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[1] The assessment of regional homogeneity is a critical point in regional frequency
analysis. To this end, many homogeneity tests have been proposed, even though a general
comparison among them is still lacking. Commonly used homogeneity tests, based on
L moments ratios, are considered here in a comparison with two rank tests that do not rely
on particular assumptions regarding the parent distribution. The performance of these
tests is assessed in a series of Monte Carlo simulation experiments. In particular, the power
and type I error of each test are determined for different scale and shape parameters of
the regional parent distributions. The tests are also evaluated by varying the number of
sites belonging to the region, the series length, the type of the parent distributions
and the degree of heterogeneity. We find that L moments based tests are more powerful
when the samples are slightly skewed, while the rank tests have better performances in
case of high skewness. On the basis of these findings we propose a simple method to
guide the choice of the homogeneity test to be used for the different possible cases.
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1. Introduction

[2] Estimation of the frequency of extreme events is often
required in the hydrological practice. The procedures for the
analysis of a single set of data are well-established, but often
observations of the same variable at different measuring
sites are available, and more accurate conclusions can be
reached by analyzing many data samples together. This
constitutes the basis for regional frequency analysis [e.g.,
Hosking and Wallis, 1997]. Critical points of the regional
approach to frequency analysis are in the choice of the
method to group the data samples together, and in the
assessment of the plausibility of the obtained groupings.
This involves testing whether the proposed regions may be
considered homogeneous or not. The hypothesis of homo-
geneity implies that frequency distributions for different
sites are the same, except for a site-specific scale factor.
[3] Many authors have proposed homogeneity tests in the

hydrologic literature, including Dalrymple [1960], Wiltshire
[1986a, 1986b, 1986c], Chowdhury et al. [1991], Lu and
Stedinger [1992], Fill and Stedinger [1995], and Hosking
and Wallis [1993, 1997]. However, few comparisons have
been carried out between the tests, with the effect of leaving
the user without clear ideas regarding the merits and draw-
backs of each method. L moments based statistics [Hosking
and Wallis, 1993, 1997] are nowadays routinely used in
regional analyzes, but no detailed studies are available that
demonstrate their superiority toward other methods. Here
we compare, in a very general setting, four homogeneity
tests: the first two tests, proposed by Hosking and Wallis

[1993], are based on L moments statistics. The other
considered tests are novel in the hydrologic field: these
are the k sample Anderson-Darling test [Scholz and
Stephens, 1987], opportunely modified to account for the
normalization by the index value, and the Durbin and
Knott [1971] test, routinely used as a goodness of fit test
but adopted here for the heterogeneity assessment.
[4] The performances of these tests are assessed through

the determination of their power with Monte Carlo simula-
tion experiments. Having a more powerful homogeneity test
implies that there is the potential to reduce the error of
quantile estimators, that is the final goal of a Regional
Frequency Analysis. However, this is the case only when
the significance level is selected which maximizes the
benefits of having a more powerful homogeneity test. A
full analysis of the problem would require to disentangle the
relations between the significance level and the power of the
tests, which is in turn a very complicated problem, that goes
beyond the scope of the present manuscript. Additional
considerations on this topic are found at http://www.idrologia.
polito.it/�alviglio/homtest.htm.
[5] Section 2 is devoted to the description of the consid-

ered tests. In section 3 we describe the procedure adopted
for carrying out the comparison among the tests, in section 4
the obtained results are presented, and in section 5 some
conclusions are drawn.

2. Homogeneity Tests

[6] Suppose that k samples of observations of the same
variable at different measuring sites are available, and that
one wishes to verify if they can be grouped to form a
statistically homogeneous region: let Yij be the jth observation
in the ith sample, sorted in ascending order (Yi1 � Yi2 �
. . . � Yini, where i = 1, . . ., k). Following an index value
procedure, the observations are first rescaled with respect to a
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site specific index value Y i (details on the choice of the index
value are provided in section 4.1) obtaining Xij =

