Valutazione probabilistica delle piene in Piemonte e Valle d'Aosta

Metodologia Regionale Spatially Smooth

Ganora D., F. Laio & P. Claps

Progetto di ricerca FLORA tra Politecnico di Torino a ARPA Piemonte

[□] Quest'opera è stata rilasciata con licenza Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 Italia. Per leggere una copia della licenza visita il sito web http://creativecommons.org/licenses/by-nc-sa/ 3.0/it/ o spedisci una lettera a Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

INDICE

N	TROD	UZIONE 1
[BASI	I DI DATI UTILIZZATE 3
	1.1	Base dati idrologica 3
	1.2	Descrittori di bacino 9
2	DEF	INIZIONE DEI MODELLI REGIONALI DI REGRESSIONE MULTIPLA 13
	2.1	Definizione dei modelli di regressione multipla 13
	2.2	Test statistici 16
	2.3	Diagrammi diagnostici 18
	2.4	Semplificazione dell'identificazione dei modelli tramite sfoltimento dei descritto-
		ri 19
	2.5	Verifiche di adeguatezza dei modelli di regressione 21
	2.6	Stima regionale della grandezza di interesse e relativa incertezza 23
3	APP	LICAZIONE DELLA PROCEDURA: 1. STIMA DELLA PIENA INDICE 25
	3.1	Stima campionaria 25
	3.2	Stima regionale: scelta del modello di regressione multipla nella regione di inte-
		resse 26
		3.2.1 Incertezza di stima 29
	3.3	Verifica delle stime in cross-validazione 32
1	APP	LICAZIONE DELLA PROCEDURA: 2. STIMA DELLA CURVA DI CRESCITA 37
	4.1	Stima della curva di crescita 37
	4.2	Metodo di stima locale e regionale degli L-momenti 39
		4.2.1 Stima campionaria 39
		4.2.2 Stima regionale con modelli di regressione multipla 42
	4.3	Risultati e confronti in cross-validazione 47
5	SCEI	LTA DELLA DISTRIBUZIONE DI PROBABILITÀ 55
	5.1	Distribuzioni considerate 55
	5.2	Il metodo di Hirsch per serie non sistematiche 55
	5.3	Scelta della distribuzione 56
	5.4	Valutazione dell'incertezza di stima dei quantili Q _T 59
		5.4.1 Stima campionaria della varianza dei quantili mediante simulazione 59
		5.4.2 Stima della varianza del quantile regionale 60
	5.5	Verifica della procedura sui bacini di taratura 61
	5.6	Considerazioni sull'applicazione del metodo regionale 65
	5.7	Esempi di applicazione 67

Indice

```
Sezione non strumentata
                                          67
              Sezione strumentata
BIBLIOGRAFIA
                75
A L-MOMENTI
                   79
   A.1 L-momenti delle distribuzioni di probabilità
                                                      79
   A.2 Proprietà degli L-momenti
   A.3 L-momenti campionari
                                 82
   A.4 Stima dei parametri mediante gli L-momenti
                                                      83
  DISTRIBUZIONI DI PROBABILITÀ
   B.1 Distribuzione di Gumbel
                                   85
              Definizioni
                             85
        B.1.1
              L-momenti
                             85
        B.1.2
        B.1.3 Parametri
                            86
   B.2 Distribuzione di Pareto Generalizzata
                                               86
              Definizioni
        B.2.1
              L-momenti
        B.2.2
                             87
        B.2.3 Parametri
                            87
   B.3 Distribuzione Generalizzata del Valore Estremo
                                                         87
              Definizioni
        B.3.1
                             88
        B.3.2 L-momenti
        B.3.3
              Parametri
                            89
   B.4 Distribuzione Logistica Generalizzata
                                               89
              Definizioni
                             89
        B.4.2
             L-momenti
                             90
        в.4.3 Parametri
                            90
   B.5 Distribuzione Lognormale a 3 parametri
        B.5.1
              Definizioni
                             91
        B.5.2
              L-momenti
                             92
        B.5.3
              Parametri
                            92
   в.6 Distribuzione di Gamma o di Pearson Tipo III
                                                       93
        B.6.1
              Definizioni
                             93
        B.6.2
              L-momenti
                             94
        в.6.3
              Parametri
                            94
  DEFINIZIONE SINTETICA DEI DESCRITTORI DI BACINO
                                                          97
   DETERMINAZIONE DEI DESCRITTORI DI BACINO
       Analisi preliminari al calcolo dei descrittori
              Riposizionamento delle sezioni di chiusura
                                                          102
   D.2 Determinazione dei descrittori di bacino
  CONSISTENZA DATI
```

F SERIE STORICHE 119

G CARATTERISTICHE DEI BACINI 145

H CURVE DI FREQUENZA CAMPIONARIE 151

I CURVE DI CRESCITA CON FASCE DI CONFIDENZA 173

215

J CURVE DI FREQUENZA CON FASCE DI CONFIDENZA

INTRODUZIONE

La sicurezza del territorio nei confronti degli eventi di piena è ormai ritenuta un'elemento imprescindibile della pianificazione territoriale; per tale motivo è necessario dotarsi di strumenti aggiornati per la valutazione probabilistica delle portate di piena.

Il presente lavoro si colloca in questo contesto proponendo una procedura di regionalizzazione delle informazioni di piena, cioè una metodologia che permette di trasferire le informazioni presenti nelle sezioni strumentate a tutti i punti del reticolo idrografico. Lo scopo è costruire la curva di frequenza delle piene, ovvero una funzione che permetta di stimare in ogni generica sezione del reticolo fluviale la portata di progetto in funzione del periodo di ritorno.

L'approccio seguito nel presente studio è di tipo statistico e si basa, estendendolo, sul metodo della piena indice. I dati di portata massima annua al colmo di piena, disponibili nel catalogo delle piene del Piemonte e della Valle d'Aosta, recentemente aggiornato e ampliato, vengono utilizzati per calcolare alcune variabili statistiche distribution-free (indipendenti dalla distribuzione di probabilità) che permettono di descrivere la media, la dispersione, l'asimmetria, ecc dei campioni di dati. La media, come nel metodo indice, diventa la "portata indice" che moltiplica la curva di frequenza adimensionale, o curva di crescita, della distribuzione. Questa, a sua volta, viene espressa in funzione dei descrittori di variabilità e di asimmetria. La piena indice e i parametri di dispersione e asimmetria sono considerati sufficienti a ricostruire la curva di frequenza in forma analitica in qualunque sezione dei corsi d'acqua. A questo fine vengono regionalizzati attraverso modelli regressivi adeguati a tenere conto della diversa numerosità dei campioni in uso.

Oltre alla regionalizzazione in sé, il presente lavoro si concentra anche sulla valutazione dell'incertezza delle stime della portata di progetto, con conseguente possibilità di comparare l'informazione fornita dall'analisi regionale con quella eventualmente disponibile in sito, al fine di sfruttare al meglio i siti in cui si dispone di serie di misure non particolarmente estese. In tali siti le stime campionarie e regionali della piena indice e dei parametri di dispersione e asimmetria possono essere prima confrontati e poi combinati nella maniera più opportuna, tenendo conto delle corrispondenti incertezze di stima. Risulta in questo modo possibile assumere decisioni anche con riguardo a sezioni aventi serie di osservazioni molto brevi

BASI DI DATI UTILIZZATE

1.1 BASE DATI IDROLOGICA

Il primo passo per la costruzione e validazione di modelli per la stima delle curve di frequenza delle piene è certamente la predisposizione di una base dati affidabile, adeguatamente estesa nel tempo e nello spazio, e quanto più possibile aggiornata.

