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Abstract: The occurrence of river floods is strongly related to specific climatic conditions that favor extreme 
precipitation events leading to catchment saturation. Although the impact of precipitation and temperature patterns on 
river flows is a well discussed topic in hydrology, few studies have focused on the relationship between peak discharges 
and standard Climate Change Indices (ETCCDI) of precipitation and temperature, widely used in climate research. It is 
of interest to evaluate whether these indices are relevant for characterizing and predicting floods in the Alpine area. In 
this study, a correlation analysis of the ETCCDI indices annual time series and annual maximum flows is presented for 
the Piedmont Region, in North-Western Italy. Spearman’s rank correlation is used to determine which ETCCDI indices 
are temporally correlated with maximum discharges, allowing to hypothesize which climate drivers better explain the 
interannual variability of floods. Moreover, the influence of climate (decadal) variability on the tendency of annual 
maximum discharges is examined by spatially correlating temporal trends of climate indices with temporal trends of the 
discharge series in the last twenty years, calculated using the Theil-Sen slope estimator. Results highlight that, while 
extreme precipitation indices are highly correlated with extreme discharges at the annual timescale, with different indices 
that are consistent with catchment size, the decadal tendencies of extreme discharges may be better explained by the 
decadal tendencies of the total annual precipitation over the study area. This suggests that future projections of the annual 
precipitation available from climate models simulations, whose reliability is higher compared to precipitation extremes, 
may be used as covariates for non-stationary flood frequency analysis. 
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1 INTRODUCTION 
 
River floods are one of the most impacting natural hazards 

with global annual average losses of US $104 billion 
(UNISDR, 2015). This estimated value is expected to increase 
as a consequence of population growth, urban expansion and 
climate change. In particular climate change is a source of 
concern for increasing river flooding episodes resulting from 
the enhanced water-holding capacity of a warmer atmosphere. 
In fact, large floods have occurred in Europe in the last dec-
ades; among these we can distinguish events occurring in Cen-
tral Europe in 2002, 2013 and 2021 (e.g., Blöschl et al., 2013a; 
Kreienkamp et al., 2021; Ulbrich et al., 2003), winter floods in 
north-west England in 2009 and 2015/2016 (e.g., Barker et al., 
2016; Miller et al., 2013), autumn floods in Northwestern Italy 
such as 1994, 2000 and 2016 in Piedmont (e.g., Cassardo et al., 
2001; Grazzini et al., 2020) and 2011 in Liguria (Silvestro et 
al., 2012; Silvestro et al., 2016). 

Given this evidence, many recent studies have focused on 
the detection of past changes in flood hazard. These studies 
typically use the Mann-Kendall test to detect changes in the 
mean annual flood magnitude and frequency (Mediero et al., 
2014; Petrow and Merz (2009); Prosdocimi et al., 2014; 
Villarini et al., 2011). Among them, recently, Blöschl et al. 
(2019) analysed the most comprehensive dataset of 
observations in Europe (Hall et al., 2015) and found spatial 
patterns of trends in the annual maximum streamflow for the 
period 1960–2010. The detected trends were also attributed to 
three possible drivers of floods: the annual maximum seven-day 
precipitation, the highest monthly soil moisture and the spring 
temperature as a proxy for snowmelt and snow-to-rain 

transition. This was done by analysing and correlating the long-
term temporal evolution of floods and their drivers in different 
European hotspots. Many studies considered non-stationary 
flood frequency analysis to attribute flood changes to potential 
drivers, by modelling distribution parameters with time-varying 
climatic covariates (e.g., Prosdocimi et al., 2014; Prosdocimi et 
al., 2015; Šraj et al., 2016; Viglione et al., 2016). Bertola et al. 
(2020) analysed the differences between small and large flood 
changes (corresponding to the 2-year and 100-year floods) in 
Europe, paving the way for an attribution analysis, as function 
of the return period (Bertola et al., 2021). 

Also studies analysing future flood projections typically 
consider changes in the magnitude of flood quantiles (e.g., 
Alfieri et al., 2015; Rojas et al., 2012). In Alfieri et al. (2015) 
an ensemble of European flood projections for different future 
time periods was compared with flood simulations for an 
historical period, used as a baseline. In that work, the 
projections of two possible drivers of floods such as the annual 
precipitation and the annual maximum daily precipitation were 
considered and the possible interconnections with flood change 
at the regional scale were analysed. Both the annual 
precipitation amount and the annual maximum daily 
precipitation are examples of standard climate indices, as 
defined by the Commission for Climatology/World Climate 
Research Programme/Technical Commission for Oceanography 
and Marine Meteorology (CCI/WCRP/JCOMM) Expert Team 
on Climate Change Detection and Indices (ETCCDI, see e.g., 
Zhang et al., 2005). ETCCDI indices1 are widely used in the 
“climate literature” to evaluate statistics of temperature and 
precipitation extremes and they can be applied to study a 
variety of extreme events such as heavy rain, floods, droughts, 
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heat waves, etc. In particular, they can be important not only to 
analyse past climate changes, but also to characterize future 
changes by using projections of climate models (e.g., Sardella 
et al., 2020). It is of interest to evaluate whether and which 
ETCCDI indices are relevant for characterizing and, therefore, 
predicting flood changes. 

This work aims at exploring the possible correlations 
between the annual maximum daily discharges and ETCCDI 
indices time series at the catchment scale in Northwestern Italy. 
This provides a useful indication of which extreme precipitation 
and temperature indices could be used as covariates for 
estimating annual flood probabilities and their temporal change 
in this region. The study area is broadly coincident with the 
upper part of the drainage basin of the Po River that drains the 
semicircle of mountains formed by the Alps and Apennines 
surrounding the region on three sides. It has a temperate climate 
with a continental character, which in the Alps becomes 
progressively temperate-cold and cold as altitude rises, with 
rainfall that falls mainly in spring and autumn on most of the 
territory, and in summer in the higher inland Alpine areas. It is 
worth considering this study area because of its heterogeneity, 
particularly in terms of elevation and dominance of snow 
related processes, leading to effects of precipitation and 
temperature changes on floods that are not trivial. Two types of 
correlation analysis are carried out: on the one hand a temporal 
correlation is performed at the annual time scale between 
maximum discharges and ETCCDI indices for each catchment, 
useful to capture the best covariates related to the annual 
variability of floods. On the other hand, in the spirit of 
comparative hydrology (Falkenmark and Chapman, 1989), a 
spatial correlation is performed among trends of maximum 
discharges and trends of ETCCDI indices, in order to find 
which covariates best explain the regional variability of the 
decadal tendency of floods. By focusing on multi-year tendency 
rather than on annual variability, this second analysis can be 
useful to select some ETCCDI indices as possible climate 
covariates of flood discharges, for regional non-stationary flood 
frequency analysis. 
 