Yij

Y i

. If the
observations are independent and the ith rescaled sample has
distribution function Fi, the homogeneity test corresponds to
verifying the hypothesis H0: F1 = . . . = Fk = F, without
specifying the common distribution F. The merits and draw-
backs of a test statistic are evaluated by considering its power
and its type I error. Given the null hypothesis H0 (in our case
the hypothesis of regional homogeneity), the power of the
test is defined as the probability of correctly rejecting H0

when it is not true. If instead the hypothesis is rejected when it
should be accepted, one makes a type I error. The test is
unbiased when the probability of making a type I error is
equal to the selected level of significance, a, of the test.
[7] Homogeneity tests involve finding, for each site, an

estimate of a quantity, qi, that measures some aspects of the
(at site) frequency distributions, and verifying if the disper-
sion of the qi values around their regional counterpart, qR, is
consistent with the hypothesis of homogeneity. This
requires defining the distribution of q under the null
hypothesis H0, GH0

(q), which in many cases implies that
the common distribution F is selected a priori. This is a
theoretical problem affecting the application of many
homogeneity tests (an exception is the Wiltshire [1986a]
CV-based test). The necessity to preselect F implies that the
test actually does not allow one to verify the homogeneity
hypothesis alone, but the composite (homogeneity plus
goodness of fit) hypothesis that the parent distribution is
the same at each site, and has a predefined mathematical
form F. As a consequence, the possible reasons why the test
is not passed can be either that the region is heterogeneous,
or that the adopted regional probability distribution F is
inadequate. We will return to this point in section 2.2, where
the Anderson-Darling test is described.
[8] A second problem occurs as an effect of the normali-

zation by the index value, which in some cases can distort the
distribution GH0

(q) of the test statistic under the null hypoth-
esis: this is the case, for example, of the Wiltshire [1986a]
rank-based test or of the k sample Anderson-Darling test. The
problem will be treated in detail in section 2.3. We now
describe the four homogeneity tests selected for the compar-
ison. The R package homtest, developed to facilitate the
practical application of the tests, is available at the CRAN
web page (see http://www.r-project.org/).

2.1. Hosking and Wallis Heterogeneity Measures

[9] The idea underlying Hosking and Wallis [1993]
heterogeneity statistics is to measure the sample variability
of the L moment ratios and compare it to the variation that
would be expected in a homogeneous region. The latter is
estimated through repeated simulations of homogeneous
regions with samples drawn from a four parameter kappa
distribution [see Hosking and Wallis, 1997, pp. 202–204].
More in detail, the steps are the following.
[10] 1. With regard to the k samples belonging to the

region under analysis, find the sample L moment ratios (see
Hosking and Wallis [1997] for details) pertaining to the ith
site: these are the L coefficient of variation (L CV),

t ið Þ ¼
1
ni

Pni
j¼1

2 j�1ð Þ
ni�1ð Þ � 1

� �
Yi;j

1
ni

Pni
j¼1 Yi;j

; ð1Þ

the coefficient of L skewness,

t
ið Þ
3 ¼

1
ni

Pni
j¼1

6 j�1ð Þ j�2ð Þ
ni�1ð Þ ni�2ð Þ �

6 j�1ð Þ
ni�1ð Þ þ 1

� �
Yi;j

1
ni

Pni
j¼1

2 j�1ð Þ
ni�1ð Þ � 1

� �
Yi;j

; ð2Þ

and the coefficient of L kurtosis

t
ið Þ
4 ¼

1
ni

Pni
j¼1

20 j�1ð Þ j�2ð Þ j�3ð Þ
ni�1ð Þ ni�2ð Þ ni�3ð Þ �

30 j�1ð Þ j�2ð Þ
ni�1ð Þ ni�2ð Þ þ

12 j�1ð Þ
ni�1ð Þ � 1

� �
Yi;j

1
ni

Pni
j¼1

2 j�1ð Þ
ni�1ð Þ � 1

� �
Yi;j

:

ð3Þ

Note that the L moment ratios are not affected by the
normalization by the index value, i.e., it is the same to use
Xi,j or Yi,j in equations (1)–(3).
[11] 2. Define the regional averaged L CV, L skewness

and L kurtosis coefficients,

tR ¼
Pk

i¼1 nit
ið ÞPk

i¼1 ni
tR3 ¼

Pk
i¼1 nit

ið Þ
3Pk

i¼1 ni
tR4 ¼

Pk
i¼1 nit

ið Þ
4Pk

i¼1 ni
ð4Þ

and compute the statistic

V ¼
Xk
i¼1

ni t ið Þ � tR
� �2

=
Xk
i¼1

ni

( )1=2

: ð5Þ

[12] 3. Fit the parameters of a four-parameter kappa
distribution to the regional averaged L moment ratios tR,
t3
R and t4

R, and then generate a large number Nsim of
realizations of sets of k samples. The ith site sample in
each set has a kappa distribution as its parent and record
length equal to ni. For each simulated homogeneous set,
calculate the statistic in equation (5), obtaining Nsim values.
On this vector of V values determine the mean mV and
standard deviation sV under the hypothesis of homogeneity
(actually, under the composite hypothesis of homogeneity
and kappa parent distribution).
[13] 4. An heterogeneity measure, which is called here

HW1, is finally found as

qHW1
¼ V � mV

sV

: ð6Þ

qHW1
can be approximated by a normal distribution with

zero mean and unit variance: following Hosking and Wallis
[1997], the region under analysis can therefore be regarded
as ‘‘acceptably homogeneous’’ if qHW1

< 1, ‘‘possibly
heterogeneous’’ if 1 � qHW1

< 2, and ‘‘definitely hetero-
geneous’’ if qHW1

� 2. Hosking and Wallis [1997] suggest
that these limits should be treated as useful guidelines. Even
if the qHW1

statistic is constructed like a significance test,
significance levels obtained from such a test would be
accurate only under special assumptions: to have indepen-
dent data both serially and between sites, and the true
regional distribution being kappa.
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[14] The qHW1
statistic measures heterogeneity only in the

dispersion of the samples, since it is based solely on the
differences between the sample L CVs in the region. As
such, it is insensitive to heterogeneity that arises between
sites having equal L CV but different L skewness. Hosking
and Wallis [1993] also give an alternative heterogeneity
measure (that we call HW2), in which V in equation (5) is
replaced by:

V2 ¼
Xk
i¼1

ni t ið Þ � tR
� �2

þ t
ið Þ
3 � tR3

� �2
� �1=2

=
Xk
i¼1

ni ; ð7Þ

The test statistic in this case becomes

qHW2
¼

V2 � mV2

sV2

; ð8Þ

with similar acceptability limits as the HW1 statistic.
Hosking and Wallis [1997] judge qHW2

to be inferior to
qHW1

and say that it rarely yields values larger than 2 even
for grossly heterogeneous regions. Moreover they stress that
in practice it is uncommon to have sites with equal L CV
and different L skewness (sites with high L skewness tend to
have high L CV too). Anyway we decided to consider also
this statistic in the present paper because it is used in the
most systematic and documented regional flood study
available [Robson and Reed, 1999].

2.2. The k Sample Anderson-Darling Test

[15] As mentioned, the HW1 and HW2 heterogeneity
measures suffer from the limitation that they take a kappa
parent distribution, thus reverting the homogeneity test into
a goodness of fit plus homogeneity test. The kappa
distribution is probably flexible enough to limit the
consequences of this assumption [Hosking and Wallis,
1997], but the theoretical inconsistency remains. We
therefore decided to propose in the comparison also tests
that do not have this problem. A possible candidate could be
the Wiltshire [1986a] CV-based test, unless it was shown by
the same Author to be unreliable. Another test that does not
make any assumption on the parent distribution is the
Anderson-Darling (AD) rank test [Scholz and Stephens,
1987]. The AD test is the generalization of the classical
Anderson-Darling goodness of fit test [e.g., D’Agostino and
Stephens, 1986], and it is used to test the hypothesis that k
independent samples belong to the same population without
specifying their common distribution function.
[16] The test is based on the comparison between local

and regional empirical distribution functions. The empirical
distribution function, or sample distribution function, is
defined by F(x) = j

h, x(j) � x < x(j+1), where h is the size
of the sample and x(j) are the order statistics, i.e., the
observations arranged in ascending order. Denote the
empirical distribution function of the ith sample (local) by
F̂i(x), and that of the pooled sample of all N = n1 + . . . + nk
observations (regional) by HN(x). The k sample Anderson-
Darling test statistic is then defined as