Il *Progetto FLORA*, attivato da ARPA Piemonte nell'ambito del programma Interreg Italia-Svizzera, ha consentito di rimettere mano ad un lavoro di sistemazione dei dati idrologici di cui si sentiva da tempo la necessità. Infatti, i dati ufficiali di piena (in particolare i valori di portata al colmo di piena) non sono più stati pubblicati dalle agenzie responsabili del monitoraggio idrometrografico dal 1970, data relativa all'ultima edizione della Pubblicazione n. 17 del Servizio Idrografico e Mareografico Nazionale (SIMN), che rappresentava l'unico esempio di catalogo sistematico delle piene esistente in Italia.

L'aggiornamento del catalogo delle piene, che ha portato alla pubblicazione della monografia di Barbero et al. (2012), deriva dalla disponibilità di una notevole mole di informazioni aggiuntive rispetto ai dati precedentemente pubblicati dal SIMN. Da un lato, tali informazioni sono il frutto di un lavoro sistematico ed esteso di rivalutazione di altezze idrometriche già rilevate dal SIMN, ma mai convertite in valori di portata; dall'altro, derivano dalla raccolta dati effettuata presso stazioni idrometriche e invasi gestiti da diversi soggetti, in particolare ARPA Piemonte, ENEL, AEM, CNR. Alcune stazioni contengono valori occasionalmente derivati da altre fonti. La posizione geografica delle stazioni contenute nel catalogo delle piene è sintetizzata nella figura 1.

Un esempio di scheda-stazione riportata sul catalogo delle piene (Barbero et al., 2012) è riportato nella figura 2. Essa contiene una monografia della stazione ed una tabella con le portate disponibili. Eventuali note aggiungono informazioni specifiche relative ai singoli anni.

La procedura di revisione dei dati SIMN non pubblicati è stata motivata dalla presenza, in molte sezioni del territorio piemontese, di misure di altezza idrometrica (massimi al colmo) raccolte sia prima che dopo il 1970 dalla Sezione di Torino dell'Ufficio Idrografico del Po - Parma, facente capo al Servizio Idrografico gestito dal Ministero dei Lavori Pubblici. Tali altezze idrometriche non erano state convertite in altrettanti valori di portata per mancanza delle necessarie scale di deflusso annuali. Claps et al. (2003) avevano tuttavia mostrato che, in condizioni di piena, a causa della scarsa variabilità delle scale annue nel campo delle portate elevate, può essere lecito utilizzare una scala delle portate unica, valida cioè per più anni, e come tale definita scala di deflusso di piena. Per la redazione di questo catalogo è stato utilizzato un "protocollo", proposto da Claps et al. (2010), ottenuto estendendo e sistematizzando la procedura di Claps et al. (2003). L'applicazione del metodo, discussa in dettaglio da Claps et al. (2011) ha portato alla ricostruzione di circa 120 valori di portata distribuiti su 30 stazioni, a fronte di un totale di

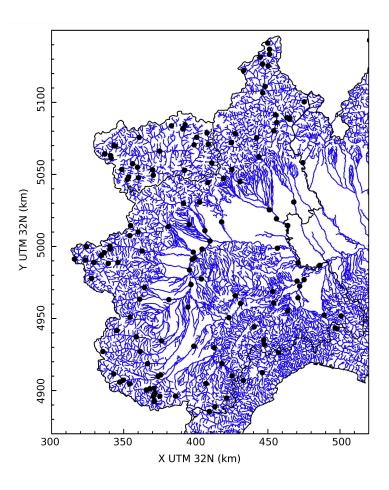


Figura 1: Dislocazione geografica delle stazioni di misura disponibili.

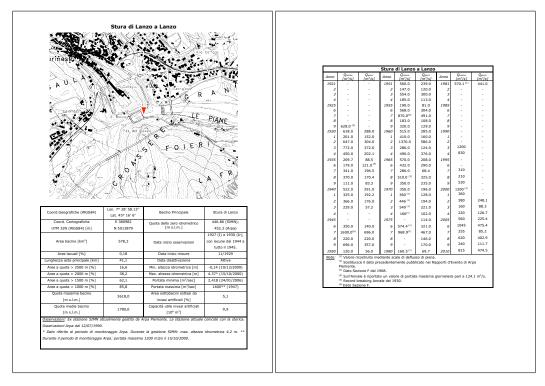


Figura 2: Esempio di scheda stazione (da Barbero et al. (2012)): sulla prima pagina si ritrova la monografia relativa alla stazione di misura, mentre sulla seconda sono riportati i dati di portata corredati da eventuali note.

circa 800 dati disponibili in precedenza.

I dati ricostruiti, aggiunti alle serie storiche SIMN, sono infine integrati con le misure effettuate negli anni recenti da ARPA Piemonte per 17 stazioni che coincidono, o che sono molto prossime, alle corrispondenti stazioni gestite dal SIMN. A questi, si aggiungono anche i valori di portata di 32 nuove stazioni di misura della rete regionale gestita da ARPA Piemonte, da 14 stazioni gestite da ENEL e da 3 stazioni gestite dal CNR di Pallanza. Il catalogo si completa, infine, con le portate ricostruite mediante l'applicazione dell'equazione di bilancio dei serbatoi a 24 invasi gestiti da ENEL e 4 traverse gestite da AEM (oggi IRIDE S.p.A.). La posizione geografica delle stazioni considerate è riportata nella figura 1.

In conclusione, sono stati raccolti dati sulle portate di piena per un totale di 140 stazioni, ognuna delle quali avente almeno 5 anni di misure. La tipologia di dato è variabile da sezione a sezione, e comprende valori di portata al colmo, massimi orari, giornalieri, o su finestre di 24 ore consecutive. Una sintesi delle disponibilità di dati negli anni coperti dal catalogo delle piene, divisa per tipologia di dato, è riportata nella figura 3, mentre la tabella 1 riporta nel dettaglio per ogni stazione la fonte dei dati, le tipologia e le relative numerosità, e il periodo temporale in cui si hanno informazioni.

Le analisi svolte in questo lavoro, descritte nel dettaglio nei capitoli seguenti, sono basate sull'utilizzo dei valori massimi annui al colmo di piena. Pertanto, non tutte le stazioni comprese nel catalogo delle piene possono essere utilizzate in fase di calibrazione e validazione dei modelli; ai fini applicativi sono state considerate 118 stazioni secondo i seguenti criteri:

- sono comprese tutte le stazioni che dispongono di almeno 5 valori al colmo di piena;
- sono escluse le stazioni fortemente influenzate da opere di regolazione, nel caso specifico il Niguglia a Omegna e il Ticino a Miorina, poste a valle del lago d'Orta e del lago Maggiore rispettivamente;
- sono stati assimilati ai colmi anche i valori massimi orari di 3 invasi gestiti da ENEL.

Tutte le serie storiche delle 140 stazioni contenute nel catalogo delle piene sono rappresentate graficamente nell'allegato F.

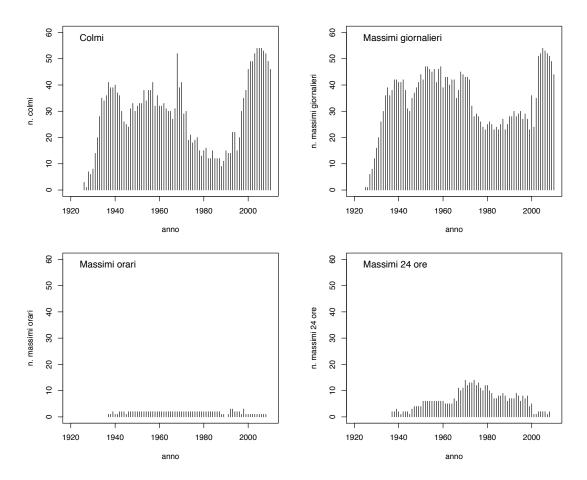


Figura 3: Disponibilità complessiva di dati per ogni anno in funzione della tipologia di dato.

