expressed by equation (1). For two out of
three parameterizations the range of values covered by the
solid curves is shorter than the one covered by the dashed
curves. This is because of the implicit assumption in the
threshold model of the mean elevation being necessarily
lower than ZTmax. As a consequence, the final points of the
curves, that represent basins located at higher elevations, in
some cases cannot be modeled under the hypotheses of the
threshold model.
[32] The model also produces an increase of the coeffi-

cient of variation moving from low- to mid-elevation basins
and then a reduction of CV for high-elevation watersheds.
The final drop is due to the snowmelt component of the
model that reduces the variance and raises the mean of the
discharge values.

5. Model Application

[33] In this section the model is tested using data from 57
watersheds located in the North-Western Italian Alps (over
an area of almost 30000 km2, see Figure 6). The basins are
selected according to the availability of records of maxi-
mum annual peak discharge. The watersheds considered
present mean elevations ranging from 470 to 3100 m a.s.l.
and very different sizes, as areas vary between 22 and 7650
square kilometers (for additional information see auxiliary
materials at http://www.idrologia.polito.it/allamano/lavori/
dataset.txt). The wide spectrum of basin characteristics will
help to demonstrate the robustness of the model results,
concerning the spatial variability of the mean.

Figure 5. Panel A: modeled values of mean specific peak
discharge versus basins average elevation. Panel B: CV
from the model versus basins mean elevation. Solid curves
refer to the threshold model; dashed curves to the
hypsometric model. Stars, circles, and plus signs refer to
different parameterizations. In particular, ZTmin and ZTmax

are kept constant and equal to 0 and 3000 m a.s.l.
respectively, and the basin elevation range is set to 2000 m
starting at the same zmin. Stars refer to the parameter set:
C = 0.5, a = 40 mm/d, l = 20 [1/yr], z = 3.3, circles to: C =
0.5, a = 60 mm/d, l = 30 [1/yr], z = 0.33 and plus signs to:
C = 0.5, a = 20 mm/d, l = 10 [1/yr], z = �0.33.
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[34] Since we are interested in investigating the relations
between the characteristics of the flood distribution and
basin elevation, we first look at how the first two moments
of the series of annual maxima vary with the average basin
elevation. Figure 7a shows the dependence of the specific
(i.e. per unit area) mean peak discharge on average basin
elevation for the 57 basins. A significant decreasing trend is
found (with p value = 2.65 � 10�6) that could reasonably
be ascribed to the contributing area effect, in agreement
with the behavior suggested in Figure 5a. In Figure 7b, the
coefficients of variation of the annual maxima are plotted
versus basin elevation. The dependence on elevation is here
more noisy and not monotonic, so that neither the behavior
suggested in Figure 5b nor other dependencies on elevation
can be recognized.
[35] On these bases one could argue that also the varia-

tion with elevation of other descriptors, like basin area or
average precipitation, could possibly induce significant
deviations in the relations between the moments of flood
frequency curves and elevation. For example, among
gauged basins, those with higher average elevation are
typically smaller than the lower ones (Figure 8a). In
addition, the 1-hour maximum precipitation changes when
moving to higher-elevation regions [e.g., Kuzuha et al.,
2006]. This effect is represented in Figure 8b, where the
rainstorm index h1, obtained by spatially interpolating the
mean of the measured annual maximum precipitation in
1 hour and then averaging them on the basin area, is related
to the mean watershed elevation. A significant decreasing
trend is observed (p value = 4.5 � 10�16), that we found
also when broadening the analysis to the whole Italian
territory (2555 rain gauging stations). This latter decreasing
trend can be taken as an indication for the behavior of
generic short-duration annual maximum precipitation.
[36] The relation between mean specific discharge and

average elevation in Figure 7a could then be the result of the

variations of these factors with elevation. Our data however
demonstrate that this is not the case. In fact the specific
discharge generally increases with decreasing catchment
areas, which would imply (from Figure 8a) an increase of
the specific discharge with the average basin elevation. A
coherent decreasing trend with elevation is instead shown
by precipitation. In fact the average of the annual maximum
precipitation in 1 hour (h1) decreases with mean basin
elevation (Figure 8b). However the slope of the trend is
much lower than the slope of the regression line found from
the mean discharge data in Figure 7a. This implies that
precipitation may be a concurring factor but its relation with
elevation is not sufficient to explain completely the decreas-
ing trend of Figure 7a. On these bases, the dependence of
precipitation on elevation is also taken into account into the
model, by relating the average of the hourly annual maxi-
mum precipitation h1 to the a parameter. a is scaled to a*
according to the relation a* = a (1 � (zmean/D)), in which
an estimate for parameter D (= 3800 m) is obtained with the
linear regression shown in Figure 8b.
[37] So far the ability of the model to explain the relation

between mean floods and elevation has not been quantita-
Figure 6. Geographic position of the basins outlets. The
map in the top left corner indicates the location of the region
of study in Italy.