qAD ¼
Xk
i¼1

ni

Z
all x

F̂i xð Þ � HN xð Þ

 �2
HN xð Þ 1� HN xð Þ½ 
 dHN xð Þ : ð9Þ

[17] If the pooled ordered sample is Z1 < . . . < ZN, the
computational formula to evaluate equation (9) is

qAD ¼ 1

N

Xk
i¼1

1

ni

XN�1

j¼1

NMij � jni
� 
2

j N � jð Þ ; ð10Þ

where Mij is the number of observations in the ith sample
that are not greater than Zj. The homogeneity test can be
carried out by comparing the obtained qAD value to the
tabulated percentage points reported by Scholz and Stephens
[1987] for different significance levels.
[18] The statistic qAD depends on the sample values only

through their ranks. This guarantees that the test statistic
remains unchanged when the samples undergo monotonic
transformations, an important stability property not pos-
sessed by HW heterogeneity measures. However, problems
arise in applying this test in a common index value
procedure. In fact, the index value procedure corresponds to
dividing each site sample by a different value, thus
modifying the ranks in the pooled sample. In particular,
this has the effect of making the local empirical distribution
functions much more similar one to the other, providing an
impression of homogeneity even when the samples are
highly heterogeneous. The effect is analogous to that
encountered when applying goodness of fit tests to
distributions whose parameters are estimated from the same
sample used for the test [e.g., D’Agostino and Stephens,
1986; Laio, 2004]. In both cases, the percentage points for
the test should be opportunely redetermined. This can be
done with a nonparametric bootstrap approach presenting
the following steps.
[19] 1. Build up the pooled sample S of the observed

nondimensional data.
[20] 2. Sample with replacement from S and generate k

artificial local samples, of size n1, . . ., nk.
[21] 3. Divide each sample for its index value, and

calculate q(1)AD.
[22] 4. Repeat the procedure for Nsim times and obtain a

sample of q(j)AD, j = 1, . . ., Nsim values, whose empirical
distribution function can be used as an approximation of
GH0(qAD), the distribution of qAD under the null hypothesis
of homogeneity.
[23] 5. The acceptance limits for the test, corresponding to

any significance level a, are then easily determined as
the quantiles of GH0(qAD) corresponding to a probability
(1 � a).
[24] We will call the test obtained with the above proce-

dure the bootstrap Anderson-Darling test, hereafter referred
to as AD.

2.3. Durbin and Knott Test

[25] The last considered homogeneity test derives from a
goodness of fit statistic originally proposed by Durbin and
Knott [1971]. The test is formulated to measure discrepan-
cies in the dispersion of the samples, without accounting for
the possible presence of discrepancies in the mean or
skewness of the data. Under this aspect, the test is similar to
the HW1 test, while it is analogous to the AD test for the fact
that it is a rank test. The original goodness of fit test is very
simple: suppose to have a sample Xi, i = 1, . . ., n, with
hypothetical distribution F(x); under the null hypothesis the
random variable F(Xi) has a uniform distribution in the (0, 1)
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interval, and the statistic D =
Pn

i¼1 cos[2 p F(Xi)] is
approximately normally distributed with mean 0 and
variance 1 [Durbin and Knott, 1971]. D serves the purpose
of detecting discrepancy in data dispersion: if the variance
of Xi is greater than that of the hypothetical distribution
F(x), D is significantly greater than 0, while D is
significantly below 0 in the reverse case. Differences
between the mean (or the median) of Xi and F(x) are
instead not detected by D, which guarantees that the
normalization by the index value does not affect the test.
[26] The extension to homogeneity testing of the Durbin

and Knott (DK) statistic is straightforward: we substitute the
empirical distribution function obtained with the pooled
observed data, HN(x), for F(x) in D, obtaining at each site a
statistic

Di ¼
Xni
j¼1

cos 2pHN Xj

� 

 �
; ð11Þ

which is normal under the hypothesis of homogeneity. The
statistic qDK =

Pk
i¼1 Di

2 has then a chi-square distribution
with k�1 degrees of freedom, which allows one to
determine the acceptability limits for the test, corresponding
to any significance level a. Note that the implementation of
the DK test is much simpler compared to the other
considered statistics.

