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Abstract: Streamflow simulation over time intervals much longer than observation periods requires the 
evaluation of the quality of the reproduction of observed statistics of time series. Since much of the non linearity of 
the rainfall-runoff transformation is in the conversion of rainfall to effective rainfall (ER), two approaches with 
fundamental differences in the ER estimation are put under comparison, to highlight pros and cons of univariate 
and bivariate methods. We propose a comparison of IHACRES and Shot Noise models, which involve direct and 
inverse estimates of ER at the daily time scale. The comparison is carried out in terms of assessment of 
inconsistencies in evaluating ER by direct and inverse estimates, both in temperate and in alpine basins. Additional 
comparisons regard the reproduction of direct runoff with the two approaches. The results demonstrate that 
relatively few improvements are obtained by considering a bivariate streamflow simulation method, i.e. by using 
the rainfall time series for streamflow modelling. 

 
 

1. Introduction 
 
Streamflow simulation over time intervals much 

longer than observation periods is an evergreen 
practice in hydrology. From a technical viewpoint, the 
quality and physical soundness of existing models is 
far sufficient for obtaining good results in standard 
applications (e.g., Salas, 1993), i.e. when enough 
rainfall and runoff data are available.  

To grasp the physical mechanisms acting in 
streamflow formation, many models are bi-variate or 
multi-variate (see e.g., Farmer et al, 2003; Manfreda et 
al., 2005), requiring at least a few years of 
contemporary rainfall and runoff records. This data 
requirement is necessary for providing the possibility 
of model verification but, in the literature, very little 
attention has been paid so far to procedures for quality 
assessment of the generated data series. The debate on 
the parsimony and efficiency of simulation models is 
still in progress and requires additional research in this 
field (see Claps et al., 2005). In fact, the presence of 
refined simulation software packages can give the 
average user false certainties about the quality of 
simulated data.  

As a matter of fact, even in the presence of 
sufficient and good-quality data, the use of multi-
variable simulation models does not guarantee the best 
quality of simulated series. In this sense, univariate 
models are still in place in providing instruments for 
parsimonious streamflow simulation. This 
characteristic becomes especially precious when the 
uncertainties in the areal rainfall measurements are 
high, as it usually happens in the mountainous 

environments.  
To proceed with the discussion on model efficiency, 

rainfall-runoff modelling at the daily scale has been 
considered, in the perspective of application of 
univariate (Shot Noise, Murrone et al., 1997) and of 
bi- (or tri-) variate (IHACRES, Jakeman et al., 1990) 
well-established simulation models. The rainfall-
runoff transformation processes have been examined 
considering two macroscopic steps: the rainfall to 
effective rainfall (ER) and the ER to runoff 
transformations. This allows one to attempt a 
comparison between models that have a slightly 
different structure and that use different types of 
variables. Moreover, because the Shot Noise model 
provides an inverse estimation of the effective rainfall 
from streamflows, the comparison has two objectives: 
i) to provide information on the nature of errors that 
accompany rainfall measurement in mountain basins, 
because inversely estimated ER must necessarily be 
consistent with measured runoff; ii) to select clues of 
uncertainty of the areal rainfall information, in order 
to consider the relative advantages of the inverse 
estimation . 

 
2. Description of IHACRES and Shot 

Noise models 
 
In the present section the basic characteristics of 

the two considered models are briefly reviewed, with 
special attention to the estimation of effective rainfall 
in the models. Effective rainfall can be defined as the 
part of the rainfall that actually reaches the basin 
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outlet, and, in impervious basins, it can be derived 
from total rainfall by subtracting the 
evapotranspiration amount (see Mls, 1980; Sirangelo 
and Murrone, 1996)  

Direct or inverse estimates of ER can be carried out. 
A direct estimate of ER is obtained evaluating 
evapotranspiration, generally using temperature data. 
Considering watersheds as linear systems, ER 
represents the argument of the convolution integral, 
and must have the same average as runoff. As such, it 
can be derived through deconvolution of runoff, given 
the system response function (inverse estimate). 
Examples of two models employing direct or inverse 
strategies for ER estimation are provided in the 
following. 