Figure 7. Panel A: relationship between mean specific
(i.e., divided by catchment area) peak discharge and
watershed average elevation for the 57 basins considered
in the North-Western Italian Alps. Solid line represents the
fitted regression line (p value = 2.65 � 10�6). Panel B:
empirical values of CV for the same series versus basin
average elevation.
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tively demonstrated. Now we move to a quantitative veri-
fication of the model. To test if the empirical evidence
observed in Figure 7 is likely to be explained by the
mechanism suggested in equation (1) we use the model to
evaluate, for each basin, how would the mean specific
discharge change if the basin was moved to the sea level,
where of course no elevation effect is present. To this aim,
we estimate the two climatic parameters Ca and l for a set
of real basins. We refer to Ca instead of a, because we base
our estimation on discharge rather than on precipitation
data. Therefore we have to take into account the reduction
of effective precipitation compared to precipitation accord-
ing to the concept of ‘‘peak runoff coefficient’’.
[38] In the proposed model the first and second moment

of the distribution of the discharge extremes are functions of
Ca and l

mmod ¼
Z 1

0

p
QAM

qð Þ � q � dq ¼ Y1 Ca;lð Þ

smod ¼
Z 1

0

p
QAM

qð Þ � q� mmodð Þ2�dq ¼ Y2 Ca;lð Þ ð20Þ

where Y1(Ca, l) and Y2(Ca, l) depend on the cases
presented in the appendix and are not necessarily expressed
in closed form.
[39] In contrast the coefficient of variation CVmod = smod/

mmod is only a function of l, because Ca is a scale
parameter for the distribution PQAM

(q). By equating the
expressions of CVmod and mmod to their empirical counter-
parts one obtains the estimators of Ca and l which, of
course, differ from basin to basin. We can now use these
estimated values of Ca and l into equation (5), to obtain the
corresponding mean and CV

m ¼ Ca � lnlþ gEð Þ

CV ¼ pffiffiffi
6

p
lnlþ gEð Þ

ð21Þ

where gE is the Euler constant. The values of m and CV in
equations (21) can be interpreted as the mean and
coefficient of variation for a basin which is identical to
the one under consideration, but in which no elevation
effects are experienced.
[40] In Figure 9a, these estimated moments are compared

to their empirical counterparts, corresponding to the points
in Figure 7a. For each basin a couple of points is plotted: the
black circle represents the observed mean specific discharge
while the grey circle is the corresponding value that would
be measured if the effects induced by the basin elevation
were removed (equation (21)). Greater displacements be-
tween the two points correspond to higher-elevation water-
sheds, where the elevation effect is more relevant. Grey
points represent in fact flood statistics for fictitious basins
having the same (null) average elevation, with identical
parameters of the precipitation forcing estimated on the
series of the real basins. This in turn implies that for the
grey points the watershed mean elevation should not appear
as an explanatory variable for m if the model works
correctly. It can be recognized that no trend is detectable
for the regression line of the grey points in Figure 9. This
demonstrates the model ability to explain (and then to
remove) the relation between mean peak floods and eleva-
tion in the absence of any calibration.
[41] Considering the CV, instead, the displacements of the

grey points obtained looks non systematic. Moreover some
residual dependence (not statistically significant) of the CV
on elevation results after the displacement (Figure 9b).
Experimental points of CV (Figure 7b) are in fact very
scattered, and also the curves suggested in Figure 5b do
not show a clear dependence of CV on elevation. This
confirms that, if any, the relation between the CV and basin
hypsography is still to be understood, even at the empirical
level.