Tabella 1: Elenco delle stagioni di misura disponibili nel catalogo delle piene. Per ogni stazione è riportata il codice indicativo del gestore (vedere tabella 2 per ulteriori dettagli), la tipologia di dati disponibili (C=colmo; G=giornaliero; H=orario; 24=24 ore), la consistenza per ogni tipologia, e il primo e l'ultimo anno di misura.

Denominazione	Gestore	Tipo	Consistenza	Intervallo
Agogna a Novara	PIEMONTE	C - G	11 - 9	2000 - 2010
Artanavaz a Saint Oyen	SIMN	C - G	14 - 15	1952 - 1972
Ayasse a Champorcher	SIMN	C - G	22 - 23	1944 - 1973
Banna a Santena	PIEMONTE	C - G	13 - 11	1951 - 2010
Belbo a Castelnuovo Belbo	PIEMONTE	C - G	13 - 8	1998 - 2010

Denominazione	Fonte	Tipo	Consistenza	Intervallo
Borbera a Baracche	SIMN	C - G	22 - 22	1934 - 1970
Borbore a San Damiano d'Asti	PIEMONTE	C - G	11 - 9	2000 - 2010
Bormida a Cassine (presa canale Carlo Alberto)	SIMN-ARPA	C - G	30 - 25	1942 - 2010
Bormida ad Alessandria	SIMN-ARPA	C - G	17 - 15	1931 - 2010
Bormida di Mallare a Ferrania	SIMN	C - G	24 - 22	1935 - 1968
Bormida di Millesimo a Cessole	PIEMONTE	C - G	10 - 7	2001 - 2010
Bormida di Millesimo a Murialdo	PIEMONTE	C - G	9 - 7	2002 - 2010
Bormida di Spigno a Mombaldone	PIEMONTE	C - G	12 - 14	1995 - 2010
Bormida di Spigno a Valla	INVASO ENEL	H - 24	52 - 52	1939 - 1998
Bousset a Tetti Porcera	ENEL	C - G	6 - 5	1968 - 1970
Breuil ad Alpette	ENEL	C - 24	14 - 14	1967 - 1986
Bucera a Ponte Rovine	ENEL	C - G	6 - 5	1968 - 197
Buthier a Place Moulin	INVASO ENEL	G	74	1964 - 200
Cannobino a Traffiume	CNR	C - G	27 - 27	1981 - 200
Cervo a Passobreve	SIMN-ARPA	C - G	22 - 20	1937 - 2010
Cervo a Quinto Vercellese	PIEMONTE	C - G	9 - 8	2002 - 2010
Cervo a Vigliano Biellese	PIEMONTE	C - G	9 - 8	2002 - 201
Chiavanne ad Alpette	ENEL	C - 24	14 - 14	1967 - 198
Chisone a Fenestrelle	SIMN	C - G	19 - 22	1927 - 195
Chisone a San Martino	SIMN-ARPA	C - G	34 - 30	1953 - 201
Chisone a Soucheres Basses	SIMN	C - G	18 - 12	1955 - 198
Chiusella a Gurzia	INVASO ENEL	C - 24	34 - 32	1934 - 200
Clarea a presa centrale Chiomonte	AEM	G	40	1956 - 199
Corsaglia a presa centrale Molline	SIMN	C - G	25 - 29	1931 - 195
Dora Baltea ad Aosta	SIMN	C - G	16 - 17	1935 - 195
Dora Baltea a Beauregard	INVASO ENEL	G	40	1958 - 199
Dora Baltea a Cignana	INVASO ENEL	G	68	1929 - 199
Dora Baltea a Mazzè	ENEL	C - G	10 - 9	1928 - 199
Dora Baltea a Ponte di Mombardone	SIMN	C - G	14 - 15	1929 - 194
Dora Baltea a Tavagnasco	SIMN-ARPA	C - G	82 - 61	1929 - 201
Dora di Bardonecchia a Beaulard	SIMN	C - G	12 - 21	1930 - 200
Dora di Courmayeur a Prè Saint Didier	SIMN	C - G - 24	7 - 11 - 5	1938 - 197
Dora di Rhemes a Notre Dame	ENEL	C - 24	14 - 14	1967 - 198
Dora di Rhemes a Pèlaud	SIMN	C - G	5 - 17	1944 - 196
Dora di Rhemes a Saint Georges	ENEL	C - G	6 - 6	1967 - 197
Dora Riparia a Chiomonte	AEM	G	40	1956 - 199
Dora Riparia a Oulx	SIMN-ARPA	C - G	43 - 39	1927 - 201
Dora Riparia a Salbertrand	AEM	G	51	1945 - 199
Dora Riparia a Sant'Antonino di Susa	SIMN	C - G	37 - 34	1927 - 199
Dora Riparia a Torino Ponte Washington	PIEMONTE	C - G	17 - 8	1957 - 201
Elvo a Sordevolo	SIMN	C - G	2 - 7	1968 - 197
Erro a Sassello	SIMN	C - G	18 - 16	1945 - 196
Evancon a Brusson	SIMN	G	14	1932 - 195
Evancon a Champoluc	SIMN	C - G	21 - 30	1948 - 197
Galambra a presa centrale Chiomonte	AEM	G	40	1956 - 199
Gesso della Barra a San Giacomo	ENEL	C - G	6 - 5	1968 - 197
Gesso di Entracque ad Entracque	SIMN	C - G	12 - 12	1952 - 196.
Gesso di Entracque a Diga di Piastra	INVASO ENEL	G	32	1965 - 200
Gesso di Monte Colombo a San Giacomo	ENEL	C-G	5 - 5	1968 - 1972
Gesso della Valletta a San Lorenzo	SIMN	C-G	11 - 10	1952 - 1964
Grana a Monterosso	SIMN-ARPA	C - G	55 - 53	1934 - 2010