In IHACRES (Jakeman et al., 1990) the rainfall-
runoff transformation is obtained with two modules: a 
non linear loss module, that transforms precipitation to 
effective rainfall by considering the (direct -if 
available- or indirect) influence of temperature, and a 
linear module, based on the classical convolution of 
the effective rainfall by the unit hydrograph (UH), that 
produces the total streamflow. The non-linear loss 
module involves the calculation of an index of 
catchment storage s(t) for every time step t, based 
upon a negative exponential weighting of precipitation 
and temperature: 
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In (1), s(t) is the catchment storage index, τw[T(t)] 

is a variable controlling the rate at which the 
catchment wetness index s(t) decays in the absence of 
rainfall, τw is the value of τw[T(t)] at T=20°C, c is a 
parameter chosen to constrain the volume of effective 
rainfall to equal runoff, f is a temperature modulation 
factor, z-1 is the backward shift operator. The effective 
rainfall ER(t) is computed as the product of total 
rainfall r(t) and the storage index s(t), 
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and then convolved with the unit hydrograph of the 

two-reservoirs-in-parallel linear system, 
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The above relation is a function of the basin 

dynamic response characteristics (DRCs) (Littlewood 
et al, 2003) νq and νs (relative volumetric throughputs 
for quick and slow flow) and τq and τs (characteristic 
decay time constants for quick and slow UHs), and ot
the time step t. 

Looking at the same system from the point of view 
of univariate modeling, streamflow can be considered 
as generated by a Shot Noise process, (Murrone et al., 
1997) that is a filtered sequence of independent and 
instantaneous pulses. It can be represented as: 
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where t is time, q is runoff, Nt is the total number of 
occurrences up to time t, ERi is the intensity of the i-th 
pulse, h(t-τi) is the response function, and τi is the time 
of occurrence of the i-th pulse. 

The univariate Shot Noise model devised by 
Murrone et al. (1997) is based on the observed runoff 
series, and reconstructs the ER sequence by 
deconvolution, without requiring any information on 
the rainfall and temperature forcings. This inverse 
procedure requires a preliminary identification of the 
effective rainfall events, e.g. in correspondence to the 
days when the streamflow increases. This initial 
identification of the occurrences allows one to 
evaluate the ER i  amounts by deconvolution while 
estimating the parameters of the response function.  

The basin response function used in the model 
differs from that of the IHACRES because of the 
presence of a zero-lag additive term, c0, representing 
surface runoff,  
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while the other terms can be easily associated with 

the analogous ones in the IHACRES UH expression. 
Parameters ci and ki are estimated by minimizing 

the sum of the quadratic distances between observed 
and reconstructed data. This requires an iterative 
procedure, because the final response function is not 
known when evaluating the first effective rainfall 
series by deconvolution. Anyway, no calibration or 
adjustment is needed to equalize the runoff and ER 
averages: this is guaranteed by the deconvolution 
procedure itself. 

 
3. Application: effective rainfall estimation 

 
The comparison between the IHACRES and Shot 

Noise models is carried out in terms of effective 
rainfall and direct runoff estimation. Six basins have 
been examined in the application (see Figure 1): three 
rainfall-driven coastal watersheds of British Columbia 
(Canada) and three basins located in northern Italy, 
respectively a temperate, a “transition” and a “pure” 
alpine watershed. The respective watershed nature can 
be recognised by the value of the average elevation, 
listed in Table 1 with other watersheds characteristics 
and with the cross-correlation coefficient between 
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observed rainfall and runoff (R). In temperate 
watersheds precipitation series show a strong 

correlation with observed runoff.

 

        
 

(a) (b) 
 
Figure 1. Location of the considered watersheds in the North-West of Italy (a) and in the South west of British 

Columbia (Canada) (b). 
 

In alpine environments, in contrast, runoff derives 
also from snowmelt and precipitation values are often 
affected by significant errors. As a consequence, the 
cross correlation coefficient declines to very low 
values (0.15 for the Evançon river at Champoluc). In 
this sense R can be assumed as an index to discern 
between temperate and snowfall-driven basins. 

The parameters to be set in the basin response 
functions, (3) and (5), are reported in Table 2 for each 
of the 6 basins. Note that for the Evançon river at 
Champoluc the calibration procedure of the IHACRES 
method does not converge, and it is therefore 
impossible to find the parameter values. 

The lack of correlation between rainfall and runoff 
in alpine basins can be a clue of possible problems in 
the direct estimate of effective rainfall. This can be 
studied by considering the time series of occurrences 
of direct and inverse ER estimates, starting from 

basins in temperate regions. An example of the two 
time series, for the case of the Scrivia river at 
Serravalle, is provided in Figure 2. The superposition 
of the two estimated ER time series shows that the 
application of the direct method implies a proliferation 
of ER events (grey bars in Figure 2): all rainfall events 
in IHACRES are supposed to produce an effective 
rainfall impulse (see Equations (1) and (2)). In 
contrast, when an inverse ER estimation method is 
adopted, only few, very intense ER events are retained 
(black bars in Figure 2), as a consequence of the 
application of a threshold filter in the Shot Noise 
procedure (see Murrone et al. (1997) and Claps et al. 
(2005) for details). The conclusions drawn from the 
visual inspection of Figure 2 can be generalized with a 
correlation analysis of the time series of directly and 
inversely estimated ER occurrences.  