3. Basis for Test Comparison

[27] The main issue of this work is to analyze, through
Monte Carlo simulations, which of the tests described in
section 2 works better, i.e., is less biased (type I error close

to the adopted significance level) and more powerful. The
Monte Carlo simulation experiment requires the following.
[28] 1. An artificial region is defined by providing the

number of samples k, their length n (which is kept constant
for all sites), the (three-parameter) parent distribution P
used for the generation of the samples, and the regional
average L moment ratios tR and tR3.
[29] 2. The artificial region has a known heterogeneity,

with the local L moment ratios, t(i) and/or t(i)3 varying
linearly from site 1 through site k, with an overall range of
variation Dt and Dt3 (when Dt and Dt3 are both equal to
zero, the region is homogeneous).
[30] 3. For each site in the region, the three parameters of

the parent distribution P are estimated from the local L
moments, and a sample of size n is generated from P and
normalized by the index value.
[31] 4. The four homogeneity tests are applied to the

obtained artificial region, after having selected a signifi-
cance level a for the AD and DK tests, or an almost
equivalent acceptability limit for the HW1 and HW2

heterogeneity measures.
[32] 5. One thousand replications of the artificial regions

are generated, and each replication is separately tested for
homogeneity with the four tests; the power of each test (or
its type I error) is estimated as the percentage of the
1000 replicates recognized as heterogeneous.
[33] The comparison among the tests should be as general

as possible; different values of k, n, P, t, t3, Dt, Dt3, and
a need then to be considered, which complicates the
numerical simulation. In particular, the average dispersion
and skewness of the samples, tR and tR3, are very likely to
relevantly affect the performances of the test. The same is
true for the other parameters, but the effects on the tests of a
change of, say, n is much easier to predict and therefore less
interesting. For this reason we decided to consider several
tR and tR3 values, i.e., to explore in our simulation
experiment a large portion of the t � t3 diagram.
Numerical constraints to the t and t3 values are given by
Hosking and Wallis [1997]: these are 0� t < 1,� 1 < t3 < 1,
and 2 t � 1< t3 (valid for variables that can take only posi-
tive values). However, the portion of the t �t3 space
bounded by these constraints remains still too big in an
operational perspective.
[34] To choose tighter bounds in the t � t3 space we

refer to a hydrological perspective considering Vogel and
Wilson [1996] work, who use Lmoment diagrams to select a
regional distribution for annual minimum, average and
maximum streamflows. Vogel and Wilson [1996] build these
diagrams for more than 1400 river basins in the continental
United States. All the observed t � t3 values, indepen-
dently of the type of flow, occupy a bisector band of the
graphic with t3 � 0.2 < t < t3 + 0.4 (see Figure 1) and very
few points have a t3 larger than 0.5 or smaller than �0.1.
We therefore choose to limit our investigations to the region
with the following bounds (Figure 1):

0:1 < t < 0:6 ;
�0:1 � t3 < 0:5 ;

t3 � 0:2 < t < t3 þ 0:4 ;
ð12Þ

We consider all tR and tR3 pairs inside that region on a grid
with a 0.1 spacing (gray points in Figure 1).

Figure 1. A t � t3 diagram (see section 3). Lines are as
follows: a, numerical constraint given by Hosking and
Wallis [1997]; b, bisector band identified using Vogel and
Wilson [1996] samples; c, the region we consider. Gray
points are the tR and tR3 values considered in the main case
study (section 4.2); points A, B, C, and D are considered in
the sensitivity analysis of section 4.3.