6. Discussion and Conclusions

[42] The role of the temperature regime and of the
distribution of elevation in mountainous basins is investi-
gated through a minimalist analytical model of the flood
formation mechanisms. A derived distribution approach is
used to produce a flood frequency curve by the superim-
position of the precipitation and temperature regimes,
conditioned on the actual basin elevations. Qualitative
results demonstrate that the simple causative mechanisms

Figure 8. Panel A: basin area plotted versus basin
average elevation (note the log y-axis). Circles refer to the
database of watersheds from the North-Western Italian
Alps. Solid lines represent the fitted linear regression lines
(p value = 0.004). Panel B: growth factor h1 of the
intensity-duration-frequency curve (h = h1 � dn, where d is
the duration in hours) versus watershed mean elevation (p
value = 4.5 � 10�16).
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incorporated in the model can explain the characteristic
attenuation of flood quantiles in high-elevation basins.
Quantitative results, for 57 alpine basins, confirm this
finding. It is important to observe that the result is
obtained with a model where all parameters are fixed a
priori or estimated from the data, i.e. without any calibra-
tion that could adjust the slope of the regression line. This
is, in our opinion, a very positive result which entails that
the model is actually able to explain the variability
induced by basin elevation on the average specific flood
discharge. Residual variability is observed, possibly as-
cribable to the effect of other mechanisms that are not
included in the actual model structure. In contrast, the
modeling scheme does not help to explain the dependence,

if any, of the empirical coefficient of variation with
elevation.
[43] Further increase in model complexity is always

possible, that would perhaps impact the final flood distri-
bution. For example the model in its current formulation
does not take into account the rain-on-snow effect, that is
known to be a significant triggering mechanism for alpine
flood events that increases the non-linearity of the re-
sponse. It is also of interest to evaluate the impact of non-
uniform rate of precipitation within the year. Both variants
will be the subject of future analyses. However it must be
kept in mind that the documented strong variability and
the frequent errors in precipitation measurement in high-
elevation sites [Sevruk, 1983] will always create difficul-
ties in the model validation. In this sense, the challenge of
this research is not only to improve models but also to
focus on the need of using objective measures for model
verification. Moreover given the simple structure of the
model it seems that the model could successfully be used
for ‘‘first order’’ investigations of the changing nature of
flood risks in mountain environments subject to warming
temperatures.

Appendix A: Analytical Solutions of the
Equations

[44] The procedure to obtain an analytical representation
of equation (3) is described for watersheds having different
elevation characteristics (see Table 1).

A1. Bounded Watershed (b1)

[45] The bounded watershed is characterized by zmin >
ZTmin and zmax < ZTmax. As a consequence, the fc(t) curve is
non-null in periods RII and RIII (Figure 3c). Regime RII is
weighted by a factor

WII ¼
tmax � tminet � tmin

¼ zmax � zmin

ZTmax � zmin

; ðA1Þ

which accounts for the relative duration of regime RII and,
analogously, regime RIII with

WIII ¼
et � tmaxet � tmin

¼ ZTmax � zmax

ZTmax � zmin

: ðA2Þ

The expression for PII(q) to substitute in equation (9)
becomes

PII qð Þ ¼ 1�
exp SM*

Ca

� �
tmax � tmin

�
Z tmax

tmin

exp � q

Cafc tð Þ

� �
dt

¼ 1� exp
SM*� q

Ca

� �

þ
q � exp SM*þ zSM*� zq

Ca 1þ zð Þ

� �
� G 0;

q

Ca 1þ zð Þ

� �
Ca � 1þ zð Þ

ðA3Þ

where fc(t) is given by equation (19) andG[a, z] =
R1
0

ta�1e�tdt
is the incomplete gamma function [Abramowitz and Stegun,
1965, sec. 5].

Figure 9. Panel A: mean specific peak discharge values
versus watersheds mean elevation. Black circles represent
empirical means, as in Figure 7a. Grey points are means
recomputed by removing the elevation effect (procedure
outlined in section 5). The solid curve is fitted on observed
points (p value = 2.65 � 10�6), the dotted line is fitted on
the recomputed values (p value = 0.99). Dashed vertical
traits demonstrate the entity of the displacement between
the points. The displacement is shown to increase with
average elevation Panel B: CV versus basin average
elevation. Black circles represent the empirical points, as
in Figure 7b. Grey points are recomputed values obtained
as outlined in section 5.
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[46] Using equation (12) the SM* factor is obtained as