 
 

 
Table 1. Watersheds main characteristics (area, mean elevation, average annual rainfall, average annual 

discharge) and cross correlation coefficients R and Q (see text for details). 
Area [km2] Mean Elev. [m] r [mm/y] y [mm/y] R Q

San Juan Riv. @ Port Renfrew 580 663 3452 2604 0.85 0.84
Kanaka Creek @ Webster Corners 48 460 1807 1818 0.75 0.78
Roberts Creek @ Roberts Creek 33 697 1383 993 0.6 0.78
Scrivia @ Serravalle 611 695 1389 827 0.67 0.71
Chisone @ S.Martino 580 1730 1058 694 0.45 0.29
Evançon @ Champoluc 102 2631 1084 977 0.15 *   

[* The IHACRES method provides unreliable results]
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Table 2. IHACRES and Shot Noise parameters calibrated for three Canadian and three Italian basins 
 

τq 0.76 k1 1.86 τq 1.00 k1 2.14
τs 53.15 k2 70.63 τs 17.84 k2 45.66
νq 0.47 c1 0.45 νq 0.49 c1 0.34
νs 0.53 c2 0.41 νs 0.51 c2 0.54

c0 0.14 c0 0.12

τq 1.69 k1 1.28 τq 1.29 k1 6.31
τs 89.20 k2 61.63 τs 29.15 k2 220.03
νq 0.67 c1 0.38 νq 0.20 c1 0.28
νs 0.33 c2 0.44 νs 0.76 c2 0.66

c0 0.18 c0 0.06

τq 3.47 k1 1.62 τq * k1 22.29
τs 114.13 k2 61.48 τs * k2 3507.80
νq 0.54 c1 0.35 νq * c1 0.64
νs 0.46 c2 0.50 νs * c2 0.30

c0 0.15 c0 0.06

IHACRES SHOT NOISE
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[* The IHACRES method provides unreliable results] 
 

The time series of the occurrences are first reverted 
into binary time series, by attributing a value 1 to the 
days when an effective rainfall occurs, and a value 0 
to the days when it does not. Standard statistical tools 
can then be applied to compare the two binary series: 
a modified form of the cross-correlation coefficient, 
which is suited for an application to binary time series, 
is the Yule's Q coefficient (Goodman and Kruskal, 
1979). The Yule’s Q gives a measure of the proximity 
of the two series based on a 2x2 contingency table: 

 
 0 1 
0 N1 N2 
1 N3 N4 

 
In the table, N1 represents the frequency of occurrence, 
in the two series, of the (0,0) couple of values, N2 of 
the (0,1) couple, N3 of (1,0) and N4 of (1,1). 
Accordingly, the Yule’s Q is written as: 

 

    
3N2N4N1N
3N2N4N1NQ

⋅+⋅
⋅−⋅

=                (6) 

and varies between −1 and 1, with large values 
implying highly correlated binary series. 
The Yule’s Q values computed in relation to ER series, 
estimated by IHACRES and Shot Noise, are reported 
in the last column of Table 2. The results show that in 
basins with rainfall-driven streamflows, characterized 
by a high correlation coefficient between observed 
rainfall and runoff, it is possible to achieve a 
reasonable synchronicity between directly and 
inversely computed ER series, as proved by the high 
value of the Q coefficient. On the contrary, in alpine 
environments direct and inverse ER estimates are 
poorly correlated. For the Chisone basin the Yule’s Q 
coefficient is very low and for the Evançon basin 
direct ER estimates become even unreliable. 
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Figure 2. Directly (grey) and inversely (black) estimated ER time series for the Scrivia watershed. 