4 of 10

W03428 VIGLIONE ET AL.: HOMOGENEITY TESTS FOR REGIONAL FREQUENCY ANALYSIS W03428



[35] As for the other involved variables (k, n, P, Dt,
Dt3, and a), the adopted simulation strategy involves
building up a main case study, with reasonable parameter
values, and then carrying out a sort of sensitivity analysis.
The parameters selected for the main case study are the
following: k = 11; n = 30; P 
 generalized extreme value
(GEV) distribution; a = 5% (or, equivalently, qHW � 2);
Dt = 0 and Dt3 = 0 for verifying the type I error, or Dt =
0.5t and Dt3 = 0 for verifying the power of the tests (see
section 4.2). The type and degree of heterogeneity, the
sample size, the number of sites in the region, the
significance level, and the parent distribution are then
varied once at a time (see section 4.3), and the results are
analyzed for four points in the central part of the t � t3
diagram (points A, B, C and D in Figure 1).

4. Results

[36] This section is divided into three parts: in the first
one the choice of the index value is discussed, in the second
one the main case study is described and in the third part the
effects of the variation of k, n, P,Dt,Dt3, or a is analyzed.

4.1. Choice of the Index Value

[37] A relevant issue in regional frequency analysis,
which is related to the main subject of this paper, is the
choice of the index value, i.e., of the parameter used to
normalize the samples. We decided to include a specific
section regarding this topic both because the choice of the
index value can affect the performances of the homogeneity
tests, and because we wish to raise some discussion on this
important, but often neglected, topic. In the original formu-
lation of the index value method by Dalrymple [1960], the
index value was intended to be the population mean.

However, the passage from theory to practice involved
replacing the population mean by the sample mean. As
clearly pointed out by Sveinsson et al. [2001], this change is
not trouble-free, since replacing the population mean by its
sampling counterpart can produce relevant distortions in the
regional frequency analysis. The induced distortions can be
expected to be rather large when the sample mean is not a
‘‘good’’ estimator of the population mean, i.e., when it is
either biased or has a large estimation variance. In those
cases a possible alternative would be to use the sample
median as the index value, as proposed for example by
Robson and Reed [1999]. The advantages of this choice are
described hereafter.
[38] A numerical investigation is conducted for each

simulation point in Figure 1. One hundred thousand
samples of length 30 are generated from a GEV distribution
with known mean and median. The distortion of the sample
estimates of the mean and median are estimated by the
normalized root mean square error,

RMSE% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 �xi � mð Þ2

q
m

� 100 ; ð13Þ

where m and �xi are, respectively, the population and sample
mean (or median) of each sample. The difference between
the RMSE% for the mean and for the median is shown in
Figure 2. Where the differences are negative, the estimation
of the mean by its sample counterpart is less biased than the
corresponding median estimation, and the mean can there-
fore be regarded as a more reliable index value. It is clear
from Figure 2 that the differences are almost negligible,
except that in the very right part of the graph, corresponding
to highly skewed samples, where the sample median
performs considerably better than the sample mean. In fact,
the sample median is known to be less sensitive than the
sample mean to the presence of outliers, and the latter are
more likely found in samples from highly skewed
distributions [Hampel, 1974]. Overall, we believe that
Figure 2 demonstrates the advantages of using the sample
median as the index value when skewed parent distributions
are suspected, as in flood frequency analysis studies.
Similar results are obtained with distributions other than
the GEV. We therefore use the sample median as the index
value in the following of the paper.

4.2. Main Case Study

[39] The main case study corresponds to a full analysis of
the performances of the tests for all points in the t � t3
diagram, with k = 11, n = 30, P 
 GEV distribution and
a = 5% (or qHW � 2). The type I error of the tests is
considered first, through simulation from homogeneous
regions, with Dt = 0 and Dt3 = 0. Figure 3 reports on the
background (gray numbers) the percentage of regions
considered heterogeneous by each test, and in the fore-
ground (black lines) a fitted ‘‘trend surface’’ whose isolines
show how the type I error varies in the t � t3 space. It can
be noticed that the average sample values <tR> and <t3

R>
(i.e., the averages of tR and t3

R over the 1000 replications)
can be different from their theoretical counterparts tR and
t3
R, i.e. the gray numbers in Figure 3 do not precisely lie on

the grid defined in Figure 1. This is due to the fact that in
small samples t and t3 are not unbiased estimators of t and
t3 [Hosking and Wallis, 1997].