2 DATA AND METHODS 
2.1 Discharge data 

 
In this study, data from the regional stream gauge network 

managed by the regional environmental protection agency (Arpa 
Piemonte) are used2. From the entire database, only stations with 
at least 9 years of data in the period 1990–2019 are selected, i.e., 
95 stations, whose records start not earlier than 1996. The sites 
are quite evenly distributed over the study area (Figure 1). For 
each station, mean daily discharges are considered to extract the 
annual maximum, which represents a typical flood index, as 
reported in recent literature on flood change (e.g., Blöschl et al., 
2017; Blöschl et al., 2019). We use mean daily discharges rather 
than peak discharges to have a better consistency with the space-
time scale of climate indices (which have been calculated with 
daily data on a coarse spatial grid, see Sect. 2.2). The mean daily 
flow is obtained by averaging the 48 half-hourly values record-
ed each day. We have discarded years with missing daily data 
over a period greater than or equal to 3 months. 

Figures 2a and 2b show the dependence of the mean annual 
specific flood (MAF) and the coefficient of variation (CV) of 
annual specific floods on catchment area, respectively, in a 
double logarithmic plot. For completeness, the relation between 
catchment area and mean elevation and the data consistency as 
function of catchment area are reported in Figure 2c and 2d, 
respectively. MAF and CV show a decrease with catchment 
area, as expected. By fitting a linear model to the data points, 
thus assuming a power law relationship between the variables 
and catchment area, we find a similar behavior as in other stud-
ies (e.g., Lun et al., 2021; Merz and Blöschl, 2003; Merz and 
Blöschl, 2005). The coefficients found here for MAF (–0.136) 
and CV (–0.049) are indeed consistent with the one found in 
Lun et al. (2021) for the Alpine area (–0.208 and –0.020 respec-
tively) but closer to values which are typical of the Atlantic 
region (–0.184 and –0.042 respectively). However, one should 
consider that the number of sites analysed here and their record 
lengths are much smaller than in Lun et al. (2021), thus deter-
mining a remarkable scatter. 

 

 
Fig. 1. Map of Piedmont region with elevation, river network, catchment boundaries and outlets colored by main rivers. 
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Fig. 2. a) Mean annual specific flood (MAF) vs. catchment area. b) Coefficient of variation (CV) of annual specific floods vs. catchment 
area, colored as in Figure 1. Lines are ordinary least squares regression lines. The values of the slope for a double logarithmic relationship 
are also reported. * Indicates statistical significance for a one-sided t-test at the 5% significance level. c) Area vs. mean catchment eleva-
tion. d) Data consistency vs. catchment area. 

 
Table 1. Statistics for the 95 catchments considered in the study. Reference period: 2000–2019 (hydrologic year: 1st October 1999–30th 
September 2019). 

 
 mean CV min 25% median 75% max 

Area (km2) 1596 2.32 38 146 336 951 25640 

Mean elevation (m a.s.l.) 1186 0.488 244 678.5 1125 1666 2339 

Mean annual precipitation (mm yr–1) 1095 0.210 722 932 1051 1212 1827 

Mean annual runoff (mm yr–1) 698 0.495 148 460 644 897 1583 

Aridity index (–) 0.722 0.254 0.350 0.606 0.718 0.816 1.266 

 
2.2 Climate data for the study area 

  
The delineated catchments are shown in Figure 1 and some 

statistics are reported in Table 1. These include catchment area, 
mean elevation, mean annual precipitation, mean annual runoff 
and aridity index. For the calculation of catchment area and 
mean elevation, a catchment extraction procedure has been 
performed3, by using a digital elevation model (DEM) at 100 m 
resolution, obtained from data elaborated by NASA SRTM 
(Shuttle Radar Topography Mission) in 2000 (Farr et al., 2007). 
Mean annual precipitation has been calculated for each catch-
ment by averaging the gridded precipitation values over the 
catchment area. Mean annual runoff has been obtained from the 
daily discharge values at each station in m³/s. The aridity index 
is provided as it is a widely used climate indicator in hydrology 
(Blöschl et al., 2013b). It is defined as the ratio of mean annual 
potential evapotranspiration and mean annual precipitation. The 

potential evapotranspiration has been obtained with the modi-
fied Blaney-Criddle equation (Doorenbos and Pruitt, 1977), 
considering the mean daily temperature and the mean daily 
percentage of annual daytime hours for a latitude of 45°. The 
catchments cover a wide range of contributing areas and aver-
age elevations. The study area is characterized by a temperate 
continental climate, with significant spatial heterogeneity. In 
the Alps, particularly in the northern area of the region, a ten-
dency towards more humid conditions with high precipitation 
amounts prevails, while the central area is experiencing more 
arid conditions, as shown by precipitation, potential evapotran-
spiration, and aridity index maps (Figure 3). It is worth noting 
that both the mean annual precipitation and the precipitation 
extremes, represented by the median and the 95th-quantile of the 
annual maximum daily precipitation, show the highest values in 
the northern part of the region. Very high precipitation extremes 
are also typical of the Apennines range, in the south-east. 
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Fig. 3. Maps of the mean annual precipitation in mm/yr (MAP), temperature in °C (MAT), potential evapotranspiration in mm/yr (PET), 
aridity index (AI), median of the annual maximum daily precipitation in mm/d (R50) and 95th-quantile of the annual maximum daily pre-
cipitation in mm/d (R95) for the study area, derived from the Optimal Interpolation (OI) database. Reference period: 2000–2019 (hydro-
logic year: 1ˢᵗ October 1999–30ᵗʰ September 2019). 

 
Daily precipitation [mm d–1] and minimum and maximum 

daily temperature [°C] data are provided by a gridded dataset, 
covering the period from 01-12-1957 up to 31-12-2019, with 
cell resolution of 0.125° × 0.125°. This has been derived by 
spatial regridding through Optimal Interpolation of daily obser-
vations taken from a dense network of meteorological stations, 
collected by the Hydrographic Office network and by the net-
work of the ARPA telemetry stations.4 The Optimal Interpola-
tion technique allows to obtain data on a regular grid homoge-
nizing observational data from different measurement networks 
and sources. The data have been used for the calculation of the 
ETCCDI indices, which describe precipitation and temperature 
extremes and are widely used in climate change research (Peter-
son, 2005). The ETCCDI indices have been calculated at the 
annual timescale, with the climdex.pcic.ncdf R library, which 
performs an automatic calculation and saves the gridded out-
puts as netCDF files. Indices are referred to thresholds that are 
provided considering the base period 1961–1990. Both the 
annual maximum discharge and the ETCCDI indices refer to 
the hydrologic year (1ˢᵗ October–30ᵗʰ September). Gridded 
indices have been clipped based on catchment boundary and 
average annual indices at the catchment scale have been ob-
tained. This has been done with a weighted average that con-
siders the proportion of each pixel inside the catchments. The 
resulting indices annual time series have been coupled with the 
annual maxima of the mean daily discharges, so we consider 
for the analysis only years with available discharge data. The 
choice of a quite coarse data resolution is justified by the fact 
that it is consistent with outputs of regional climate models for 

future projections. Moreover, we are interested in describing 
regional floods, not local flash floods. 