Denominazione	Fonte	Tipo	Consistenza	Intervallo
Grand'Eyvia a Cretaz	SIMN	C - G	10 - 14	1943 - 1977
Isorno a Pontetto	PIEMONTE	C - G	14 - 7	1978 - 2010
Lys a d'Ejola	SIMN	C - G	10 - 12	1932 - 1950
Lys a Gressoney Saint Jean	SIMN	C - G	18 - 23	1926 - 1958
Lys a Guillemore	INVASO ENEL	C - G	29 - 29	1972 - 2000
Maira a Racconigi	PIEMONTE	C - G	10 - 9	2001 - 2010
Maira a San Damiano Macra	INVASO ENEL	H - 24	57 - 57	1937 - 1998
Maira a Saretto	INVASO ENEL	G - H	17 - 17	1992 - 2008
Malone a Brandizzo	PIEMONTE	C - G	10 - 9	2001 - 2010
Malone a Front	PIEMONTE	C - G	15 - 10	1996 - 2010
Marmore a Perreres	INVASO ENEL	C - 24	15 - 14	1981 - 2000
Mastallone a Varallo Ponte Folle	SIMN-ARPA	C - G	43 - 40	1933 - 2010
Melezet a Melezet	INVASO ENEL	C - G	15 - 14	1981 - 2008
Meris a Sant'Anna Valdieri	ENEL	C - G	5 - 5	1968 - 1972
Niguglia a Omegna	SIMN	C - G	10 - 10	1951 - 1960
Nontey a Valnontey	ENEL	C - G	5 - 5	1968 - 1972
Orba a Casalcermelli	PIEMONTE	C - G	14 - 8	1997 - 2010
Orco a Pont Canavese	SIMN	C - G	49 - 45	1928 - 2000
Orco a San Benigno Canavese	PIEMONTE	C - G	11 - 8	2000 - 2010
Pellice a Luserna San Giovanni	PIEMONTE	C - G	8 - 2	1997 - 2004
Pellice a Villafranca Piemonte	PIEMONTE	C - G	10 - 8	2001 - 2010
Po a Carignano	PIEMONTE	C - G	16 - 13	1995 - 2010
Po a Casale Monferrato	SIMN	С	19	1931 - 1994
Po a Crissolo	SIMN	C - G	24 - 39	1934 - 1977
Po a Isola Sant'Antonio	PIEMONTE	C - G	24 39 13 - 11	1934 1977
Po a Meirano (Moncalieri)	SIMN	С	58	1932 - 1993
Po a San Mauro Torinese	SIMN	C	18	1932 - 1970
Po a Torino Murazzi	PIEMONTE	C - G	13 - 8	1995 - 2000
Po a Valenza	PIEMONTE	C - G	6 - 7	2004 - 2010
Rio Bagni a Bagni di Vinadio	SIMN	C-G	20 - 20	1934 - 1950
Rio del Piz a Pietraporzio	SIMN	G		1934 - 1950
Rio Gerriz a Fieliapoizio Rio Freddo a Rio Freddo	INVASO ENEL	G - G	40	1934 - 195
	ENEL	C-G	7 - 7	1968 - 1972
Ripa a Bousson Rochemolles a Rochemolles	INVASO ENEL		5 - 5 -8	
	ENEL	24 C	58	1970 - 199
Rutor a La Joux Rutor a Promise	SIMN		29	1967 - 199
		C-G	33 - 31	1931 - 1969
San Bernardino a Santino	SIMN-ARPA	C-G	23 - 23	1953 - 2010
San Bernardino a Trobaso	CNR	C-G	24 - 24	1986 - 200
San Giovanni a Possaccio	CNR	C-G	14 - 14	1984 - 2006
Savara a Eau Rousse	SIMN	C - G	18 - 22	1943 - 1972
Savara a Fenille	ENEL	C - 24	6 - 6	1967 - 1972
Scrivia a Isola del Cantone	SIMN	C-G	13 - 11	1931 - 1970
Scrivia a Serravalle Scrivia	SIMN-ARPA	C - G	40 - 33	1930 - 2010
Sermenza a Rimasco	INVASO ENEL	C - 24	44 - 44	1946 - 2008
Sesia a Borgosesia Ponte Aranco	SIMN	C - G	17 - 24	1926 - 1968
Sesia a Campertogno	SIMN-ARPA	C - G	34 - 32	1925 - 2010
Sesia a Palestro	PIEMONTE	C - G	16 - 14	1993 - 2010
Sesia a Vercelli	SIMN	C - G	7 - 6	1930 - 196
Strona di Omegna a Gravellona Toce	PIEMONTE	C - G	10 - 9	2001 - 2010
Stura di Demonte a Fossano	PIEMONTE	C - G	11 - 10	1934 - 2010
Stura di Demonte a Gaiola	SIMN-ARPA	C - G	34 - 26	1935 - 2010

Denominazione	Fonte	Tipo	Consistenza	Intervallo
Stura di Demonte a Pianche	SIMN	C - G	18 - 23	1933 - 1955
Stura di Demonte a Roccasparvera	INVASO ENEL	C - G	9 - 10	1992 - 2002
Stura di Lanzo a Lanzo	SIMN-ARPA	C - G	64 - 58	1929 - 2010
Stura di Lanzo a Torino	PIEMONTE	C - G	10 - 9	2001 - 2010
Stura di Viù a Lago della Rossa	INVASO ENEL	G	53	1942 - 1998
Stura di Viù a Malciaussia	INVASO ENEL	C - 24	49 - 49	1937 - 2000
Stura di Viù a Usseglio	SIMN	C - G	11 - 11	1937 - 1947
Tanaro ad Alba	PIEMONTE	C - G	16 - 15	1994 - 2010
Tanaro ad Alessandria	SIMN	C	15	1931 - 1994
Tanaro a Farigliano	SIMN-ARPA	C - G	69 - 49	1928 - 2010
Tanaro a Garessio	PIEMONTE	C - G	15 - 10	1996 - 2010
Tanaro a Masio	PIEMONTE	C - G	11 - 18	1995 - 2010
Tanaro a Montecastello	SIMN-ARPA	C - G	66 - 9	1926 - 2010
Tanaro a Nucetto	SIMN	C - G	39 - 31	1933 - 1983
Tanaro a Ormea	SIMN	C - G	13 - 12	1928 - 1942
Tanaro a Piantorre	PIEMONTE	C - G	14 - 11	1997 - 2010
Tanaro a Ponte di Nava	SIMN-ARPA	C - G	46 - 43	1928 - 2010
Tanaro a San Martino Alfieri	SIMN	C	6	1932 - 1942
Ticino a Miorina	SIMN	C	37	1934 - 1970
Toce ad Agaro	INVASO ENEL	G	63	1938 - 2000
Toce a Cadarese	SIMN	C - G	15 - 20	1955 - 1975
Toce a Candoglia	SIMN-ARPA	C - G	68 - 42	1933 - 2010
Toce a Codelago	INVASO ENEL	G	128	1932 - 1997
Toce a Domodossola	PIEMONTE	C - G	7 - 7	2004 - 2010
Toce a Lago d'Avino	INVASO ENEL	24	70	1951 - 2000
Toce a Lago Busin	INVASO ENEL	G	120	1929 - 2000
Toce a Lago del Sabbione	INVASO ENEL	G	94	1954 - 2000
Toce a Lago Vannino	INVASO ENEL	G	98	1952 - 2000
Varaita a Castello	INVASO ENEL	C - G	56 - 56	1945 - 2001
Varaita a Rore	SIMN	C - G	58 - 62	1927 - 2001
Varaita a Rossana	PIEMONTE	C - G	12 - 6	1997 - 2008
Vermenagna a Limone	SIMN	G	16	1941 - 1956
Vobbia a Vobbietta Isola del Cantone	SIMN	C - G	14 - 13	1956 - 1970

1.2 DESCRITTORI DI BACINO

Il trasferimento delle informazioni necessarie per la stima delle portate di piena in siti non strumentati passa per l'utilizzo di caratteristiche di bacino, dette comunemente *descrittori*. I descrittori di bacino sono di diverso tipo e sono stati determinati in questo studio attraverso l'applicazione di procedure automatiche basate sui software open-source GRASS GIS e R (Viglione, 2003a), cosa che ha permesso di rendere ripetibile la loro determinazione.

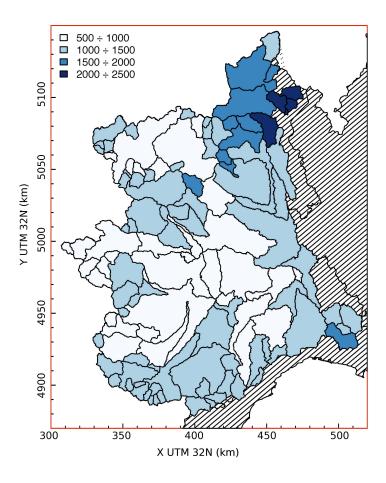

Quale supporto per le elaborazioni è stato adottato il modello digitale del terreno (DEM) derivante della missione SRTM condotta della NASA nel 2000 (Farr et al., 2007) con passo 3 secondi di arco. Si è utilizzata in particolare la copertura del territorio italiano integrata, assemblata

Tabella 2: Descrizione delle fonti dei dati di piena.

