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[1] Common procedures for flood frequency modeling are based on analysis of series of
annual maxima (AMS) of the instantaneous discharge. A practical alternative to AMS
series is usually considered when the record length is short. In this case, analysis of partial
duration series (PDS) on continuous streamflow records allows one to increase the
available information by using more than one flood peak per year. In this paper, the
analysis of continuous streamflow data is reconsidered from the beginning: a filtered
peaks over threshold (FPOT) procedure is proposed as an alternative to the PDS
approach, and objective criteria are devised for choosing a reasonable threshold and for
determining the average annual number of events l. The revised procedure demonstrates
that there is no need for specific limitations on the magnitude of l to preserve the
basic hypotheses of the marked point process build in the PDS procedure. The proposed
FPOT method is applied to 33 time series of daily runoff from rivers of northwestern Italy.
Significant advantages over the classical PDS method are demonstrated, both in terms
of physical interpretability of the parameters and efficiency of the estimates. INDEX
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1. Introduction

[2] Management and planning of areas subjected to flood
risk heavily relies on tools for flood frequency analysis
(FFA), which give the statistical foundations to the planning
options. The classical procedure for building at-site or
regional flood frequency curves is based on the analysis
of annual maxima series (AMS). These series contain the
critical information of peak flow amount but their use is
limited by two main factors: (1) the length of AMS series
can be very short and (2) AMS series do not have the time
continuity that can allow one to infer the state of the basin
preceding a given peak. The first limiting factor produces
uncertainties in the interpretation of results of purely statis-
tical procedures, while the other point implies that statistical
models with phenomenological basis must rely on ancillary
data for validation of the underlying hypotheses on the
antecedent soil state.
[3] Geomorphoclimatic models for derivation of flood

frequency curves, mostly built along the path traced by
Eagleson [1972], can represent a reasonable compromise
between the empirical statistical models for FFA [see, e.g.,
Bobée et al., 1993; Groupe de Recherche en Hydrologie
Statistique (GREHYS), 1996] and the rising breed of models
based on continuous streamflow simulation [e.g., Hashemi
et al., 2000; Cameron et al., 2000]. In the physically-
consistent derivation of flood frequency curves, the statis-
tical properties of flood peaks are often expressed in terms
of frequency of occurrence and intensity of the events.

These features are related to the characteristics of the
forcing process of precipitation.
[4] As regards the occurrence, Poisson-distributed pro-

cesses have been widely used, mainly because of their
connections with popular distribution functions of extreme
values, that allow one to introduce physically-controllable
mechanisms in the variability and shape of the frequency
curves [e.g., Rossi et al., 1984]. A recent expression of this
tendency is the geomorphoclimatic derivation of the flood
frequency curve proposed by Iacobellis and Fiorentino
[2000], in which a key controlling factor for the flood
formation mechanism is the ratio between the average
annual number of rainfall and flood events, lp and l
respectively. Both parameters assume a great relevance in
FFA, and it becomes important to propose methods for their
evaluation, possibly based on continuous data in addition to
annual maxima.
[5] In this regard, close examination and, sometimes,

validation of models for the occurrence processes are found
in the Partial Duration Series (PDS) approach to FFA, where
continuous-time data are analyzed to statistically derive
flood frequency distributions [see, e.g., Lang et al., 1999].
More often than not, the information available is repre-
sented by average daily flows, and this partly explains why
PDS analysis is not perceived as a real alternative to the
analysis of AMS. However, the temporal resolution of
available time series is rapidly increasing, thanks to the
widespread installation of automatic gauging stations. In
any case, even at the daily time scale, the PDS procedure is
very useful for obtaining good estimates of l.
[6] In actual applications of the PDS method [e.g., Lang

et al., 1999; Robson and Reed, 1999] values of l are usually
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kept in the range between 2 and 3 (see section 5), that
contrast to physical and statistical considerations. In fact, in
temperate climates the actual number of discharge peaks per
year is usually much higher than 2–3. This can be quali-
tatively verified by visualizing the daily discharge time
series and counting the number per year of major peaks.
Other proofs are found in the application of the mentioned
geomorphoclimatic models, where l values lower than 5 are
shown to be quite unreasonable in terms of rainfall-runoff
transformation [Iacobellis and Fiorentino, 2000; De
Michele and Salvadori, 2002]. A last indirect confirmation
is given by the results of analyses of series of annual
maxima with flood frequency distributions that explicitly
include l as a parameter: a typical example is the TCEV
distribution [Rossi et al., 1984], extensively used in regional
analysis of floods in Italy. Rossi and Villani [1994, p. 208]
show that estimates of l in homogeneous hydrometric
regions in Italy fall in the range 3-15.
[7] Large l values are also advantageous under a statis-

tical viewpoint: it is recognized [e.g., Madsen et al., 1997]
that l = 1.5 – 2 is usually sufficient to have an advantage
toward the AMS estimates in terms of variance of flood
quantiles. A further increase of l augments the data in the
sample, and further improves the efficiency of the design
flood estimates (see section 5). Incidentally, results from a
different field (analysis of wind velocity data) show that
optimal estimates are obtained with a number of exceed-
ances of the order of ten per year [Naess and Clausen,
2001].
[8] Because of this apparent discrepancy between esti-

mated and expected l values, we believe it is worthwhile to
re-evaluate the basis over which the traditional PDS analysis
has evolved. This is done in the following section, where an
evolution of the PDS method, named filtered peaks over
threshold (FPOT) is introduced. In section 3, the building of
the Poisson-Pareto model for the peaks over threshold is
discussed, and in section 4 the efficiency of estimation of
flood quantile is evaluated. The application to an extensive
data set of daily runoff series in Piemonte (Italy) (section 5)
closes the paper.