Figure 2. Difference between the RMSE% of the sample
mean and the RMSE% of the sample median in the t � t3
space (see section 4.1). The dashed line indicates where the
sample mean and sample median have, approximately, the
same RMSE%; to the right of this line the sample median is
a less distorted estimator of its population counterpart, and
to the left of it the sample mean performs (slightly) better.
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[40] None of the tests has the expected type I error every-
where in the t–t3 space. In a large part of the t � t3 space
the percentage of regions stated as nonhomogeneous by
the heterogeneity measures of Hosking and Wallis is
2 � 4%; this percentage rises to 8 � 10% for high L
skewness coefficients (t3

R > 0.4, Figure 3). The rank tests
have a correct type I error in the central diagonal part of the
L moments space, while the percentage of regions
mistakenly assumed as heterogeneous increases toward the
borders (especially for the DK test).
[41] Figure 4 reports the results of the tests for simulated

regions whose heterogeneity is due to the different disper-
sion of the frequency distributions at different sites. The
range of variation of the L CVs (Dt) inside the region is
0.5 times the regional average L CV (tR). Being k = 11 as
before, in a region with tR = 0.2 the samples are generated
from distributions characterized by t values respectively

equal to 0.15, 0.16, 0.17,. . ., 0.25. The gray points and trend
lines in Figure 4 show the power of the tests, i.e., the
percentage of times when the test succeed in detecting the
heterogeneity. The lack of power of the measure HW2, as
anticipated by Hosking and Wallis [1997], is evident. For all
other tests, the power tends to be greater in the diagonal line
of the t � t3 space and to grow toward the upper right
corner of the investigated space. HW1, if compared to the
DK and AD tests, has a higher power in the bottom left part
of the L moments space. In contrast, for highly skewed
regions it has considerably lower power than the nonpara-
metric tests, among which the AD test is the most powerful.

4.3. Sensitivity Analysis

[42] As mentioned in section 3, the effect of a variation of
k, n, P, Dt, Dt3, and a is considered in four points (A, B,
C and D) located in the central part of the t � t3 diagram

Figure 3. Percentage of regions erroneously stated as nonhomogeneous in the t � t3 space by the tests
(type I error). The homogeneous regions are generated using the generalized extreme value distribution as
the parent distribution; the other parameter values are given above each plot.
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(Figure 1), rather than through the whole diagram. As an
example, we report in Figure 5 the behavior of the tests for
regions whose heterogeneity is only due to the shape
parameter (Dt = 0, Dt3 6¼ 0). In this case the
nonparametric tests, in particular the AD test, and the
Hosking and Wallis heterogeneity measure HW2 are
(obviously) more powerful than HW1. This is particularly
evident when the average shape parameter is rather large
(t3

R � 0.2) since for low values of t3
R (point A) all tests fail

to detect the heterogeneity. As expected, the power of the
tests increases with increasing heterogeneity, i.e., with
increasing Dt3.
[43] As a second example, we show in Figure 6 the power

of the tests for regions generated from different parent
distributions, when the heterogeneity is only due to differ-

ences in the L CVs (Dt = 0.5tR). In addition to the GEV
distribution, which is considered in the main case study, the
other adopted three-parameter distributions are the General-
ized Logistic distribution (GL), the three-parameter Log-
normal distribution (LN), the Pearson type III distribut-
ion (P3) and the Generalized Pareto distribution (GP). The
reader is referred to Hosking and Wallis [1997, pp. 191–
208] for a description of the parametrization of these
distributions and of the relations between their parameters
and the L moments. The four tests behave in a very similar
manner with varying parent distribution: in point A (low
skewness) the Hosking and Wallis heterogeneity measure
HW1 outperforms the nonparametric tests, while in point D
(high skewness) the reverse is true. Points B and C reflect
the transition between the two cases, and are characterized