Gestore	Tipologia fonte
SIMN	Dati provenienti da edizioni precedenti della Pubblicazione n. 17
PIEMONTE	Dati provenienti dalle stazioni automatiche della rete meteo idrografica regionale gestita da ARPA Piemonte
SIMN-ARPA	Dati relativi a stazioni precedentemente gestite dal SIMN ed attualmente da ARPA Piemonte. I dati successivi al 1993 sono da considerarsi forniti da ARPA, mentre i dati precedenti sono stati ricavati dalle pubblicazioni del SIMN. Per alcune di queste sezioni, la stazione di misura ARPA coincide esattamente con quella precedentemente gestita dal SIMN; per altre le stazioni non sono coincidenti, ma sono molto prossime. Per tale motivo, queste ultime sono state ritenute equivalenti ai fini dell'utilizzo di dati di portata di piena.
ENEL	Dati relativi a stazioni idrometrografiche gestite da ENEL nel periodo di misura riportato nelle schede.
INVASO ENEL	Dati relativi a stazioni ENEL in corrispondenza di invasi e basati sull'applicazione dell'equazione di bilancio dei serbatoi.
AEM	Dati relativi a stazioni o invasi gestiti dall'Azienda Energetica Municipale di Torino nel periodo di misura riportato nelle schede e trasmessi a ENEL dal Registro Italiano Dighe (RID).
CNR	Dati relativi a stazioni idrometrografiche gestite dal CNR di Pallanza.

e validata dal Politecnico di Milano e riproiettata dal Politecnico di Torino con interpolazione bilineare in coordinate cartografiche nel sistema UTM32N, con risoluzione 100m . Per la delimitazione del bacino sono state adottate le librerie di analisi morfologica "Horton Machine" (Rigon et al., 1999-2005) che, identificata la sezione di chiusura posta sul reticolo idrografico coerente con il flusso accumulato secondo le direzioni di drenaggio, permettono la perimetrazione automatica del bacino. In alcune situazioni sono state necessarie ricalibrazioni manuali del DEM (ad es. Cervo a Quinto Vercellese), dal momento che una morfologia particolarmente piatta del fondo valle può non consentire la corretta individuazione automatica del percorso dell'asta fluviale. Una prima tipologia di descrittori considerati comprende le caratteristiche geomorfologiche del bacino e del reticolo idrografico, ricavabili direttamente dal DEM eventualmente con l'utilizzo delle librerie di analisi morfologica, quali ad esempio le quote massima, minima e i percentili della curva ipsografica, la lunghezza dell'asta principale, la pendenza e l'esposizione media dei versanti, la densità di drenaggio, i momenti della funzione di ampiezza, il rapporto di biforcazione, ecc. Per ottenere invece i descrittori di tipo climatico, pedologico, di vegetazione e copertura del suolo, si è utilizzata la delimitazione di bacino come maschera di analisi per ciascuna cartografia tematica contenente le informazioni di interesse, ricavando (ovviamente a scala di bacino) il valore medio del descrittore e il suo coefficiente di variazione spaziale. Un esempio di come si distribuisca il valore medio a scala di bacino della pioggia media annua, partendo dalle analisi spaziali di Bartolini et al. (2011b), è riportato nella figura 4 per i bacini considerati.

L'elenco completo dei descrittori disponibili è riportato nell'Appendice C, mentre l'Appendice D riporta una descrizione più approfondita di ognuno di essi. Tutte le caratteristiche ottenute dall'analisi geomorfologica e climatica dei bacini è raccolta nell'Atlante dei bacini Imbriferi Pie-

Figura 4: Esempio di mappa rappresentante la precipitazione media annua a scala di bacino per i bacini utilizzati nell'analisi. I valori sono espressi in millimetri. Per bacini annidati, la colorazione relativa al bacino più piccolo si sovrappone a quella del bacino idrografico principale.

BASI DI DATI UTILIZZATE

montesi di cui la figura 5 ne mostra un estratto. Alcuni tra i valori numerici dei descrittori più rilevanti sono riportati nell'allegato G.

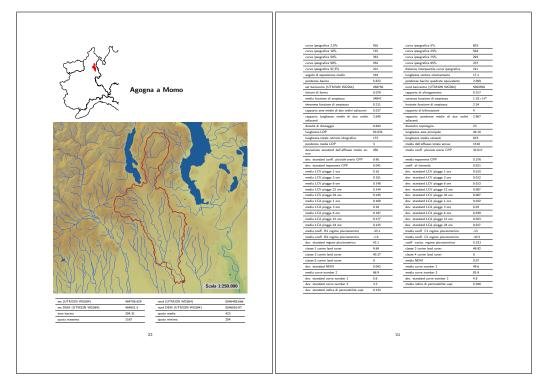


Figura 5: Esempio di scheda bacino tratta dall'Atlante dei Bacini Imbriferi Piemontesi.

2 | DEFINIZIONE DEI MODELLI REGIONALI DI REGRESSIONE MULTIPLA

Il modello regionale di stima dei quantili delle portate al colmo di piena è un insieme di relazioni matematiche che permette di trasferire l'informazione dai siti strumentati ai siti non strumentati, compensando la mancanza di informazioni temporali (serie storica) attraverso l'uso di dati provenienti da siti geograficamente diversi. Nel presente capitolo si analizza la procedura che permette di formalizzare queste relazioni e, di conseguenza, valutare una generica variabile idrologca nel sito di interesse non strumentato.

La procedura di regionalizzazione si basa sulla definizione di un set di modelli di regressione adatti alla stima della piena indice Q_{ind} , e degli indicatori di variabilità e asimmetria della distribuzione, L_{CV} e L_{CA} , ottenuti mediante la teoria degli L-momenti. In sostanza, il quantile Q_T della portata al colmo di piena per assegnato periodo di ritorno T è dato dal prodotto

$$Q_T = Q_{ind} \cdot K(L_{CV}, L_{CA}, T)$$

dove $K(\cdot)$ è una funzione analitica (funzione di crescita) da selezionare con criteri di *model selection*. Risulta pertanto possibile stimare Q_T in una generica sezione fluviale non strumentata a partire dalle sole stime di Q_{ind} , L_{CV} e L_{CA} ottenute direttamente dai modelli di regressione; la scelta di T è invece arbitraria e dipende dall'applicazione.

Il trasferimento dell'informazione viene realizzato costituendo modelli di multiregressione utili alla stima di Q_{ind} , L_{CV} e L_{CA} in siti non strumentati. La definizione di questi modelli richiede la calibrazione dei parametri della regressione, che viene fatta partendo dai valori campionari di Q_{ind} , L_{CV} e L_{CA} , e delle loro varianze di stima, nei siti strumentati. Il calcolo di queste grandezze è spiegato nel dettaglio nei capitoli 3 (per la piena indice) e 4 (per gli L-momenti), mentre il presente capitolo si concentra sulla definizione matematica del modello di regressione multipla generale.

2.1 DEFINIZIONE DEI MODELLI DI REGRESSIONE MULTIPLA

I metodi multiregressivi sono i più comunemente utilizzati per la stima della portata indice in siti sprovvisti di osservazioni. Nel caso in questione l'approccio utilizzato per legare la variabile piena indice alle caratteristiche del bacino, quali i parametri morfometrici e climatici descritti nell'Appendice D. Il modello utilizzato in questa sede fa riferimento allo schema presentato da Stedinger e Tasker (1985) e successivamente applicato in diversi casi studio, tra cui l'area piemontese e valdostana (Laio et al., 2011) . L'ipotesi alla base del modello è che il vettore contenente la variabile di interesse, detto Y_T, possa essere rappresentato mediante la relazione

lineare:

$$Y_{T} = X\beta + \delta \tag{2.1}$$

dove la matrice

$$X = \begin{bmatrix} 1 & x_{1,2} & x_{1,3} & \dots & x_{1,p} \\ 1 & x_{2,2} & x_{2,3} & \dots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N,2} & x_{N,3} & \dots & x_{N,p} \end{bmatrix}$$

contiene p descrittori relativi a N bacini. Il vettore β :

$$\beta = \left[\begin{array}{c} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_N \end{array} \right]$$

è il vettore dei coefficienti di regressione e δ è l'errore dovuto all'approssimazione lineare del modello, detto anche errore del modello. La prima colonna di X è sempre costituita da un vettore unitario in modo che il primo dei coefficienti nel vettore β sia interpretabile come il termine noto della regressione.