2. Using Continuous Streamflow Data for FFA

[9] The use of streamflow time series in flood frequency
analysis usually follows a three-step approach. In the first
step, a procedure is adopted to select, from the continuous
time series, those values that can reasonably be considered
as peak events. Two selection methods are considered here:
the classical PDS approach and a newly proposed proce-
dure. Whatever method is chosen, the continuous stochastic
process of daily runoff is transformed into a marked point
process defined by the two random variables n (number of
peaks per year) and q (magnitude of the peak event).
[10] The second step of the flood analysis is the identi-

fication of an appropriate model for the marked point
process: usual assumptions are that subsequent peaks are
independent, that the number of occurrences n per year is
Poisson-distributed, and that the probability density func-
tion (pdf) of the flood peaks, fQ(q), is exponential or Pareto.
All of these assumptions will be discussed in detail in
section 3.
[11] The building of an appropriate model for the peak

events allows one to derive a design flood (T-year event

estimate, where T is the return period in years) that can be
expressed as

qT ¼ F�1
Q 1� 1

lT

� �
; ð1Þ

where FQ
�1(�) stands for the inverse of the cumulative

density function (cdf) of the flood peaks, and l is the
expected value of n, i.e the mean number of events per
year.
[12] The third and last step is model estimation, i.e., the

inference of appropriate values for l and the parameters of
FQ(q) based on the available data. An estimate of qT is so
obtained, and the accuracy of the estimation method can be
studied.
[13] The mentioned three steps are strictly interconnected:

the peak selection procedure should be tuned in order to
have the basic model hypotheses met; this affects the
dimension of the sample from which the parameters are
estimated and, in turn, the accuracy of the estimates. It is
therefore crucial for the whole statistical analysis to have an
efficient and objective peak selection method.

2.1. Peak Selection Within the PDS Procedure

[14] In the procedure known as PDS or peaks over
threshold (POT) [e.g., Todorovic, 1978; Davison and
Smith, 1990; Madsen et al., 1997; Lang et al., 1999;
Robson and Reed, 1999] the usual approach to peaks
selection consists in retaining only those peaks that exceed
a certain threshold value qb. An individual peak is con-
sidered as the portion of the continuous hydrograph that
exceeds qb (see Figure 1a, thresholds qb1 and qb2), and its
magnitude corresponds to the highest discharge in this
period. Peaks selection is therefore strictly connected with
threshold specification.
[15] A number of methods for selecting meaningful

thresholds have been proposed in the literature, either based
on physical criteria or on statistical considerations. The idea
behind the physical (hydraulic) criteria is that only the
hazardous flows are interesting [e.g., Ashkar and Rousselle,
1983], and the latter are easily identified by considering a
suitably high flood for a specific river section. However, the
application of this criterion usually reduces the number of
considered floods to a value that is too small for a
meaningful statistical analysis. In order to include more
peak flows in the analysis, it is therefore necessary to lower
the threshold level. All of the other statistical methods
attempt to do this, but, so far, it does not seem that objective
methods to define qb have emerged in the vast literature in
the field (see, for example, the discussion by Lang et al.
[1999]).
[16] The main difficulties in the choice of the threshold

derive from the fact that this choice affects the basic model
hypotheses, in particular regarding the requirement that
subsequent peaks are independent. This produces high
threshold values, that reduce the beneficial effects (in terms
of variance of estimates) of having several peaks per year.
Another limitation of the PDS procedure is that, when the
thresholds is low, separate peaks can fall in the same up-
crossing portion, so that they are erroneously considered as
a unique event (see Figure 1a, threshold qb1). This effect
can be particularly troublesome when time series with a
strong seasonal component are considered, in which case
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the whole wet season could turn out to be a unique peak
event.

2.2. Peak Selection Within the FPOT Procedure

[17] To overcome the problems described in the previous
section, the peak selection procedure is revised here. The
starting point is again the continuous time series of dis-
charge, sampled at the daily time scale. We propose the
following procedure to identify the flood peaks:
[18] 1. The events are identified in correspondence to all

the local maxima of the time series (open circles in Figure 1a),
and the magnitude of each event is assigned as the absolute
ordinate of the maximum. The so-called actual peaks (AP)
time series is then obtained (solid bars in Figure 1b). It is
evident how this procedure tends to identify a great number
of peaks: some of them are relevant to the flood frequency
analysis while some others (for example, those around
t = 50 days in Figure 1) are false peaks, deriving from
the noisy component of the signal. It is thus necessary to
filter the AP in order to reduce this noisy component.
[19] 2. A second sequence of peaks is then obtained [see

Claps et al., 2002] by subtracting from the magnitude of the
AP events the discharge measured at the first relative mini-
mum preceding the event itself (open squares in Figure 1a).
In this manner we obtain a sequence of filtered peaks (FP)
(open bars in Figure 1b), representing the discharge incre-
ment relative to a base level preceding the event. As such, FP
events do not strictly represent the real discharge; rather, they
could approximate the effective rainfall component, i.e., the
fraction of rainfall that becomes runoff.