Figure 4. Power of the tests in the t � t3 space with heterogeneous regions generated using the
generalized extreme value distribution as the parent distribution. Heterogeneity is due to the varying
dispersion of the frequency distributions at different sites: the range of variation of the L CV (Dt) in the
region is 0.5 times the regional average L CV (tR); the other parameter values are given above each plot.
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by a substantial equivalence of the different testing
techniques. In all cases HW2 lacks power to discriminate
between homogeneous and heterogeneous regions.
[44] The effects of a variation of the other parameters are

more trivial, and the corresponding diagrams are not shown
for reasons of space: the power of the tests increases with
increasing number of sites k in a region and with increasing
series length n. The tests are much more affected by the
length of the series (n values from 10 to 100 are considered)
than by the number of sites k (values from 3 to 21 have been
considered). As for an increase of the degree of hetero-
geneity in the dispersion parameter (Dt/tR), its effect is
obviously to increase the power of the tests. The power
reaches a 100% value when Dt/tR = 1 (except that for
HW2). In all of the considered cases the HW1 test is more
powerful in points A and B, while the DK and AD tests are
more powerful in points C and D. The differences in power

can be relevant, under a practical viewpoint, especially for
intermediate degrees of heterogeneity.

5. Discussion and Conclusions

[45] A practical problem in regional frequency analysis is
the choice of a test for regional homogeneity assessment. In
this paper, the Hosking and Wallis heterogeneity measures
(based on L moment ratios) are compared with the bootstrap
Anderson-Darling test and with the Durbin and Knott rank
test. This comparison shows that the Hosking and Wallis
heterogeneity measure HW1 (only based on L CV) is
preferable when skewness is low, while the bootstrap
Anderson-Darling test should be used for more skewed
regions. As for HW2, the Hosking and Wallis heterogeneity
measure based on L CV and L CA, it is shown that it
considerably lacks power.

Figure 5. Power of the tests in points A, B, C, and D (Figure 1) when the heterogeneity is due to the
shape parameter t3 (see section 4.3); parameter values are given above each plot.
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[46] Our suggestion is to guide the choice of the test
according to Figure 7, that we have obtained as a compro-
mise between power and type I error of the HW1 and AD
tests. The L moment space is divided into two regions: if the
t3
R coefficient for the region under analysis is lower than
0.23, we propose to use the Hosking and Wallis hetero-
geneity measure HW1; if t3

R > 0.23, the bootstrap Anderson-
Darling test is preferable. Further comments arise from the
observation of Figure 7 that displays some (tR, t3

R) points.
Each of these points is representative of a homogeneous
region, considered in three flood frequency studies: Hosking
and Wallis [1997], that directly report the tR and t3

R values
for several regions in the Appalachian area; De Michele and
Rosso [2002] and Farquharson et al. [1987], that give the
three parameters of the GEV distribution (estimated using L
moments) for many regions in Italy [De Michele and Rosso,
2002] and around the world [Farquharson et al., 1987].

Note that, as expected, these empirical regions lay in the
part of the parameter space that was considered in our
simulations. Also note that the majority of the points belong
to the upper right region of t � t3 space, where the
bootstrap Anderson-Darling test is more powerful.
[47] The good performances of the Hosking and Wallis

heterogeneity measure HW1, largely used in hydrology,
deserve further comments. The HW1 test is based solely on
the L CV coefficient (see equations (5) and (6)), and the fact
that it performs well suggests that the heterogeneity among
the series is mainly due to variations in the sample variance
of the samples. In contrast, the variations in skewness and
kurtosis are in many cases masked by the sample variability
of higher-order moments and L moments. As a conse-
quence, other tests of constancy of the variance in different
samples can be used as alternatives to the HW1 test. Possible
examples are the ‘‘classical’’ Levene and Barlett tests

Figure 6. Power of the tests in points A, B, C, and D (Figure 1) when changing the parent distribution
(see section 4.3); parameter values are given above each plot.
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[Conover et al., 1981], that, however, resulted to be weaker
than the HW1 test in a preliminary study.
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Figure 7. Regions of the t � t3 space where the
considered tests should be used (see section 5); to the left
of the solid line (t3

R = 0.23) the Hosking and Wallis
heterogeneity measure HW1 is the best test (considering
both power and type I error), and to the right the bootstrap
Anderson-Darling test AD should be used. Some real-world
regional values are reported as points: Farquharson et al.
[1987] computed these values considering many stations
worldwide, De Michele and Rosso [2002] considered Italy,
and Hosking and Wallis [1997] considered the Appalachian
region.
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