Tuttavia, nelle applicazioni dell'analisi di frequenza regionale, Y_T non è noto, mentre si può calcolare il suo stimatore:

$$Y = Y_{T} + \eta \tag{2.2}$$

che è anch'esso affetto dall'errore campionario η . Dalle equazioni (2.1) e (2.2) si ottiene quindi il modello regressivo finale

$$Y = X\beta + \varepsilon. \tag{2.3}$$

dove ε è il vettore dei residui che contiene sia l'errore del modello che l'errore campionario $\varepsilon = \eta + \delta$ (Stedinger e Tasker, 1985).

Il metodo più semplice per la stima dei coefficienti della regressione è la procedura basata sui minimi quadrati ordinari (OLS), che tuttavia risulta inappropriata nelle analisi idrologiche perché i residui violano l'ipotesi di omoschedasticità (varianza costante) ed indipendenza, implicando la non ottimalità degli stimatori. Questo fatto è dovuto alla presenza di osservazioni di differente lunghezza e correlate tra di loro (e.g. Montgomery et al., 2001). Per fare fronte a questi problemi sono stati sviluppati il metodo di stima ai minimi quadrati pesati (WLS), che tiene conto di valori di varianza diversi per ogni Y_i, e quello ai minimi quadrati generalizzati (GLS), che consente di utilizzare serie storiche correlate tra di loro.

Stimatori indistorti β dei coefficienti della regressione si calcolano come:

$$\hat{\beta} = \left(X^{\mathsf{T}} \Lambda^{-1} X\right)^{-1} X^{\mathsf{T}} \Lambda^{-1} Y,\tag{2.4}$$

dove Λ è la matrice di covarianza degli errori, che normalmente viene stimata a priori sulla base delle misure Y disponibili. Quando Λ coincide con la matrice identità ci si riconduce alla procedura di stima ai minimi quadrati ordinari (OLS), mentre per Λ coincidente con una generica matrice diagonale, si ricade in una procedura basata sui minimi quadrati pesati (WLS). Nel caso più generale, in cui le covarianze non sono nulle, Λ presenta valori positivi anche fuori dalla diagonale ed il metodo viene detto dei minimi quadrati generalizzati (GLS).

In letteratura, solitamente, si osserva che le procedure definite come WLS e GLS fanno riferimento a modelli i cui residui ε non vengono esplicitamente separati nella componente di errore del modello δ ed errore campionario η . Nell'approccio utilizzato per il presente studio, invece, la matrice di covarianza è esplicitamente definita (analogamente a Stedinger e Tasker (1985)) in funzione di entrambi i termini relativi alla varianza del modello ed alla varianza campionaria. Quando si considerano esplicitamente i due termini di varianza, è necessario risolvere un sistema di equazioni in maniera iterativa (Stedinger e Tasker, 1985; Griffis e Stedinger, 2007) in modo da ottenere la stima della varianza del modello contestualmente a quella dei coefficienti di regressione. Per tale motivo, e per evitare incongruenze di notazione in riferimento a tale situazione, quando verrà utilizzata questa procedura si utilizzeranno i termini iGLS (o iWLS), dove "i" sta per soluzione "iterativa".

Nel caso iWLS (o analogamente iGLS), Λ viene approssimata attraverso il suo stimatore, definito come:

$$\hat{\Lambda}\left(\sigma_{\delta}^{2}\right) = \sigma_{\delta}^{2} I_{N} + \hat{\Sigma} \tag{2.5}$$

dove la matrice $\hat{\Sigma}$ contiene i termini relativi alle varianze (e covarianze) campionarie, calcolate sulla base dei valori di Y stimati in precedenza. Il termine I_N indica invece la matrice identità che moltiplica il termine di varianza del modello σ_{δ}^2 , che risulta quindi costante per tutti i bacini interessati nell'analisi, essendo dovuta alla non corretta specificazione del modello. Come accennato in precedenza, il termine σ_{δ}^2 non è determinabile a priori (come invece $\hat{\Sigma}$), ma viene stimato congiuntamente ai coefficienti della regressione $\hat{\beta}$ (calcolati con l'equazione (2.4)) cercando una soluzione non negativa (Griffis e Stedinger, 2007) per l'equazione:

$$\left(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\right)^{\mathsf{T}} \left[\hat{\sigma}_{\delta}^{2} \mathbf{I}_{\mathsf{N}} + \hat{\boldsymbol{\Sigma}}\right]^{-1} \left(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\right) = \mathsf{N} - \mathsf{p} \tag{2.6}$$

in cui $\hat{\sigma}_{\delta}^2$ è lo stimatore di σ_{δ}^2 , N_i è il numero di bacini e p è il numero di variabili indipendenti, inclusa l'intercetta, usate nella regressione. L'equazione (2.6) richiede una soluzione iterativa.

Nel presente studio, si assume che le stime relative ai bacini analizzati non siano significativamente correlate tra di loro, in ragione sia dell'eterogeneità climatica dell'area, sia della presenza di serie storiche spesso brevi e che non sempre si sovrappongono temporalmente. La matrice Σ si riduce così ad una matrice diagonale; in tal senso il modello segue l'approccio iWLS, sebbene tutte le equazioni siano naturalmente valide anche per il metodo iGLS.

La forma lineare espressa dall'equazione (2.3) non è talvolta adeguata a rappresentare la variabile in esame. In questi casi, vengono proposte delle relazioni non lineari tra Y e i descrittori in grado di migliorare la stima di Y, ma che rendono la procedura di stima più complessa e non sempre ottimale. Un esempio di modello non lineare molto usato in idrologia, specialmente per la stima della piena indice, è la forma moltiplicativa del tipo:

$$Y' = \beta_0 \cdot z_1^{\beta_1} \cdot z_2^{\beta_2} \dots z_p^{\beta_p} \cdot \varepsilon, \tag{2.7}$$

dove Y' è la variabile dipendente e z il generico descrittore. Questo modello, oltre a condurre a stime generalmente migliori, ha il pregio di poter essere facilmente linearizzato e ricondotto alla forma (2.3) trasformando Y' e z. Di conseguenza, i metodi già sviluppati per la regressione lineare possono essere applicati allo stesso modo.

Nel caso specifico, la forma moltiplicativa può essere ricondotta al modello lineare applicando una trasformazione logaritmica sia alla variabile dipendente (cioè imponendo Y = log(Y')) che ad ogni singolo descrittore (x = log(z)). La prima colonna della matrice X, invece, rimarrà sempre uguale al vettore unitario.

Nel presente lavoro tutte le trasformazioni logaritmiche sono intese come logaritmi naturali.

2.2 TEST STATISTICI

Un modello di regressione esprime un legame tra una variabile dipendente ed un set di variabili indipendenti, dette descrittori. Tuttavia, in genere il legame è di tipo statistico, per cui è necessario verificare che il modello sia affidabile mediante test statistici appropriati, tra cui il test della t di Student per la significatività dei coefficienti di regressione, ed il test sulla multicollinearità dei descrittori.

Il test della t di Student viene impiegato per individuare i modelli per i quali anche solo una delle variabili esplicative risulti non significativa per spiegare la variabilità della variabile dipendente. Si consideri la regressione lineare di equazione (2.3), con lo scopo di testare il caso in cui uno dei coefficienti di regressione β_i sia uguale ad una costante β^* . L'ipotesi nulla e l'ipotesi alternativa siano, rispettivamente, $H_0: \beta_i = \beta^*$ e $H_1: \beta_i \neq \beta^*$; gli errori siano indipendenti e distribuiti con distribuzione normale $\varepsilon \sim N(0, \sigma_\varepsilon^2)$. Per lo studio dei modelli di regressione è quindi di rilievo il caso in cui $\beta^* = 0$, che equivale a dire che l'effetto di un descrittore non è statisticamente diverso da zero.