[20] 3. The last step consists in applying a threshold filter
to the FP sequence to retain only the large peaks. The
problem of choosing a correct threshold for the analysis,
that is crucial for the classical PDS approach, is still present
in the FPOT procedure; however, in this case one takes
advantage by the fact that the noisy component becomes
better recognizable when FP events are considered. In fact,
the magnitude of false FP events is always very small, while
the same is not true for the AP events (compare Figures 1a
and 1b). This allows one to get rid of the noisy component
using the standard POT high pass filter. The threshold filter
applied to the FP sequence produces an occurrence sample,
i.e., a sequence of dates when peaks occur; the magnitude of
each peak is then assigned as that of the corresponding AP
event. The FP sequence is therefore used only for identify-
ing the false peaks and removing the noisy component,
while all the remaining frequency analysis is carried out on
the absolute flood magnitudes (AP data).
[21] To complete the procedure, a suitable threshold must

be determined: in section 5 it will be discussed how the
removal of the noisy component produces independent
Poisson-Pareto samples, and how this can be used as a
condition for choosing the appropriate threshold. After that,
the identification and estimation of the model can be carried
out on the resulting marked point process.

3. Building the Marked Point Process Model

[22] The definition of the model basic assumptions dis-
cussed in section 2 is crucial for the whole statistical analysis.

Figure 1. Example of the PDS and FPOT peak selection procedures: (a) the continuous discharge time
series is reported along with two possible threshold values qb1 and qb2. The arrows indicate the selected
peaks when the threshold qb2 is used, while the open squares and circles correspond to the local minima and
maxima of the time series, respectively, to be used in the FPOT analysis. (b) The AP and FP series are
reported as solid and open bars, respectively, and the arrows indicate the peaks selected with the threshold s.
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It is important to analyze in detail if all of them are essential
to the model formulation, and how it is possible to select the
peak events such that the necessary hypotheses are met.

3.1. Independence Between Subsequent Peaks

[23] What is usually considered an essential requirement
for any flood frequency analysis is that the selected peak
events are mutually independent. It should be noticed,
however, that the above hypothesis is not essential in the
derivation of equation (1), that is valid also when subse-
quent peaks are correlated [Rosbjerg, 1985]. However, in
the latter case model complexity strongly increases: this
explains why the mutual independence of peaks is so often
invoked in FFA, even at the expense of artificially reducing
the number of considered peaks or compromising some of
the other model hypotheses.
[24] For example, one of the commonly used methods

aimed at selecting independent peaks consists in fixing the
average number of peaks per year, l, to a value below 2–3
[see Todorovic, 1978]. This method has been criticized for its
lack of flexibility, but also the proposed alternatives [Rosbjerg
et al., 1992; Madsen et al., 1997] tend to limit l to values as
low as 2–3 (see section 5 below). The reduction in the degree
of dependence between subsequent peaks is also often
achieved by imposing the further requirement that a peak is
separated from the previous one by a given number of days
(usually 5 days plus the natural logarithm of the basin area in
square miles). Moreover, consecutive peak floods are defined
as independent only if the inter-event discharge drops below
75% of the lowest of the two peaks (guidelines from the U.S.
Water Resources Council [1976]). The use of these restric-
tions, however, distorts the occurrence distribution and
constitute a violation of the basic hypothesis of Poisson
distributed events [Ashkar and Rousselle, 1983].
[25] A question arises here: are these limitations really

necessary in order to have independent peaks? From the case
study we have analyzed the answer seems to be negative,
since very often it is possible to extract samples of peak values
with larger values of l and reasonably independent peaks.
[26] A more effective approach to the independency issue

is needed: a good alternative could be to start from a very
low threshold and move the threshold upward (so reducing
l and increasing the average distance between subsequent
peaks) until some independence test is met. A possible
variable to be used for a test of independence is the
autocorrelation coefficient of subsequent peak values
(Miquel [1984] discussed by Lang et al. [1999]), but in this
case the test would be effective only for normal or near-
normal variates, which is usually not the case for daily or
hourly discharges. In contrast, the independence test based
on the so called Kendall’s t does not require hypotheses on
the parent population. This test is described in Appendix A
and applied within the FPOT approach in section 5.

3.2. Distribution of the Peak Occurrences

[27] A second model hypothesis that is often invoked in
the PDS approach (based on asymptotic properties of the
exceedances process), concerns the distribution of n, the
number of peaks per year, that is usually assumed to be
Poisson, namely

fN nð Þ ¼ e�lln

n!
: ð2Þ

[28] Again, it is worth noting that the actual distribution of
the occurrences does not affect the validity of equation (1),
since it only involves the mean value of that distribution, l
[Lang et al., 1999]. On the other hand, hypotheses of
independent and Poisson distributed peaks are essential to
relate the cdf of the flood peaks, FQ(q), to that of the annual
maxima, GQ(q), by means of

GQ qð Þ ¼ e�l 1�FQ qð Þð Þ: ð3Þ

[29] When the Poisson assumption needs to be respected,
an efficient test is the one proposed by Cunnane [1979]:
appropriate acceptance limits for the dispersion index Id (the
ratio of the variance to the mean) of Poisson distributed data
are easily established [see Lang et al., 1999], and it is then
sufficient to verify if the sampling dispersion index lies in
the acceptance range (see section 5).
[30] Apart from the definition of equation (3), however,

the Poisson hypothesis does not seem to be essential when
FFA is approached through the PDS method: in fact, the
binomial and negative binomial distributions are valid
alternatives to the Poisson distribution when one parameter
is not sufficient to describe the whole complexity of the n
distribution [see Lang et al., 1999]. In those cases, relations
analogous to equation (3) can be derived, with the variance
of the T-year estimate that increases only slightly despite the
added parameter [Önöz and Bayazit, 2001].