 
2.3 Correlation measures  

 
Spearman’s rank correlation is applied to annual data to in-

spect which indices have the highest temporal correlation with 
annual maximum daily discharges. The choice of the Spearman 
correlation instead of other statistical measures of association 
between variables (e.g., Pearson correlation) is due to the ex-
pected non-linear relationship between precipitation, tempera-
ture, and discharge. Starting from the common definition of the 
Pearson’s correlation coefficient between two variables (x and y): 

௫,௬ݎ  = ଵ௡ିଵ∑ ቀ௫೔	ି	௫̅	ఙೣ	 ቁ ൬௬೔	ି	௬ത	ఙ೤	 ൰௡௜ୀଵ = ୡ୭୴(௫,௬)ఙೣఙ೤               (1) 

 
where n is the number of observations, ̅ݔ		and ݕത	are the mean 
values of x and y, ߪ௫ and ߪ௬ are the standard deviations of x and 
y, the Spearman’s correlation coefficient is defined as the Pear-
son correlation coefficient between the ranks (Rx and Ry) of the 
variables: 
 ⍴ோ௫,ோ௬ = cov(ܴݔ, ோ௬ߪ	ோ௫ߪ(ݕܴ 																																																																																		(2) 	 
where cov(ܴ௫, ܴ୷) is the covariance of the rank variables, and ߪோ௫  and ߪோ௬	are the standard deviations of the rank variables. 
By substituting the ranks into Equation (1) and simplifying, the 
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coefficient can be computed with the following formulation, 
which exactly holds in case of no ties (Helsel et al., 2020), 
Chapter 8.3): 

ߩ   = ∑ ௡௜ୀଵ	(௜ݕܴ	௜ݔܴ) 	െ 	݊	 ቀ݊ + 12 ቁଶ݊(݊ଶ െ 1)/12 																																																			(3) 
 

The test statistic used for testing the significance of ߩ under 
the null hypothesis of no-correlation between the variables is 
defined as: 
 ܵ = ∑ ௜ݔܴ) െ ௜)ଶ௡௜ୀଵݕܴ = (1 െ ଷ݊)(ߩ െ ݊)/6           (4)  

 
with the right-hand formulation holding in case of no ties. For 
small sample sizes (n < 20), the algorithm AS 89 (Best and 
Roberts, 1975) is used to compute exact p-values, by calculat-
ing the discrete probability distribution associated with S. For n 
< 10, p-values are exact, while for larger sample size an Edge-
worth series approximation is used. For large sample sizes (n > 
20), the test can be computed on the transformed variable: 

	ݐ	  = 	 ݊√	ߩ െ 2ඥ1 െ ଶߩ 																																																																																								(5) 

 
where n is the length of the two tested samples and t is distrib-
uted as a Student's t-distribution with n−2 degrees of freedom, 
under the null hypothesis of no-correlation between the varia-
bles (Helsel et al., 2020, Chapter 8.2). In this case, p-values are 
calculated as: 

	݌  = 1 െ ,(ݐ)௧(absܨ ݊ െ 2)               (6) 
 
where Ft(abs(t), n–2) indicates the non-exceedance probability 
associated with the quantile abs(t) for a Student’s t-distribution 
with n–2 degrees of freedom. In the presence of ties, this is the 
approach adopted for the calculation of p-values. We consider 
one-sided tests at 5% significance level, both for positive and 
negative correlation. 

Confidence intervals of the correlation are found by using 
the Fisher z transform of the correlation: 

ݖ  = 	12 ln ൬1 + 1ߩ െ ൰ߩ = arctanh(ߩ) 																																																						 	(7)	
 

and then assuming z as normally distributed with standard 
deviation: 

௭ߪ  	= ට ଵ௡ିଷ 																																																																																		 (8)     

 
The values are finally back transformed to obtain confidence 
intervals in correlation units.  

The same procedure is also applied to detrended data, to 
check for the impact of the presence of trends in the data on the 
annual correlation among maximum discharges and climate 
indices. For this purpose, the Theil-Sen linear regression model 
with time, which is widely discussed in the following section 
2.4 in the context of tendency detection, is considered. The 
detrending has been performed for each catchment by subtract-
ing the predicted values according to the fitted model to the 
observed values. Then, the correlation has been calculated on 
the obtained residuals. For each index, a regional mean Spear-
man’s correlation coefficient is provided, taking into account 
the uncertainty associated with the single correlation values. A 
weighting procedure is adopted to weight the values for their 
confidence bounds. In particular, the weights are given by 
(upper bound – lower bound)–1. 

The Spearman's rank correlation is also used to evaluate the 
correlation among decadal tendencies of annual maximum 
discharges and tendencies of climate indices. This choice is 
justified by its application in previous studies, with the aim of 
studying the correlation among the tendency of discharge max-
ima and climate variables (e.g., Blöschl et al., 2019). 
 
2.4 Tendency measures 
 

The possible presence of decadal tendencies in the data is in-
spected for both the annual maximum discharge and climate 
indices. For this purpose, the Theil-Sen model is adopted, as 
defined by Theil (1950), with further investigations by Sen 
(1968). This is a robust nonparametric linear regression model 
of the form: 
ෝ	ݕ	  = ߙ + ߚ ⋅  (9)                ݔ
  
In this case, the slope estimator	(ߚ)	represents the median of 
the slopes calculated for all possible pairs of values assumed by 
the variable over different years: 
ߚ  = median	 ൬ݕ௝ െ ௜݆ݕ െ ݅ ൰ , ݅ ൏ ݆																																																																		 (10)	
 
where ݕ refers to the annual values of the variable, while ݅, ݆ 
refer to different years. In this paper, the decadal tendencies 
will be plotted as the percentage of the mean value of the varia-
ble per year (i.e., 100⋅ -of the re (ߙ)		mean). The intercept/ߚ
gression line is calculated according to the approach described 
in Conover (1999): 
ߙ  = ୫ୣୢݕ െ ߚ ⋅  ୫ୣୢ                (11)ݔ
 
where ݔ୫ୣୢ	and y୫ୣୢ	 are the medians of x and y, which in this 
case represent time and the considered variable, respectively. 