Ai fini pratici, per valutare la significatività di ogni coefficiente si ricorre alla statistica

$$t = \frac{\hat{\beta}_i}{\sigma_{\beta_i}} \tag{2.8}$$

che è distribuita secondo una distribuzione di Student con n-p gradi di libertà. Il termine al denominatore dell'equazione (2.8) rappresenta l'errore standard relativo al coefficiente di regressione, e può essere calcolato, nel caso di modelli iWLS, prendendo gli elementi diagonali della matrice $(X^T \hat{\Lambda} X)^{-1}$ (Reis et al., 2005).

L'Equazione (2.8) diventa quindi la statistica test da utilizzarsi nel caso in cui si voglia valutare la significatività di uno dei coefficienti della regressione: si calcola t e la si confronta con la corrispondente variabile $t_{lim}(1-\alpha)$, associata al livello di significatività α . Se $t < t_{lim}(1-\alpha)$, il parametro non è distinguibile da zero e la variabile esplicativa non deve essere utilizzata nella regressione poiché non è significativamente legata alla variabile dipendente. Si noti che far crescere il livello di significatività corrisponde ad aumentare la probabilità di considerare il coefficiente statisticamente diverso da zero, ossia ad aumentare la probabilità di mantenere una data variabile esplicativa tra i descrittori significativi.

Affinché il test definito dalla statistica t dell'Equazione (2.8) possa essere usato occorre, a rigore, che gli errori del modello siano distribuiti normalmente. Nella pratica si è riscontrato che per deboli "non-normalità" il test risulta essere comunque significativo (Montgomery et al., 2001). Nel caso di una generica regressione lineare multipla, il test sulla significatività deve essere effettuato su ognuno dei parametri della regressione. Qualora uno qualsiasi dei coefficienti risulti non significativamente diverso da zero, il modello di regressione viene scartato.

Per i modelli che superano il test della t di Student è ancora necessario verificare che non ci sia correlazione lineare tra i descrittori considerati, ossia si deve accertare l'assenza di multicollinearità tra le variabili esplicative. Un esito negativo a tale verifica comporterebbe la formulazione di un modello instabile, nel senso che piccole deviazioni dei valori delle variabili esplicative potrebbero produrre stime completamente diverse della variabile dipendente. Infatti la multicollinearità influenza la procedura dei minimi quadrati determinando problemi di stima dei coefficienti β .

Il caso rappresentato in Figura 6 può essere utile a spiegare gli effetti dovuti alla multicollinearità. Adattare un modello lineare ai dati ($y = f(x_1, x_2)$) riportati in tale figura corrisponde a far passare un piano inclinato tra i punti. Ovviamente l'inclinazione di questo piano sarà molto instabile e sensibile a piccoli cambiamenti della posizione dei punti perché mal vincolato a causa della correlazione tra x_1 e x_2 . Inoltre, nonostante il modello possa predire abbastanza bene y nei punti (x_1 , x_2) vicini a quelli dei dati, qualsiasi estrapolazione al di fuori di questi sarà verosimilmente poco affidabile.

Una statistica adeguata a misurare la presenza di multicollinearità fra le variabili esplicative di un modello multiregressivo è il *variance inflation factor*, VIF, (Montgomery et al., 2001). Esso si determina ponendo il j-esimo descrittore come variabile dipendente e calcolando il coefficiente di determinazione R_j^2 relativo alla regressione multipla effettuata sulle rimanenti (p - 1) variabili indipendenti. Il valore della statistica VIF $_i$ è quindi calcolato come

$$VIF_{j} = (1 - R_{j}^{2})^{-1}$$
(2.9)

considerando, a turno, tutti i regressori. Lesperienza pratica (Montgomery et al., 2001) consiglia di considerare che se uno dei valori VIF_j calcolati per le diverse variabili esplicative supera un valore pari a 5, la possibilità che i coefficienti della regressione siano instabili a causa di multicollinearità è elevata e, di conseguenza, è consigliabile scartare il modello regressivo in questione.

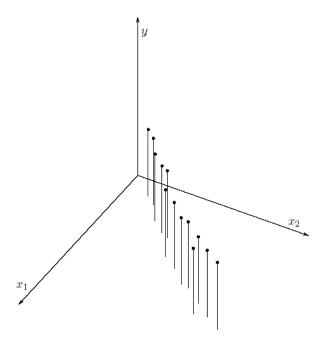


Figura 6: Esempio schematico di un set di dati affetti da multicollinearità.

2.3 DIAGRAMMI DIAGNOSTICI

Per verificare se le assunzioni implicite nell'adozione del modello (2.3) vengono rispettate è utile ricorrere ad alcuni diagrammi diagnostici. Questi consentono, ad esempio, di verificare che i residui ε abbiano varianza costante (omoschedasticità) e che siano distribuiti normalmente. Deviazioni rilevanti dalla normalità dei residui implicherebbero la mancata validità del test della t di Student, che è fondamentale nella fase di selezione del modello.

Il grafico di costruzione più immediata è quello che confronta gli andamenti della variabile stimata \hat{Y} e di quella dipendente osservata Y, riportati rispettivamente in ascissa e in ordinata. Questo diagramma a dispersione consente di verificare visivamente quanto il modello regressivo riesca a rappresentare la realtà. Tramite tale rappresentazione è inoltre possibile identificare le anomalie, rappresentate da punti che si discostano notevolmente dalla bisettrice e che corrispondono a casi in cui il modello restituisce una stima notevolmente differente dalla misura.

Per valutare la normalità dei residui della regressione è invece utile ricorrere alla loro rappresentazione in carta probabilistica normale, definita in modo che la funzione di probabilità di Gauss sia rappresentabile con una retta su tale diagramma. Se $\varepsilon_1, \varepsilon_2, ..., \varepsilon_N$ sono i residui ordinati in senso crescente, la loro rappresentazione nei confronti della probabilità cumulata empirica (o plotting position) $F_j = j/(N+1)$, j=1,2,...,N, in carta probabilistica normale dovrebbe giacere approssimativamente su una linea retta quando i residui hanno una distribuzione normale. Analogamente alla carta probabilistica è possibile utilizzare il cosiddetto Q-Q plot, nel quale vengono confrontati i quantili dei residui con quelli teorici che si avrebbero se la distribuzione dei residui fosse normale.

Un'ulteriore e fondamentale ipotesi dei modelli di regressione richiede che la varianza dei

residui sia costante rispetto all'entità dei valori, ovvero che i residui siano omoschedastici. Tale ipotesi può essere verificata in maniera grafica mediante l'utilizzo di un grafico in cui si riportano i residui in ordinata mentre in ascissa si indicano i valori stimati della variabile in esame (Montgomery et al., 2001). L'ipotesi di omoschedasticità risulta verificata nel caso in cui i residui siano disposti in maniera omogenea intorno all'ascissa. Violazioni all'ipotesi di omoschedasticità (fenomeno detto eteroschedasticità) si possono avere quando i residui mostrano un trend lineare (o non lineare) rispetto alla variabile stimata, oppure si aprono a ventaglio muovendosi lungo l'ascissa. L'eventuale violazione dell'ipotesi di omoschedasticità implica la non ottimalità degli stimatori ai minimi quadrati.

Un esempio di tali diagrammi diagnostici è riportato nella figura 7 (a pagina 30) relativamente ad un modello regionale di stima della piena indice.