3.3. Distribution of Peak Magnitudes

[31] The last model hypothesis regards the distribution of
the magnitude of the selected peaks. A common choice is
the generalized Pareto distribution (GPD), whose cdf is

FQ qð Þ ¼ 1� 1� k
q� q0

a

� �1
k

; ð4Þ

where q0, a and k are the location, scale, and shape
parameters, respectively. The GPD is a versatile distribution
[Choulakian and Stephens, 2001] which reduces to the
exponential distribution when k = 0. It can also be
interpreted as the limiting distribution of independent
excesses over threshold [Davison and Smith, 1990; Cox et
al., 2002]. Note that q0 could eventually be estimated as a
third parameter of the GPD [Tanaka and Takara, 2002], but
this is not the common choice. In fact, in order to avoid
overparametrization it is usual to set q0 as the minimum
value of the sample of selected peaks, or directly as the
threshold level qb. This latter option cannot be used in the
FPOT approach because the threshold is applied to filtered
peaks. An additional important property of the GPD is that
the corresponding annual maxima distribution, obtained by
substituting equation (4) into equation (3), is a generalized
extreme value (GEV) distribution.
[32] When equation (4) is set into equation (1) the T-year

flood estimate is obtained as

qT ¼ q0 þ
a
k

1� 1

lT

� �k
" #

: ð5Þ

Several methods have been proposed to verify the adequacy
of the GPD hypothesis or to directly select a threshold qb
which produces a good fit to the GPD. For example,
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Davison and Smith [1990] and Lang et al. [1999] propose a
test for the relation between qb and the mean excess above
threshold, that should approach a straight line when the
GPD hypothesis is respected. Other authors [e.g., Tanaka
and Takara, 2002] prefer to directly test the stability of the
quantile estimates, i.e., to select a threshold where little
difference in the results would ensue if one would have
chosen a slightly higher or lower threshold value. However,
in the absence of a clear test for stability, these procedures
leave very much to the subjectivity of the user (see the
application by Lang et al. [1999]).
[33] A further approach has been suggested by Dupuis

[1999], who proposes to apply an optimal bias robust
estimation procedure: a weight between 0 and 1 is assigned
to each data point (with a high weight meaning that the
GPD model is fitting well) and the threshold is modified
until all data points have weights close to 1. The approach is
interesting, since it transfers at the level of the weights the
problem of finding an appropriate threshold, with the result
that a more objective choice is made possible (in a sense, a
similar advantage is given by the FPOT toward a PDS
procedure). However, it is necessary to run specific simu-
lations in order to understand when the down weighting
indicates a serious lack of fit, and the overall procedure can
become very cumbersome and of difficult applicability.
[34] A more efficient alternative is to test the goodness of

fit of the GPD: the problem is to find appropriate tests for
the situation when the parameters of the distribution are
unknown and their estimate is based on the sample of
exceedances. In this case the classical goodness of fit tests
are not distribution-free. Only recently, a specific test for the
GPD has been established by Choulakian and Stephens
[2001], based on Cramer-von Mises and Anderson-Darling
statistics (see Appendix B). Preliminary analyses showed
that the Cramer-von Mises test demonstrates a greater
stability and power over the Anderson-Darling test, proba-
bly because in the latter possible discrepancies in the left tail
of the distribution are provided with excessive weight.

4. Efficiency of the Estimation of the T-Year Flood

[35] The threshold and peaks selection procedure produces
a sample ofN peaks in t years, possibly following a Poisson-
Pareto model (section 3). On the basis of the information
contained in this sample, the estimation of the T-year flood,
q̂T , from equation (5) can be performed. The usual
procedure is to obtain from the sample the estimates l̂, â
and k̂ of model parameters, and then to insert these values
into equation (5) for finding q̂T . Obviously, the nature of q̂T
is related to the type of original data: daily average
discharge data allow one to estimate only the daily peak q̂T .
[36] Note that the estimate of l as l̂ = N/t is univocal and

independent of the estimate of a and k, for which the choice
of an estimation method must face several options.
Commonly used methods for the estimate are maximum
likelihood, method of moments, and probability weighted
moments [e.g., Madsen et al., 1997], while valid alter-
natives are represented by the cited optimal bias robust
estimation [Dupuis, 1999], the De Haan method [e.g., Naess
and Clausen, 2001] or the generalized maximum likelihood
method [Martins and Stedinger, 2001].
[37] The comparison of different estimation methods is a

very delicate problem that goes beyond the scope of the

paper: see Madsen et al. [1997] or Martins and Stedinger
[2001] for examples of such comparisons. Preliminary
analyses on the data set used in our application, however,
have shown that the choice of the estimation method seems
to be of secondary importance with respect to the choice of
the peak selection procedure or of the correct truncation
level. We therefore decided to concentrate on the latter
problems, and to use maximum likelihood estimators for a
and k, obtained with the method reported by Davison and
Smith [1990].
[38] Once an estimate q̂T is obtained, a crucial point, also

for meaningful comparison with AMS methods, is the
measure of the accuracy of the estimate. This is often given
as the variance of the T-year estimate, var(q̂T ). The variance
of the estimation of q̂T can be obtained in different ways.
[39] 1. Asymptotic formulas usually give poor approx-

imations of the actual variance [e.g., Madsen et al., 1997],
due to the markedly non-Gaussian form of the probability
distribution of q̂T . An interesting common feature of such
formulas is the fact that var(q̂T ) tends to scale with 1/N for
all the estimation methods. This fact gives a clear clue of the
importance of increasing the size of the available sample.
[40] 2. Monte Carlo simulations [e.g., Madsen et al.,