We evaluate the significance of the trends with one-sided 
Mann-Kendall tests at the 5% significance level. The test statis-
tic is calculated by computing the sum of the sign of differences 
for all  ௡(௡ିଵ)ଶ 	 possible combinations of the n observations: 

 ܵ = ∑ ∑ sgn(ݔ௝ െ ௜)௡௝ୀ௜ାଵ௡ିଵ௜ୀଵݔ    
 

sgn൫ݔ௝ െ ,൞+1	=	௜൯ݔ if	൫ݔ௝ െ ௜൯ݔ ൐ 00,					if	൫ݔ௝ െ ௜൯ݔ = 0െ1, if	൫ݔ௝ െ ௜൯ݔ ൏ 0                             (12) 

 
For n ≥ 10 (Kendall, 1975), the normal approximation test can 
be used. The test statistic Z is defined as follow: 

 

Z =
۔ۖەۖ
ۓ S െ 1ඥvar(S) ,			if	ܵ ൐ 0					0,											if	ܵ = 0ܵ + 1ඥvar(ܵ) , if	ܵ ൏ 0 																																																										 															(13) 

 
with var(S) being the variance of S: 
 var(ܵ) = 	݊(݊ െ 1)(2݊ + 5) െ	∑ ௝௚௝ୀଵݐ ൫ݐ௝ െ 1൯൫2ݐ௝ + 5൯18 														(14) 
  
In the formula, g represents the number of groups of tied values 
and tj the number of ties in group j. In case of no ties the formu-
lation reduces to: 
 var(ܵ) = 	݊(݊ െ 1)(2݊ + 5)18 																																																																			(15)	 
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Z is distributed as a standard normal distribution under the null 
hypothesis of no trend of the variable (Mann, 1945). Z > 0 
indicates an increasing trend and vice versa. p-values for one-
sided tests are computed as the exceedance probability associ-
ated with Z. 

Besides the test, we also compute confidence intervals for β, 
as measure of the uncertainty in the trends estimation, by se-
lecting the upper and lower limits within the sample of ranked 
slopes. In particular, according to Hollander and Wolfe (1999), 
the critical value is given by the quantile of the standard normal 
distribution ݖమഀ, where ߙ is the confidence level, and the upper 

and lower ranks of the slopes corresponding to the confidence 
bounds are found by: 

 ܴ௨ = ே	ା	୸మഀඥ୴ୟ୰(ௌ)ଶ + 1               
 ܴ୪ = ேି	௭మഀඥ୴ୟ୰(ௌ)ଶ                        (16) 
 

where N = ௡(௡ିଵ)ଶ  is the number of computed slopes. The  
 

confidence level chosen for this study is 0.10, which is coherent 
with the Mann-Kendall test at the 5% significance level applied 
for positive and negative trends separately. Also for tendency 
estimation, a regional mean tendency is provided, taking into 
account the uncertainty associated with the single tendencies. 
The weights are given by exp (–k(upper bound – lower bound)), 
with k = 0.25, to constrain the weights range in case of confi-
dence range equal to 0 (this is the case for the Growing season 
length index (GSL) in some catchments). 
 
3 RESULTS  
3.1 Temporal correlation of annual climate and flood 
indices  

 
A selection of climate indices, broadly coincident with the 

most relevant ones in terms of results, together with the flood 
series for 2 catchments with different topographic characteristics 
are shown in Figure 4. The selected indices are the maximum 5-
day precipitation (Rx5day), maximum 1-day precipitation 
(Rx1day), annual total precipitation when daily precipitation is 
above the 99th percentile (R99pTOT), annual total precipitation  
 

 
Fig. 4. A selection of climate indices and annual river flood series for 2 catchments, whose position is shown in Figure 1: the Po River 
catchment at Isola Sant’Antonio (area 25640 km2, mean elevation 959 m a.s.l.) and the Tanaro River catchment at Ponte di Nava (area 149 
km2, mean elevation 1580 m a.s.l.). The represented indices are a) maximum 5-day precipitation (Rx5day), b) maximum 1-day precipitation 
(Rx1day), c) annual total precipitation above the 99th percentile (R99pTOT), d) annual total precipitation (PRCPTOT), e) annual maximum 
value of daily maximum temperature (TXx) and f) % of days when daily minimum temperature < 10th percentile (TN10p). Annual maxi-
mum discharges are in panel g). The inset shows the Spearman’s rank correlation among the climate indices and discharge maxima; in this 
table * indicates statistically significant correlation according to one-sided tests (α = 0.05). The regression lines indicating the decadal 
tendency of the indices are also reported in panels a–g, together with the estimated slopes (β); in this case, * indicates statistically signifi-
cant tendencies according to one-sided Mann-Kendall tests at 5% significance level. 
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(PRCPTOT), annual maximum value of daily maximum tem-
perature (TXx) and % of days when daily minimum tempera-
ture < 10th percentile (TN10p). We consider the Tanaro River 
catchment at Ponte di Nava, a small catchment in the Southern 
Alps, and the Po River catchment at Isola Sant’Antonio, which 
is the largest lowland catchment of our dataset. The inset table 
provides the correlation coefficients among these indices and 
discharge maxima; for both stations the highest significant 
correlations are found for Rx5day and R99pTOT. Trends lines 
show the decadal tendencies of climate indices and discharge 
maxima in the two catchments. It appears that tendencies of 
climate indices are more pronounced for the high-elevation 
catchment, with significant results according to one-sided 
Mann-Kendall tests (α = 0.05) for R99pTOT, PRCPTOT, 
TN10p. Even the peak flows show a significant increasing trend  
(α = 0.05), opposed to a null tendency for the Po catchment. 

More generally, this section presents the results of the corre-
lation among the annual time series of ETCCDI indices and the 
annual maximum discharges. The calculation has been per-
formed both for original and detrended data (detrended using 
the Theil-Sen linear regression model with time) with similar 
outcomes, indicating that the analysis is quite robust and is not 
affected by the presence of possible trends in the data (Tables 
A1–A4). The Spearman's rank correlation coefficients for the 
indices with the highest mean regional correlation are reported 
in Figure 5. As expected, annual maximum daily discharges are 
best correlated to indices of precipitation extremes: the annual 
maximum 1-day precipitation (Rx1day), the annual maximum 
consecutive 5-day precipitation (Rx5day), the annual total  
precipitation when daily precipitation is above the 95th daily 
percentile (R95pTOT) and the annual total precipitation when 
daily precipitation is above the 99th daily percentile (R99pTOT).  
 