SM* ¼ R

365
� �ð�z� �BÞ � ð1þ �Þ�z ln½1þ ��
�ð�D��zÞ þ ð1þ �Þ�z ln½1þ �� ; ðA4Þ

w h e r e �z ¼ ðzmax � zminÞ, B ¼ ðzmin � ZTminÞ a n d
D ¼ ðzmin � ZTmaxÞ. By introducing equations (13), (A1),
(A2), (A3) and (A4) in equation (9) one finds

PQ qð Þ ¼ 1� exp
SM*� q

C�

� �

�
exp

SM*ð1þ �Þ � �q

C�ð1þ �Þ

� �
� q�z � � 0; q

C�ð1þ�Þ

h i
C� � Dð1þ �Þ : ðA5Þ

To obtain the distribution of the extremes, one should
replace the term PQ(q) of (A5) in equation (4), where
equation (10) should be used to account for the effects of
regime RI on the reduction of l.

A2. High-Elevation Watershed (b2)

[47] For a high-elevation watershed (having zmin > ZTmin,
zmax > ZTmax) the procedure for the derivation of PQ(q)
remains almost the same, except for the absence of
regime RIII (Figure 3d). This absence changes the
integration interval in equations (12) and (A3) into
[tmin � et] and allows one to obtain, by analytical
integration

SM* ¼ � R

365
1þ �2 ��ZT=ð1þ �Þ

�D� 2�z � ATh � �D
ð�D�2�z

h i
0@ 1A; ðA6Þ

where D is as previously defined, �ZT ¼ ðZTmax � ZTminÞ
and ATh[�] is the hyperbolic arc-tangent.
[48] The expression of PQ(q) is therefore

PQðqÞ ¼ 1� exp
qð�Z � �DÞ
ð1þ �ÞD=C�þ SM*

C�

� �
� q�z

C�ð1þ �ÞD

� exp SM*ð1þ �Þ � q�

C�ð1þ �Þ

� �
� EI 1;� q�z

C�ð1þ �ÞD

� �
; ðA7Þ

where EI[n, z] =
R1
1
(e�zt/tn)dt is the exponential integral

function [Abramowitz and Stegun, 1965, sec. 6]. In order to
obtain the distribution of the extremes, equation (A7)
should be substituted into equation (4), again taking into
account the reduction of l (equation (10)).

A3. Warm Bounded Watershed (b3)

[49] In warmer climates, where in February ZTmin > 0, the
warm counterpart of the bounded watershed b1 should be
considered. This is the case of a watershed having zmin �
ZTmin and zmax < ZTmax, in which case one obtains:

SM* ¼ R

365

�2�ZT

�ðGþ ��ZTÞ � ð1þ �Þ�z ln
ð1þ�Þ�z

�zþ�ðzminþZTminÞ

h i� 1

0@ 1A;

ðA8Þ

where G ¼ ðzmax � ZTminÞ and

PQðqÞ ¼
expð�q=C�Þ

C�ð1þ �Þ�ZT

 
C�ð1þ �Þ exp � ZTminq

C�ð1þ �ÞB

� �
�
�
exp

ZTminq

C�ð1� �ÞBþ SM*

C�

� �
þ D exp

q

C�
1þ ZTmin

Bð1þ �Þ

� �� �
��ZT � B exp

zmaxq

C�ð1þ �ÞBþ SM*

C�

� ��
� exp z

qþ SM*ð1þ �Þ
C�ð1þ �Þ

� �
��zq

 
EI½�qC�ð1þ �Þ� � EI

"
�zq

C�ð1þ �ÞB

#!!
: ðA9Þ

A4. Warm High-Elevation Watershed (b4)

[50] Analogously, for the warm high-elevation case
(having zmin � ZTmin, zmax > ZTmax), one has

SM* ¼ R

365

�2�ZT=ð1þ �Þ
��ZT þ 2�zATh ���ZT

2�z��ð2zmin��ZTÞ

h i� 1

0@ 1A; ðA10Þ

and

PQðqÞ ¼ 1�
exp SM*

C� � q
C�ð1þ1=�Þ

� �
C�ð1þ �Þ�ZT

ð�C�ð1þ �ÞÞ

�
�
� D exp

�zq

C�ð1þ �ÞD � B exp
�zq

C�ð1� �ÞD

����
þ q�z

�
EI

�
�zq

C�ð1� �ÞD � EI
�zq

C�ð1� �ÞD

� �� ��
:

ðA11Þ
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