1997; Martins and Stedinger, 2001] are very effective for
comparing estimation methods from simulated data but
have a major drawback in the fact that they require sampling
from a known distribution while the actual distribution is
unknown (at least regarding the parameter values). Taking
the sample parameters as the true values, or even carrying
out a nonparametric bootstrap (with the empirical frequency
distribution as a reference), does not remove the strong
assumption that the finite reference sample is equivalent to
the whole population [Fortin et al., 1997].
[41] 3. Bayesian inference [e.g., Wood and Rodriguez-

Iturbe, 1975; Kuczera, 1999] is another way, in which case
the estimation itself is bypassed and the probability
distribution of qT, intended as a random variable, can be
formally written and explicitly computed (see Appendix C).
Applications of Bayesian inference in the framework of
partial duration series are given by Rasmussen and Rosbjerg
[1991] and Madsen and Rosbjerg [1997]. This method does
not present the problems reported above, since it does not
require hypotheses of Gaussianity or uniformity between
sample and parent distribution. Moreover, the result of
Bayesian inference is much more informative with respect
to other methods, since it gives the whole pdf of qT, and not
only an estimated value and its variance. The only drawback
of the method is a practical one, concerning some numerical
difficulties to overcome, due to the necessity to carry out
multidimensional numerical integrations.
[42] In order to compare the accuracy of the quantile

estimates obtained with the PDS and FPOT procedures, we
decided to adopt the Bayesian method. The 90% fiducial
limits of qT (see Appendix C) are used as a measure of the
estimation accuracy in section 5.

5. Application

[43] 33 time series of daily runoff are analyzed to
compare the efficiency of PDS and FPOT methods. Drain-
age basins are located in the northwest of Italy, in the
Piemonte region (about 30,000 km2). The morphology and
climate of the Alps influence the majority of basins in the
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considered group, but some basins are located in a different
(Apennine) environment. The basins analyzed cover a
variety of climatic and geologic features. As such, this
database represents a significant starting point with regard
to the analysis of daily runoff time series.We report in Table 1
some characteristic features of the drainage basins and of
their daily runoff time series. From Table 1 it can be
observed that the drainage areas A range within more than
two orders of magnitude; the average elevations hm also
cover a wide range of values and refer to basins where
floods are generated directly from rainfall and to basins
where snow and ice melting processes dominate. Record
length, t, average daily runoff, mQ, and the maximum
measured daily discharge, Qmax, also show a great
variability. The amplitude of the data set allows us to
compare significantly the parameters obtained through the
PDS and FPOT procedures. In the following of the section
we summarize the main results of the application.

5.1. Comparison of Threshold Selection Procedures

[44] The two alternative procedures, PDS and FPOT, are
compared using the above-mentioned data set. The PDS
procedure is applied in a classical manner, i.e., by imposing
a value to the threshold qb that, at least in theory, allows the
basic model hypotheses to be fulfilled. In particular, it was
chosen to select qb by imposing qb = mQ + 3sQ (as suggested
by Rosbjerg et al. [1992]), where sQ is the standard
deviation of the daily runoff process. The latter method was
chosen because (1) it does not leave room for the
subjectivity of the user, (2) it does not disregard the
physical properties of the analyzed time series (methods that
fix l a priori have this drawback), and (3) it was extensively
applied [Rosbjerg et al., 1992; Madsen et al., 1997].
[45] As for the FPOT approach, an example of the

application of the procedure is presented in Figure 2, where
the threshold is called s (as in Figure 1b) to point out that it
does not represent an absolute discharge value. The example
demonstrates the effect of a variation in the threshold s on
the mean annual number of occurrences, l, and on the test
statistics: Kendall’s t (Appendix A), dispersion index Id
(section 3.2), and the Cramer-von Mises W 2 (Appendix B).
[46] The statistics t and W 2 assume very high values for

low thresholds and have a rapid decrease as threshold rises.
This behavior is common to all the analyzed time series, and
it is a clear symptom that, for very low s values, the selected
peaks are numerous, mutually correlated (large t values),
and with a strong noisy component (large W 2 values). By
increasing s, the decrease of the number of selected peaks is
quite steep (Figure 2d) and the null hypotheses of
independence and GPD of the peaks comes to be verified
(the dashed lines, representing the 95% acceptance limits,
are down crossed by the continuous lines representing the
test statistics). Note that, as mentioned in section 2.2, the
events we are considering are actual discharge peaks (AP
sequence). If FP events were considered, the independence
test would be passed at lower thresholds, because the filter
partially removes the correlation induced by the base flow
component. However, the estimation of the T-year flood
would become in this case the sum of the T-year FP ordinate
and the T-year base flow, thus increasing the overall
complexity of the procedure.
[47] The dispersion index of the occurrence process, Id, is

scarcely correlated with s. Moreover, in most cases the

sample value lies inside the 95% acceptance limits for all
thresholds. The Poisson distribution is therefore a good
approximation of the occurrences distribution, also when l
is very high.
[48] The FPOT peak selection procedure is completed

by choosing a threshold s that allows the above three tests
to be jointly met. Among all the thresholds which fulfil the
above three conditions, the lower one is chosen in order to
have the higher acceptable l value. In case of Figure 2, a
threshold s = 35 m3/s is selected, corresponding to
l ffi 6.5 events per year.
[49] As a further test of the accuracy of the GPD

hypothesis, we report in Figure 3 an overall measure of
the discrepancy between the sampling and hypothetical
frequency curves. Figure 3 is constructed as follows: for
each of the available 33 time series, the selected peaks are