 
Fig. 5. Spearman’s rank correlation coefficients among annual maximum mean daily discharges and a) maximum 5-day precipitation 
(Rx5day), b) annual total precipitation above the 99th percentile (R99pTOT), c) maximum 1-day precipitation (Rx1day), d) annual total 
precipitation above the 95th percentile (R95pTOT), e) simple precipitation intensity index (SDII), f) annual total precipitation (PRCPTOT) 
for all catchments vs. catchment area, colored as in Figure 1. For each index, the regional mean correlation coefficient and the percentage 
of significant cases (one-sided tests at 5% level), are reported. Full dots represent catchments with significant positive correlation, while 
empty dots represent not significant positive correlation. Points corresponding to the catchments described in Figure 4 are drawn as squares. 
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Indices related to average conditions such as the simple precipi-
tation intensity index (SDII) and the annual total precipitation 
(PRCPTOT) show a lower mean correlation. Figure 5 suggests 
that the strength of the correlation may depend on catchment 
area. For example, the annual maximum consecutive 5-day 
precipitation shows higher correlation compared to the annual 
maximum 1-day precipitation for large catchments (A > 2000 
km²), while the opposite occurs for the small ones (A < 100 
km²). Moreover, it can be observed that R99pTOT is more 
significantly correlated to the maximum discharges than 
R95pTOT, in particular for medium-to-large sized catchments 
(A > 500 km²). Considering the annual total precipitation, the 
correlations are weaker compared to the other indices, and no 
significant correlation can be established for very large catch-
ments, which are typically the Po River catchments located in 
the central lowland area. For temperature indices, instead, the 
correlation values are generally lower and significant for a 
smaller number of catchments (Tables A2 and A4). 
 
3.2 Decadal tendency of climate and flood indices  

 
In order to investigate whether the decadal tendency of the 

flood magnitudes depend on the same climate indices which are 
relevant to explain the annual floods, the trends of both 
ETCCDI indices and discharge maxima have been calculated 
over the period 2000–2019, and then a spatial correlation analy- 
 

sis of the trends of the variables has been performed. In other 
words, we evaluate whether the spatial variability of the trends 
(i.e., multi-annual tendency) in the ETCCDI indices explains 
the spatial variability of the trends in the annual maximum daily 
discharges in the Piedmont Region.  

The estimated trends in the annual maximum discharges are 
presented in Figure 6. Floods don’t show a dominant tendency 
at the regional scale and some noise appears in the data mainly 
due to the limited length of the time series (7% of the sites have 
a significant trend according to one-sided Mann-Kendall tests at 
the 5% significance level). Since many stations are located on 
the same river from upstream to downstream, some spatial 
coherence of the tendency sign, according to the geographical 
location, can be observed. A positive tendency is dominant in 
most Bormida and Tanaro catchments, located in the south-
west area (pink and red points in Figure 6, respectively), while 
in other catchments the situation is more heterogeneous. Look-
ing at Po River, for example, the tendency is negative for small 
catchments, which are typically located in the western Alps, 
while for medium-sized hilly catchments it is positive. Finally, 
there is no clear tendency for the largest valley catchments. 
Negative trends can be observed also in the smallest Sesia 
catchments, located in the northern Alpine area. 

Significant tendencies are instead found for most ETCCDI 
indices, more so for temperature indices than precipitation ones. 
The main results for precipitation indices are reported in Figure 
7. As can be noted, the trends are mainly positive and extreme 
indices such as R99pTOT and R95pTOT show a decreasing 
tendency for increasing catchment area. This is particularly the 
case for the Po River catchments (blue points). Total precipita-
tion shows one of the clearest pattern as it is experiencing a 
positive significant tendency in around 50% of the catchments 
(Table A5), but the spatial variability does not seem to depend 
on catchment area. The number of days with precipitation 
above 20 mm (R20mm), together with Rx5day and Rx1day 
show a certain spatial homogeneity, thus indicating that they 
may not be ideal in explaining the spatial variability of flood 
decadal tendencies, as investigated in the next section 3.3. 
 
 

 
 

 
Fig. 6. Trends of annual maximum mean daily discharge for each 
catchment vs. catchment area, colored as in Figure 1. The regional 
mean trend is also reported. Points corresponding to the catchments 
described in Figure 4 are drawn as squares. 

 
The most relevant results for temperature indices are instead 

shown in Figure 8. The % of cold days (TX10p) and the % of 
cold nights (TN10p) show a marked negative tendency in 
almost all catchments. These indices also show a spatial pattern 
that depends on the area, since the tendency increases for in- 
creasing catchment area, meaning that the intensity of the 
warming tendency actually reduces for increasing area. Trends 
of the annual maximum of minimum temperature (TNx), 
annual maximum of maximum temperature (TXx) and the 
growing season length (GSL) are also reported. For these 
indices the relative trend magnitude appears to be lower and 
there is not a clear spatial variability, but they show a 
significant relationship with flood trends that will be discussed 
in the next section. 
 
3.3 Correlation of decadal tendencies of climate and flood 
indices 
 

The main results of the spatial correlation analysis among 
decadal tendencies of ETCCDI indices and decadal tendencies 
of annual maximum discharge are shown in Figure 9, where 
mean catchment elevation is also reported through circle sizes.  

Concerning precipitation indices, the total annual precipita-
tion (PRCPTOT) tendency shows the highest significant corre-
lation, according to a one-sided test at 5% significance level, 
with a Spearman correlation coefficient of 0.500, followed by 
the annual maximum consecutive 1-day precipitation (Rx1day) 
and the annual total precipitation exceeding the 99th daily 
percentile (R99pTOT). This indicates that the long-term varia-
bility of floods seems to be better explained by mean precipita-
tion, rather than by indices of extreme precipitation. 

The analysis on temperature indices provides a significant 
positive correlation (ρ = 0.277) with the tendency of the 
growing season length (GSL) and a negative correlation with 
the tendency of the maximum value of the daily maximum 
temperature (TXx) and maximum value of the daily minimum 
temperature (TNx), with the coefficients equal to –0.310 and –
0.215, respectively. Since the tendencies of these indices show 
a limited spatial variability, as revealed by Figure 8, the results 
obtained for temperature indices may be spurious. Anyway, the 
negative correlations among the tendencies of discharge 
maxima and the maximum value of daily temperatures may be 
of interest from a hydrologic point of view. Some tests, which 
are not presented here, have revealed that by considering only  
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Fig. 7. Trends of a) annual total precipitation above the 99th percentile (R99pTOT), b) annual total precipitation above the 95th percentile 
(R95pTOT), c) annual number of days when precipitation is above 20 mm (R20mm), d) annual total precipitation (PRCPTOT), e) maxi-
mum 5-day precipitation (Rx5day), f) maximum 1-day precipitation (Rx1day), for each catchment vs. catchment area, colored as in Figure 
1. For each index, the regional mean trend is reported. Points corresponding to the catchments described in Figure 4 are drawn as squares. 
 
catchments at medium-to-high elevation (> 1500 m), the 
absolute value of correlation coefficients for these indices 
increase and this can also be grasped from Figure 9. This 
suggests that the results for temperature indices are mainly 
driven by high elevation catchments, where snow-related 
processes dominate in the formation of floods, which are 
typically in the spring season.  
 