 
The large Q values in temperate basins represent an 
interesting result, supporting the reliability of the 
inverse method for the ER estimate (for this typology 
of basins, the direct ER estimates can in fact be 

supposed to be rather robust). 
In contrast, in alpine basins the low Q values can be 

a symptom of a lack of consistency of either the direct 
or the inverse method (or possibly of both). We note 
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that in alpine environments the precipitation measures 
are often very unreliable, with mean annual discharge 
values often significantly larger than mean annual 
observed precipitation. This undermines the credibility 
of direct ER estimates. Moreover, solid and liquid 
precipitation surely have a markedly different effect 
on ER production: this implies that direct estimation 
of ER would require a different model structure in 
alpine basins, while inverse estimation at least allows 
one to balance, on the average, effective rainfall and 
runoff. Based on these results, the indirect ER 
estimation apparently presents a significant advantage 
over the direct one. 

 
4. Application: direct runoff estimation 

 
As mentioned in Section 2, the IHACRES and Shot 

Noise models have a rather similar structure in terms 
of the adopted response function. However, the 
presence of the term c0 in the Shot Noise response 
function hampers a direct comparison between the 
parameter values reported in Table 2. A valuable 
alternative is to compare the obtained results in terms 
of “direct runoff” (DR), which represents the rainfall 
quota that contributes to the streamflow formation 
within the same unit time interval considered for 
rainfall, that in this case is of one day (see Singh and 
Aminian, 1986; Pilgrim and Cordery, 1993). 

The direct runoff series is obtained by using, in the 
convolution integral, a subset of the response function, 
obtained by setting t=1 (day) in equations (3) and (5), 
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Unlike ER, the direct runoff is a continuous 

variable, for which the meaning of a correlation 
analysis can be rather elusive, possibly giving too 
much weight to the prevailing low-flow values. 
Anyway, visual inspection allows one to make some 
considerations. 

Figure 3 shows the computed IHACRES (positive 
axis) and Shot Noise (negative axis) DR time series, 
surmounted by the observed streamflow, for the case 
of the Scrivia river at Serravalle. Figure 4 shows the 
scatter plot of the Shot Noise versus the IHACRES 
direct runoff for the same watershed, represented in 
bilogarithmic scale. In this case, the agreement 
between directly and inversely estimated DR is quite 
good, except for the peak values, where the direct 
method tends to underestimate the discharge entity. 
Also the scatter plot in Figure 4 demonstrates the good 

agreement between the two DR estimates, with the 
previously mentioned exceptions in correspondence to 
the peak values. The analysis of the same diagrams for 
the other river basins confirms these findings, even if 
the similarity between the two series tends to decline 
when moving from temperate to alpine basins. Also 
the analysis of direct runoff therefore supports the 
conclusion that univariate streamflow simulation 
methods can be better than bivariate models in terms 
of quality of the obtained results. 

 
5. Conclusions 

 
The characteristics and performances of two 

streamflow simulation models of different structure 
have been analysed to highlight issues related to the 
identification and estimation of phenomenological and 
conceptual components of the rainfall-runoff 
transformation. The Shot Noise and IHACRES 
models have a similar structure in terms of (linear) 
effective rainfall to runoff transformation, but the ER 
series is obtained by inverse estimation in the former 
and directly from rainfall in the latter model. The 
effects of these analogies and differences have been 
examined in a comparative application to six daily 
discharge time series from basins located in different 
climatic contexts, three in Italy and three in Canada.  
The application has demonstrated that the models 
exhibit a similar behaviour in temperate climates, in 
terms of values of conceptual parameters and 
characteristics of the estimated effective rainfall. As 
one moves from temperate to alpine basins the 
reliability of areal rainfall weakens and the role of 
snow in moderating runoff increases, so that the 
estimates of parameters, the identification of events 
and the magnitude of ER differ more and more. None 
of the two models has a specific module to deal with 
the effect of snow accumulation and melting. 
However, the features of the Shot Noise model 
(assurance of mass conservation, objective evaluation 
of ER from runoff) produce a more reliable 
representation of the streamflow process, in particular 
for basins in a transition (from temperate to alpine) 
environment. The reconstruction of the direct runoff 
time series also demonstrated to be more accurate 
when using the inverse estimation method, even in 
temperate climates, owing to its independency on 
measured rainfall and to the presence of a threshold 
filter. This filter, if applied to IHACRES would 
prevent it from producing runoff for each nonzero 
value of rainfall. The above indications suggest that a 
combined use of direct and inverse streamflow 
modelling could be very useful in transition and cold 
climates. 
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Figure 3. IHACRES (positive axis) and Shot Noise (negative axis) direct runoff, surmounted  

by the observed (dotted) streamflow for the Scrivia river basin. 

 
Figure 4. Shot Noise versus IHACRES direct runoff estimates for the Scrivia watershed (note the log-log scale). 
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