Table 1. Characteristic Features of the 33 Drainage Basins

Considered in the Applicationa

Station
Number Name

A,
km2

hm,
m asl

t,
years

mQ,
m3/s

Qmax,
m3/s

1 Ticino at Bellinzona 1515 1615 10 62.3 808
2 Toce at Candoglia 1532 1641 21 63 1400
3 Ticino at Sesto

Calende (Miorina)
6599 1283 26 296.3 1960

4 Mastallone at
Ponte Folle

149 1350 22 7.2 484

5 Sesia at Campertogno 170 2120 7 6 304
6 Sesia at Ponte Aranco 695 1480 9 28.2 1710
7 Rutor at Promise 50 2616 20 2.5 15
8 Dora Baltea at Aosta 1840 2270 10 48.4 280
9 Artanavaz at St. Oyen 69 2206 16 2.2 21
10 Ayasse at Champorcher 42 2392 22 1.7 27
11 Lys at Gressoney

St. Jean
91 2615 7 3.4 31

12 Dora Baltea at
Tavagnasco

3313 2080 21 96.4 1260

13 Orco at Pont Canavese 617 1930 29 19.2 530
14 Stura di Lanzo at Lanzo 582 1751 32 19.3 696
15 Dora Riparia

at Oulx (Ulzio)
262 2169 10 5.0 80

16 Dora Riparia at
S. Antonino di Susa

1048 1613 10 18.8 139

17 Chisone at Soucheres 94 2233 12 2.7 29
18 Chisone at Fenestrelle 155 2169 8 3.1 43
19 Chisone at S. Martino 580 1751 29 12.6 400
20 Po at Crissolo 37 2235 28 1.5 81
21 Grana at Monterosso 102 1540 32 2.6 114
22 Rio Bagni at

Bagni Vinadio
63 2124 11 2.1 58

23 Stura di Demonte
at Pianche

181 2070 14 4.6 95

24 Stura di Demonte
at Gaiola

562 1817 11 16.4 141

25 Corsaglia
at C. Molline

89 1530 18 2.8 69

26 Tanaro at Ponte Nava 148 1623 31 4.8 174
27 Tanaro at Nucetto 375 1227 29 10.4 461
28 Tanaro at Farigliano 1522 938 34 37.8 1490
29 Tanaro at Montecastello 7985 663 37 127.8 2690
30 Erro at Sassello 96 591 16 2.7 81
31 Bormida at Cassine 1483 493 12 24.0 1022
32 Borbera at Baracche 202 880 14 5.3 228
33 Scrivia at Serravalle 605 695 14 15.0 328

aDrainage area A, average elevation hm, record length t, average daily
discharge mQ, and maximum measured daily discharge Qmax are reported for
each station.
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ranked, obtaining the order statistics q( j), j = 1,..,N. A return
period Tj is then assigned to each q( j),

Tj ¼
N

l N þ 0:5� jð Þ ð6Þ

where the Hazen plotting position is used to evaluate the
empirical frequency curve. Tj defines the abscissa of each
point in Figure 3, while the corresponding ordinate
represents the relative error between empirical and theore-
tical frequency curves, namely

Er;j ¼
q̂Tj � q jð Þ

q jð Þ
� 100; ð7Þ

where q̂Tj is obtained from equation (5). The procedure is
repeated for the 33 time series to obtain the cloud of points
in Figure 3. Note that positive and negative errors are nearly
equiprobable, showing that the GPD gives a substantially
unbiased fit, also for large return periods. A second
important indication of Figure 3 is that apart from some

Figure 2. Example of application of the FPOT procedure. (a–c) The test statistics t, Id, and W 2 are
reported as functions of the threshold s (solid lines), along with the 95% acceptance limits of the tests
(dashed lines). (d) The average number of events per year, l, is plotted as a function of s.

Figure 3. Relative errors Er (see equation (7)) between
empirical and GPD frequency curves, plotted versus the
return period T.
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outliers, for all the points the relative error lies in the range
�60%, showing an overall good fit of the GPD to the data.

5.2. Analysis of the Annual Average Number of Floods

[50] We have applied the PDS procedure to the 33 series
of our data set, obtaining estimates of l that are reported in
Figure 4 (dashed line). These values fluctuate around
	2 events per year, consistently with the results usually
reported in the literature. Note that the result does not
change significantly when different peaks selection proce-
dures are applied within a PDS approach [see, e.g., Davison
and Smith, 1990; Lang et al., 1999]. Much higher values are
obtained for most of the series with the FPOT procedure
(solid line in Figure 4). Despite the fact that lower l values
are usually obtained with the PDS approach, in two out of
33 cases the Kendall’s t independence test is not passed by
the PDS peaks and the Cramer-von Mises test for the GPD
hypothesis is not passed for 8 stations.
[51] It is also interesting to discuss the role played by

each of the imposed conditions on the definition of l within
the FPOT procedure. We have thus reported in Figure 4 (as
a dotted line) the l values one had obtained by considering
only the independence condition in the selection procedure:
for half of the basins the dotted and continuous line
coincide, which means that the selection of peaks is
principally controlled by the independency requirement. In
the other cases it is instead the GPD requirement or, very
rarely, the Poisson condition, that determines the l value.
An example of this second situation is given in Figure 2,
where a threshold of 25 m3/s would be sufficient to meet the
independency condition, while s = 35 m3/s is necessary in
order to respect the Cramer-von Mises test.