4 DISCUSSION AND CONCLUSIONS 

 
In this study, we correlate annual maximum daily discharges 

with standard climate indices (ETCCDI) at the catchment scale, 
over the period 2000–2019. A temporal correlation analysis 
conducted at the annual scale, to evaluate which indices better 
explain annual discharge maxima, is followed by a spatial 
correlation of the tendencies of annual maximum discharges 

and climate indices time series, with the aim of explaining the 
multi-annual tendency of floods in terms of climatic drivers. 

The temporal correlation analysis indicates that indices of 
extreme precipitation (Rx5day, Rx1day, R99pTOT, R95pTOT) 
are highly positively correlated to annual streamflow maxima, 
more than indices of mean precipitation. In particular, 
R99pTOT seems to be more suitable to describe annual maxi-
mum discharges compared to R95pTOT. This can be explained 
by the fact that the former is considering a very high precipitation 
threshold so is a good proxy for the annual maximum flow 
events, while the latter incorporates rainfall events not neces-
sarily leading to the largest flood peak. For this reason, 
R95pTOT could be used to describe other indicators of extreme 
discharge (e.g., flow volumes, not considered in this study). 
Another interesting result follows from the comparison between 
the maximum 1-day precipitation (Rx1day) and the maximum  
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Fig. 8. Trends of a) warm spell duration index (WSDI), b) % of days when the maximum temperature is lower than the 10th percentile 
(TX10p), c) % of days when the minimum temperature is lower than the 10th percentile (TN10p), d) maximum value of daily minimum 
temperature (TNx), e) maximum value of daily maximum temperature (TXx), f) growing season length (GSL) for each catchment vs. 
catchment area, colored as in Figure 1. For each index, the regional mean trend is reported. Points corresponding to the catchments de-
scribed in Figure 4 are drawn as squares. 
 
5-day precipitation (Rx5day). Rx1day shows higher correlation 
to annual maxima for small catchments, while Rx5day seems to 
perform better for large catchments. This is mainly due to the 
interplay between the duration of rainfall events and the 
catchment response time. In fact, it’s well known that longer 
(shorter) precipitation events are relevant in determining floods 
in larger (smaller) catchments. The majority of catchments with 
intermediate size (i.e., 100 km² < A < 600 km²) don’t show 
high correlation values for both Rx1day and Rx5day indices, as 
well as for other extreme indices. A possible way to improve 
the results for intermediate-sized catchments could be to use 
some ad-hoc indices, to capture rainfall events having a 
timescale more relevant for these catchment sizes. An example 
is the maximum consecutive 3-day precipitation (Rx3day), 
which has not been considered here since it is not part of the 
standard ETCCDI indices. 

A trend analysis of all variables has been performed to conduct 
the spatial correlation analysis. This is done because of the lim-
ited record length of the data. With long data records, one could 
temporally correlate the 10-year moving averages (or non-
overlapping blocks) extracted from the series of discharge maxi-
ma and climate indices. Here we assume that an indication on 
which indices are better correlated to flood annual maxima can 
be obtained seeking for those indices whose tendency is correlat-
ed in space (for the different catchments) with the tendency of the 
flood themselves. In other words, we identify the ETCCDI indi-
ces that better explain the flood tendencies at a regional level, 
while the procedure cannot identify those indices that better 
explain the flood tendencies at a sub-regional or local level. 

The trend analysis applied to the data highlights some limita-
tions in terms of the statistical significance of the differences 
within the region, i.e., the estimated trends are often overlapping  
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Fig. 9. Trends of annual maximum mean daily discharges vs. trends of a) annual total precipitation (PRCPTOT), b) maximum 1-day pre-
cipitation (Rx1day), c) annual total precipitation above the 99th percentile (R99pTOT), d) growing season length (GSL), e) maximum value 
of daily maximum temperature (TXx), f) maximum value of daily minimum temperature (TNx), discretized by mean catchment elevation, 
colored as in Figure 1. Spearman’s rank correlation coefficients are reported. 

 
if one considers the uncertainty associated with them. This is 
visible observing the tendencies in the flood discharges and 
climate indices and can be mainly attributed to the limited 
length of the series (15 years, on average). Nonetheless, it is 
worth noting that finding trends which are significantly differ-
ent from zero is not really relevant for the outcomes of the 
analysis, since the main goal is to check for a coherent tendency 
correlation of climate and flood indices, considering all sites. 
For this reason, the spatial correlation analysis is still useful for 
attributing the flood tendency variability characterizing the 
study region.  

Looking more closely at the results, it appears that, as al-
ready mentioned, the highest correlation is found for the annual 
total precipitation which represents mean precipitation condi-
tions. This result suggests that, while extreme precipitation is 
highly correlated with extreme discharges at the annual time-
scale, as one would expect from a mechanistic model of the 

hydrologic response, the decadal changes of extreme discharges 
may be better explained by the decadal changes of the average 
precipitation. This is related to the role played by average pre-
cipitation on catchment saturation, as demonstrated by other 
studies (see e.g., Šraj et al., 2016). Besides, the average or total 
precipitation is itself correlated to extreme precipitation. 

Temperature indices tell us that the tendency of annual max-
imum daily temperatures show a negative correlation to flood 
tendencies, at least for high elevation catchments. There is a 
likely connection between temperatures and snowmelt and ice 
melt dynamics; higher summer temperatures are responsible of 
the retreat of glacierized areas and can be themselves correlated 
to the occurrence of longer dry periods in the mountains, which 
don’t favor the process of snow accumulation, as has been 
observed in the Alps in the last 20 years (Beniston et al., 2018). 
This can result in a negative tendency of runoff peaks, which in 
these catchments typically occur during late spring or summer. 
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A thorough analysis on the type of events occurring (e.g., to 
analyse the impact of rain-on-snow events) could be useful to 
better attribute the evolution of annual discharge maxima at 
high elevation. 