5.3. Comparison of T-Year Flood Estimates

[52] The last point regards the efficiency of the T-year
estimates obtained with the PDS and FPOT methods. The
case T = 100 years is taken as a reference in the following
and the probability distribution of q100, fQ100 (q100) is found
by means of Bayesian inference (see Appendix C). An
example is reported in Figure 5 for a test station. The pdf’s
found for the different stations with the FPOT procedure

(continuous line) usually have a sharper maximum, and
span over a smaller range of q100 values with respect to the
corresponding PDS estimates. The two pdf’s are markedly
skewed, due to the heavy right tail of the GPD: for
measuring the efficiency of the estimates the 90% fiducial
limits are therefore to be preferred to the variance of q100.
[53] We report in Figure 6 the upper and lower 90%

fiducial limits, q100
± (see Appendix C) for the 33 time series,

normalized with respect to the maximum likelihood
estimate of the 100-year flood, q̂100, for facilitating the
comparison. In 30 out of 33 cases the FPOT procedure
produces a narrower fiducial interval with respect to the
PDS procedure, with the distance q100

+ – q100
� reduced of a

factor up to 3. q100
+ undergoes great variations from station

to station, ranging from 1.5 � q̂100 to 8 � q̂100. This great
variability is mainly due to the differences in the record
length t (see Table 1) and to the skewness of the sampling
distribution of the flood peaks. A further point of interest is
that, even when the FPOT procedure is chosen, the fiducial
interval for T = 100 years is rather large for some of the
stations. This is a well known drawback of the GPD [e.g.,

Figure 4. Average number of peaks per year for the
33 stations in the data set.

Figure 5. Probability distributions of the 100-year flood
estimate, q100, for station 32 (river Borbera at Baracche); the
value estimated with maximum likelihood, q̂100, and the
fiducial intervals are also reported in the top part of the plot.

Figure 6. The 90% fiducial limits of q100 (the 100-year
flood estimate) normalized with respect to the maximum
likelihood estimates, q̂100, for the 33 considered stations (the
horizontal dotted line with ordinate 1 can be used as a
reference for the q̂100 value).
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Martins and Stedinger, 2001], a distribution that accom-
panies a great versatility to a rather low efficiency of the
estimates. Other distributions, or the GPD distribution
bounded by imposing a prior distribution to the parameters
[Martins and Stedinger, 2001], can be more efficient in
terms of variance of estimates, but this gain is usually paid
with a worst fit and an increase of the bias.

6. Conclusions

[54] In flood frequency modeling, the partial duration
series procedure is a valid alternative to the usual analysis
of annual maximum series. The basic idea is to increase the
available information by using more than one flood peak
per year. However, in the practical applications ambiguous
criteria for peak selection affect the efficiency and the
practicality of the method. An evolution of the PDS method,
named Filtered Peaks Over Threshold (FPOT) is proposed
here, aimed at a more efficient exploitation of the potential
that the analysis of continuous streamflow data have for the
statistical modeling of floods. First, an objective procedure
for peaks identification is introduced, that overcomes some
problems arising with the more usual up-crossing method.
Second, the conditions governing the choice of the thresh-
old are reconsidered, taking into account updated tests for
independence and goodness of fit to the common Poisson-
Pareto model. This allows us to set objective criteria for
threshold definition.
[55] Results obtained analyzing 33 time series of average

daily discharge are discussed with regard to the estimate of
the mean annual number of flood events, l. In the classical
PDS method this parameter tends to assume values around
2–3, that are not in agreement with physical and statistical
considerations. Additional comparisons are made between
PDS and FPOT procedures in terms of efficiency of
estimation of flood quantiles. A method based on Bayesian
inference is used for obtaining fiducial intervals indepen-
dently of the parameter estimation procedure. Results
obtained for our data set demonstrate the systematically
higher efficiency of the FPOT procedure.

Appendix A: Kendall’s T Test of Independence

[56] We summarize here some basic information regard-
ing Kendall’s t test of independence, referring to Kendall
and Stuart [1967, pp. 473–83] for a detailed treatment of
the argument, and to Ferguson et al. [2000] for an
application to the detection of serial dependence. Consider
a sequence q1,. . ., qN of peak values selected from the daily
discharge time series, and their associated ranks R1,. . ., RN.
Kendall’s t test of independence applied to the detection of
first order serial dependence is based on the comparison
among the pairs

R1;R2ð Þ; R2;R3ð Þ; :::; RN�1;RNð Þ: ðA1Þ

[57] In particular, Kendall’s statistics is defined as

t ¼ 1� 4Nd

N � 1ð Þ N � 2ð Þ ; ðA2Þ

where Nd is the number of discordances, i.e the number of
pairs (Ri, Ri+1) and (Rj, Rj+1) that satisfy either Ri < Rj and

Ri+1 > Rj+1, or Ri > Rj and Ri+1 < Rj+1 [Ferguson et al.,
2000]. Nd can be defined as