The large uncertainties in the tendencies of the indices, 
mainly due to the record length and the size of the region, 
should be a warning on the fact that the correlations identified 
in our spatial correlation analysis may be spurious. In other 
words, from a statistical point of view, the regional differences 
of the indices are not strong. To deal with the presence of pos-
sible spurious correlations, more robust approaches could be 
used that also account for the expected sensitivity of the long 
term flood behavior to the covariates, such as the method in 
Bertola et al. (2019). From a hydrologic perspective, regional 
differences in precipitation and temperature tendencies are 
possible. Libertino et al. (2019) found trends of annual maxima 
of precipitation over Italy, for different durations and at differ-
ent spatial scales. Considering Northwestern Italy, trends 
showed some variability for different areas of the region, with 
the presence of significant positive/negative trends in hilly or 
mountainous stations opposed to a not distinct pattern over the 
Po valley for 12 h and 1-day precipitation. Even though the 
time period considered is different, this is consistent with the 
results obtained here for indices of precipitation intensity such 
as Rx1day and R99pTOT. Also, in terms of frequency of ex-
tremes, our study suggests an overall increase of the annual 
number of days with precipitation above 20 mm (R20mm) for 
small and medium-sized catchments, and this seems to be in 
continuity with the increasing annual record breaking anomaly 
found in Libertino et al. (2019) for the upper Po Region, during 
the late ‘80s–early ‘90s. Temperature trends found in this study 
reveal a strong relative decrease of the % of cold days and cold 
nights (TX10p and TN10p), which is more exacerbated in small 
catchments, typically located at high elevation in the Alps 
(Figure 8b and 8c), and this is in accordance with previous 
studies on climate trends in this area (see e.g., Acquaotta et al., 
2015). Moreover, also warm days and warm nights (TX90p and 
TN90p) show an overall significant regional increasing tenden-
cy (Table A6), in continuity to what found by Fioravanti et al., 
2016, both for Piedmont region and at the national scale. Re-
garding that study, we would like to point out that the poorly 
significant results obtained for the period 1961–1977, compared 
to other longer time periods, confirm that the length of the time 
series can be critical for the outcomes of the Mann-Kendall test, 
but, as they reported, some useful indications in terms of deca-
dal tendencies can still be provided. 

The analysis performed here is not multivariate and there-
fore is not able to capture and quantify the relative contribution 
of temperature and precipitation indices in explaining flood 
tendencies. For mountain regions like Piedmont this could be 
expected and other statistical tools such as machine learning 
techniques (e.g., Random forest) or, more generally, conceptual 
models could be used to quantify the relative importance of 
different explanatory variables (see e.g., Bertola et al., 2021; 
Zeng et al., 2021). Nevertheless, the results obtained here pro-
vide a first order indication of which ETCCDI indices may be 
related to floods. 

Considering the results for precipitation indices, also Zeng et 
al. (2021) identified total precipitation as the most important 
driver of streamflow change in the U.S., confirming the domi-
nant role of climate in determining the hydrologic regime. The 
main implication of this study is that future projections of mean 
precipitation for the Alpine area, obtained from running state-
of-the-art climate models, may be used as covariates in non-
stationary flood frequency analysis, to produce flood change 

projections in terms of intensity and frequency. The uncertainty 
associated with climate models projections is very high and this 
is largely reflected in the prediction of flood changes, in partic-
ular for scenarios towards the end-of-century. In this respect, 
it’s worth noting that the inherent uncertainty of projections of 
annual total precipitation is lower compared to the uncertainty 
related to extreme precipitation, which leads to some issues in 
the representation of extremes (Alfieri et al., 2015). For this 
reason, the use of total precipitation as covariate can favor more 
reliable future flood estimates. 
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APPENDIX 
 
Table A1. Regional mean Spearman’s correlation coefficients, weighted for the uncertainty bounds, among precipitation ETCCDI indices 
and annual maximum mean daily discharges. The percentage of significant cases for each index is also reported. 
 

Precipitation 
Index 

Definition Regional mean Spearman’s 
correlation coefficient 

Percentage of significant cases 
(one-sided test, α = 0.05) 

Rx5day Maximum 5-day precipitation [mm] 0.729 81% 
R99pTOT Annual total precipitation when daily precipitation is greater than 

the 99th percentile [mm] 
0.659 78% 

Rx1day Maximum 1-day precipitation [mm] 0.657 76% 
R95pTOT Annual total precipitation when daily precipitation is greater than 

the 95th percentile [mm] 
0.578 65% 

SDII Simple precipitation intensity index [mm/day] 0.539 66% 
PRCPTOT Annual total precipitation in wet days [mm] 0.417 43% 

R20mm Annual number of days with precipitation > 20 mm [days] 0.343 33% 
R10mm Annual number of days with precipitation > 10 mm [days] 0.205 21% 
CWD Maximum length of wet spell (number of consecutive wet days) 

[days] 
0.193 19% 

CDD Maximum length of dry spell (number of consecutive dry days) 
[days] 

– 0.192 18% 

R1mm Annual number of wet days [days] 0.053 15% 

 
Table A2. Regional mean Spearman’s correlation coefficients, weighted for the uncertainty bounds, among temperature ETCCDI indices 
and annual maximum mean daily discharges. The percentage of significant cases for each index is also reported. * refer to the webpage for 
a complete definition. 

 
Temperature  

Index 
Definition Regional mean Spearman’s 

correlation coefficient 
Percentage of significant cases 

(one-sided test, α = 0.05) 
TR Number of tropical nights  

(daily minimum temperature > 20 °C) 
0.353 23% 

TNx Annual maximum value of daily minimum temperature 0.304 18% 
TXx Annual maximum value of daily maximum temperature 0.283 27% 
SU Number of summer days  

(daily maximum temperature > 25 °C)  
0.252 19% 

TXn Annual minimum value of daily maximum temperature – 0.187 19% 
ID Number of icing days  

(daily maximum temperature < 0 °C) 
0.141 13% 

TNn Annual minimum value of daily minimum temperature – 0.127 13% 
DTR Daily temperature range (annual mean difference between daily 

maximum and minimum temperature) 
0.106 6.3% 

FD Number of frost days  
(daily minimum temperature < 0 °C) 

0.098 9.5% 

WSDI Warm spell duration index (number of days with at least 6  
consecutive days when daily maximum temperature  

> 90th percentile) 

0.090 10.5% 

GSL Growing season length* – 0.085 9.5% 
CSDI Cold spell duration index (number of days with at least 6  

consecutive days when daily minimum temperature  
< 10th percentile) 

0.077 10.5% 

TX90p % of days when daily maximum temperature  > 90th percentile 0.071 8.4% 
TN10p % of days when daily minimum temperature  

< 10th percentile 
0.050 14% 

TN90p % of days when daily minimum temperature  
> 90th percentile 

0.034 7.3% 

TX10p % of days when daily maximum temperature  
< 10th percentile 

0.013 7.3% 
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Table A3. Regional mean Spearman’s correlation coefficients, weighted for the uncertainty bounds, among detrended series of precipita-
tion ETCCDI indices and annual maximum mean daily discharges. The percentage of significant cases for each index is also reported. 
 