Nd ¼
XN�1

i¼1

XN�1

j¼1

I Ri < Rj; Riþ1 > Rjþ1

� 	
; ðA3Þ

where I [�] represents the indicator function of the set {Ri <
Rj; Ri+1 > Rj+1}, i.e., a function that equals 1 when Ri < Rj

and Ri+1 > Rj+1, and equals 0 in the reverse case.
[58] Under the null hypothesis of independent subsequent

peaks and with N > 10, t approximates a normal random
variable with mean

E tð Þ ¼ � 2

3 N � 1ð Þ ; ðA4Þ

and variance

var tð Þ ¼ 20N 3 � 74N2 þ 54N þ 148

45 N � 1ð Þ2 N � 2ð Þ2
; ðA5Þ

[Ferguson et al., 2000]. When positive dependence is
suspected, the one-sided 95% test based on t rejects the null
hypothesis of independence when the sample t exceeds the
critical level t0.95, defined as

t0:95 ¼ E tð Þ þ 1:65
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var tð Þ

p
; ðA6Þ

where 1.65 is the value of the standardized normal variate
with 95% nonexceedance probability.

Appendix B: The Cramer-von Mises Test

[59] A powerful test that a data set is compatible with
being a random sampling from a given distribution is based
on the so called Cramer-von Mises statistics [D’Agostino
and Stephens, 1986],

W 2 ¼ N

Z 1

0

S qð Þ � FQ qð Þ
� 	2

fQ qð Þdq; ðB1Þ

where S(q) is the empirical cdf of the variable q. W 2 is a
measure of the mean square displacement between the
empirical and hypothetical cdfs, and it is usually calculated
as [Choulakian and Stephens, 2001]

W 2 ¼
XN
i¼1

FQ q ið Þ
 �

� 2i� 1

2N

� �2
þ 1

12N
; ðB2Þ

where q(i) is the i-th order statistics of the empirical sample.
When the distribution parameters are estimated from the
sample the test is not distribution-free, i.e., the acceptance
limits of the test need being evaluated for each distribution.
In particular, when FQ(q) is a GPD with the parameters
estimated by the maximum likelihood method, the appro-
priate acceptance limits of the test for different significance
levels are tabled by Choulakian and Stephens [2001].

Appendix C: Bayesian Inference for the Poisson-
Pareto Model

[60] Bayesian inference lays its foundations upon the idea
that parameters should be treated as random variables,
whose probability density depends upon the chosen model,
possible prior information, and empirical data [Wood and
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Rodriguez-Iturbe, 1975]. Leaving aside the possible avail-
ability of prior information, we consider the case when the
model is described by Poisson distributed occurrences with
associated Pareto distributed marks, and the available data
are qi, i = 1,.., N, discharge peaks in t years.
[61] The probability distribution of l is obtained by first

considering the joint probability, f (n1,. . .,nt), of having n1
occurrences in the first year, n2 in the second, etc. . . Under
the hypothesis of independence in the occurrence process,
f (n1,. . .,nt) is obtained from equation (2) as

f n1; :::; ntð Þ ¼
Yt
i¼1

e�llni

ni!
¼ e�ltlN

Yt
i¼1

1

ni!
: ðC1Þ

f (n1,. . .,nt) can also be interpreted as the probability
distribution of l given that we measured ni occurrences in
the ith year, i = 1,..,t (a multiplication constant is necessary
to have a proper pdf). The resulting pdf of l is therefore

f� lð Þ ¼ C1lNe�lt ðC2Þ

where C1 is a constant of integration that makes the integral
of f�(l) over the whole range of l values equal to one.
Equation (C2) is a classical result in Bayesian analysis [e.g.,
Wood and Rodriguez-Iturbe, 1975].
[62] A completely analogous procedure can be followed

to find the joint distribution of a and k from equation (4),

fA;K a; kð Þ ¼ C2

1

aN

YN
i¼1

1� I k > 0; qi � q0 >
k

a

� �� �

� 1� k qi � q0ð Þ
a

� �1�k
k

; ðC3Þ

where C2 is a constant of integration with the same role of
C1 in equation (C2), and I[�] is the indicator function
defined in Appendix A, which is needed for properly taking
into account the upper bound of the GPD for k > 0. The
joint probability of l, a and k is simply f�,A,K(l, a, k) =
f�(l)fA,K(a, k), since l is independent of the other
parameters [e.g., Madsen et al., 1997].
[63] Equation (5) provides a functional relationship be-

tween qT and the parameters l, a and k. The pdf of qT, fQT

(qT) can thus be obtained as a derived distribution of
f�,A,K(l, a, k)

fQT
qTð Þ ¼C1C2

Z 1

0

da
Z 1

�1
dk
YN
i¼1

� 1� I k > 0; qi � q0 >
qT � q0

1� 1

lT

� �k

2
6664

3
7775

0
BBB@

1
CCCA

� 1�
1� 1

lT

� �k
 !

qi � q0ð Þ

qT � q0

0
BBBB@

1
CCCCA

1�k
k

e�lt l
qT � q0

� �N

�
1� 1

lT

 �k
k

 !N�1

ðC4Þ

The multidimensional integrals in equation (C4) are solved
numerically in the Mathematica(R) software using an
adaptive Genz-Malik algorithm. The upper and lower 90%
fiducial limits for qT, namely qT

� and qT
+, are finally found

from the implicit relations

FQT
q�Tð Þ ¼ 1� 0:9

2
: ðC5Þ
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