Precipitation 
Index 

Definition Regional mean Spearman’s 
correlation coefficient  

Percentage of significant cases 
(one-sided test, α = 0.05) 

Rx5day Maximum 5-day precipitation [mm] 0.728 84% 
Rx1day Maximum 1-day precipitation [mm] 0.683 78% 

R99pTOT Annual total precipitation when daily precipitation is greater than 
the 99th percentile [mm] 

0.667 80% 

R95pTOT Annual total precipitation when daily precipitation is greater than 
the 95th percentile [mm] 

0.579 64% 

SDII Simple precipitation intensity index [mm/day] 0.535 62% 
PRCPTOT Annual total precipitation in wet days [mm] 0.386 39% 

R20mm Annual number of days with precipitation > 20 mm [days] 0.311 29% 
CWD Maximum length of wet spell  

(number of consecutive wet days) [days] 
0.172 17% 

CDD Maximum length of dry spell  
(number of consecutive dry days) [days] 

– 0.165 17% 

R10mm Annual number of days with precipitation > 10 mm [days] 0.156 20% 
R1mm Annual number of wet days [days] 0.002 14% 

 
Table A4. Regional mean Spearman’s correlation coefficients, weighted for the uncertainty bounds, among detrended series of temperature 
ETCCDI indices and annual maximum mean daily discharges. The percentage of significant cases for each index is also reported. * refer to 
the webpage for a complete definition. 
 
Temperature 

Index 
Definition Regional mean Spearman’s 

correlation coefficient  
Percentage of significant cases 

(one-sided test, α = 0.05) 
TR Number of tropical nights 

(daily minimum temperature > 20 °C) 
0.360 23% 

TXx Annual maximum value of daily maximum temperature 0.330 37% 
TNx Annual maximum value of daily minimum temperature 0.318 21% 
SU Number of summer days 

(daily maximum temperature > 25 °C) 
0.260 18% 

TXn Annual minimum value of daily maximum temperature – 0.231 26% 
ID Number of icing days 

(daily maximum temperature < 0 °C) 
0.171 12% 

TNn Annual minimum value of daily minimum temperature – 0.146 16% 
FD Number of frost days 

(daily minimum temperature < 0 °C) 
0.142 12% 

GSL Growing season length* – 0.134 13% 
TN10p % of days when daily minimum temperature 

< 10th percentile 
0.106 16% 

TN90p % of days when daily minimum temperature 
> 90th percentile 

0.086 17% 

CSDI Cold spell duration index (number of days with at least 6  
consecutive days when daily minimum temperature 

< 10th percentile) 

0.083 20% 

DTR Daily temperature range (annual mean difference 
between daily maximum and minimum temperature) 

0.082 9.5% 

WSDI Warm spell duration index (number of days with at least 6  
consecutive days when daily maximum temperature > 90th 

percentile) 

0.077 15% 

TX10p % of days when daily maximum temperature 
< 10th percentile 

0.068 12% 

TX90p % of days when daily maximum temperature 
> 90th percentile 

0.068 9.5% 
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Table A5. Regional mean trends of precipitation ETCCDI indices and annual maximum discharges, weighted for the uncertainty bounds. 
The percentage of significant cases for each index is also reported. 
 

Precipitation 
Index 

Definition Regional mean trend  
(% of mean per year) 

Percentage of significant cases 
(one-sided test, α = 0.05) 

R99pTOT Annual total precipitation when daily precipitation is greater than 
the 99th percentile [mm] 

3.277 17% 

R95pTOT Annual total precipitation when daily precipitation is greater than 
the 95th percentile [mm] 

2.981 27% 

R20mm Annual number of days with precipitation > 20 mm [days] 1.917 48% 
PRCPTOT Annual total precipitation in wet days [mm] 1.603 48% 

Rx5day Maximum 5-day precipitation [mm] 1.590 9.5% 
R10mm Annual number of days with precipitation > 10 mm [days] 1.506 40% 
Rx1day Maximum 1-day precipitation [mm] 1.186 9.5% 

SDII Simple precipitation intensity index [mm/day] 1.136 41% 
CDD Maximum length of dry spell  

(number of consecutive dry days) [days] 
– 0.334 10.5% 

R1mm Annual number of wet days [days] 0.282 3.2% 
CWD Maximum length of wet spell  

(number of consecutive wet days) [days]  
0.249                     

   
2.1% 

Qmax Annual maximum mean daily discharge [m3/s] 0.873 7.4% 

 
Table A6. Regional mean trends of temperature ETCCDI indices, weighted for the uncertainty bounds. The percentage of significant cases 
for each index is also reported.  *refer to the webpage for a complete definition. 
 

Temperature 
Index 

Definition Regional mean trend  
(% of mean per year) 

Percentage of significant cases 
(one-sided test, α = 0.05) 

WSDI Warm spell duration index (number of days with at least 6  
consecutive days when daily maximum temperature  

> 90th percentile) 

4.341 55% 

TX10p % of days when daily maximum temperature  
< 10th percentile 

– 4.303 76% 

TN10p % of days when daily minimum temperature  
< 10th percentile 

– 3.335 62% 

TX90p % of days when daily maximum temperature  
> 90th percentile 

2.901 54% 

TN90p % of days when daily minimum temperature  
> 90th percentile 

2.483 52% 

ID Number of icing days  
(daily maximum temperature < 0 °C) 

– 2.027 16% 

SU Number of summer days  
(daily maximum temperature > 25 °C)  

1.775 32% 

TR Number of tropical nights  
(daily minimum temperature > 20 °C) 

1.480 36% 

FD Number of frost days  
(daily minimum temperature < 0 °C) 

– 1.299 24% 

TXn Annual minimum value of daily maximum temperature 1.277 2.1% 
CSDI  Cold spell duration index (number of days with at least 6  

consecutive days when daily minimum temperature  
< 10th percentile) 

– 0.996 32% 

TNn Annual minimum value of daily minimum temperature  0.611 1% 
TNx Annual maximum value of daily minimum temperature  0.534 35% 
TXx Annual maximum value of daily maximum temperature 0.382 30% 
DTR Daily temperature range (annual mean difference between daily 

maximum and minimum temperature) 
0.334 40% 

GSL Growing season length* 0.096 17% 
 

 
 