2.4 SEMPLIFICAZIONE DELL'IDENTIFICAZIONE DEI MODELLI TRAMITE SFOLTIMENTO DEI DESCRITTORI

I modelli di regressione appena descritti vengono costruiti selezionando un set di descrittori che permetta di descrivere adeguatamente la variabilità della grandezza di interesse sul territorio in esame. La selezione di questi descrittori non è tuttavia una procedura di banale applicazione. Infatti, come discusso nel paragrafo 1.2, nei casi in cui sia disponibile un grande numero di descrittori di bacino (più di 100), la selezione di un sottoinsieme appropriato di essi deve essere condotta sulla base di criteri statistici, in modo da effettuare una scelta il più possibile obiettiva in modo da eliminare i descrittori meno utili ma che contribuiscono ad aumentare enormemente il numero di combinazioni da analizzare. Per risolvere questo tipo di problema esistono diversi approcci di letteratura che tentano di estrarre preliminarmente un sottoinsieme di descrittori da analizzare in dettaglio successivamente. Questi approcci, però, mal si adattano all'applicazione estensiva delle regressioni iGLS. Infatti, l'eliminazione a priori di un singolo descrittore non è ovvia in quanto un descrittore che non risultasse, preso singolarmente, significativamente correlato alla variabile dipendente, potrebbe diventarlo quando abbinato con altri descrittori. D'altro canto, dalle analisi preliminari si osserva che nell'elenco dei modelli migliori compaiono spesso modelli equivalenti, che si differenziano per un solo descrittore: ad esempio, la lunghezza dell'asta principale e il massimo percorso di drenaggio. Tali descrittori sono altamente correlati tra di loro, e non possono mai comparire contemporaneamente nello stesso modello in quanto filtrati dal VIF test. In casi come questo, la scelta tra il modello contenente la lunghezza dell'asta principale e quello basato sul massimo percorso di drenaggio diventa in pratica una scelta soggettiva, basata sulla decisione di quale sia il descrittore più robusto da determinare.

Si ha quindi la necessità di ridurre il carico computazionale evitando di avere modelli "equivalenti" che nella pratica richiedono una revisione manuale. Per fare ciò è stato necessario definire una nuova procedura, detta *pruning*, elaborata secondo i seguenti passi.

 Ad ogni descrittore viene attribuito un indice che rappresenta quanto sia robusto o facile da determinare. Il valore 1 è associato ai descrittori molto robusti, come l'area e la quota media del bacino, che sono la prima scelta nel caso di modelli equivalenti; il valore 2

- è associato ai descrittori standard; il valore 3 corrisponde ai descrittori di più difficile determinazione. Dettagli sugli indici assegnati ai descrittori sono riportati nella tabella 3.
- Viene calcolata la matrice di correlazione dei descrittori: la coppia di descrittori più correlati viene analizzata in dettaglio:
 - se i due descrittori hanno indici diversi, viene eliminato quello con l'indice più grande;
 - se i due descrittori hanno entrambi indice 1 vengono mantenuti entrambi;
 - diversamente, per ognuno dei descrittori viene calcolato il coefficiente di correlazione medio nei confronti degli altri descrittori presenti. Il descrittore che risulta mediamente più correlato con gli altri viene scartato, in quanto presenta un contenuto informativo più ridondante.
- La procedura di eliminazione viene ripetuta selezionando la successiva coppia più correlata, e si ferma quando il massimo coefficiente di correlazione tra i descrittori scende sotto la soglia di 0.95.

Tabella 3: Indice di classificazione dei descrittori a cui si applica la procedura di pruning

Indice	Descrittore
	area bacino
	est baricentro (UTM32N WGS84)
	nord baricentro (UTM32N WGS84)
	quota media
1	lunghezza LDP
	densità di drenaggio
	media coefficienti CPP
	media dell'afflusso totale annuo
	media indice di permeabilità vapi
	quota massima
	quota minima
	percentili curva ipsografica
	lunghezza asta principale
	pendenza media LDP
	lunghezza vettore orientamento
	direzione rispetto al Nord
	pendenza bacino
	pendenza bacino quadrato equivalente
	angolo di esposizione medio
	rapporto di allungamento
	fattore di forma
	media funzione di ampiezza
	lunghezza media versanti
2	diametro topologico
	numero aste di ordine 1, 2 e 3
	rapporto di biforcazione
	rapporto lunghezze medie di due ordini adiacenti
	rapporto aree medie di due ordini adiacenti
	rapporto pendenze medie di due ordini adiacenti
	media NDVI
	coeff. variaz. NDVI

Indice	Descrittore	
	coeff. variaz. coefficienti CPP	
coeff. variaz. dell'afflusso totale annuo		
	media delle statistiche relative alle piogge intense di breve durata (L _{CV} , L _{CA} ,)	
	per durate di 1, 3, 6, 12, 24 ore	
	classi corine land cover	
	coeff. variaz. indice di permeabilità vapi	
	media coefficienti di Fourier del regime pluviometrico	
	media curve number	
	varianza funzione di ampiezza	
	skewness, kurtosis e percentili funzione di ampiezza topologica del bacino	
3	lunghezza media, area contribuente e pendenza media delle aste di ordine 1, 2	
	e 3	
	lunghezza totale reticolo idrografico	
	coeff. variaz. delle statistiche relative alle piogge intense di breve durata (L _{CV} ,	
	L _{CA} ,) per durate di 1, 3, 6, 12, 24 ore	

Mediante l'applicazione della procedura di pruning si riesce a ridurre in modo consistente il numero di descrittori da analizzare, rendendo la procedura di selezione del modello accettabile dal punto di vista computazionale senza rischiare di perdere descrittori che potrebbero contenere informazione rilevante quando combinati con altri. Una sintesi del risultato ottenuto con il pruning nel caso studio in esame è riportato nella tabella 4, da cui si evince che il dataset di descrittori effettivamente utilizzato si compone di 62 elementi invece degli oltre 100 originali. Nel caso di trasformata logaritmica, il pruning è stato rielaborato (infatti si è valutata la correlazione tra variabili log-trasformate e non tra le grandezze ordinarie) ed ha condotto a selezionare 52 descrittori. In questo caso, i descrittori sono in numero inferiore a causa del fatto che alcuni di essi (ad es. quelli che ammettono valori negativi o nulli) non possono essere trasformati logaritmicamente. La stessa tabella riporta anche la percentuale di descrittori divisi per tipologia di indice che risultano nella composizione dell'insieme finale.

Si noti che la procedura di pruning non dipende dalla variabile dipendente considerata (es. piena indice, L_{CV}), ma solo dai descrittori o dalle loro trasformazioni.

2.5 VERIFICHE DI ADEGUATEZZA DEI MODELLI DI REGRESSIONE

Nelle analisi regionali, grazie a modelli digitali del terreno accurati ed alla disponibilità di dati da *remote sensing*, è attualmente disponibile un gran numero di descrittori morfoclimatici alla scala

Tabella 4: Numerosità dei descrittori risultanti dalla procedura di pruning, e percentuali di presenza di descrittori divisi per indice.

Trasformazione logaritmica	n. descr. residui	% indice 1	% indice 2	% indice 3
NO	62	100	71	62
SI	52	100	69	48

di bacino. Tuttavia, affinché il modello sia robusto, solo pochi descrittori possono essere utilizzati per la stima delle variabili idrologiche in un sito non strumentato. Il problema si riconduce così alla scelta di un sottoinsieme valido di descrittori significativi, allo scopo di ottenere le migliori stime finali, il che conduce alla scelta del più appropriato modello di regressione tra tutti quelli "validi" dal punto di vista dei test. Normalmente questa scelta è effettuata sulla base dell'analisi dei residui della regressione, privilegiando i modelli con il coefficiente di determinazione R² più elevato. Il coefficiente di determinazione è definito come (e.g. Montgomery et al., 2001)

$$R^{2} = \frac{\sum_{j=1}^{N} (\hat{Y}_{j} - \bar{Y})^{2}}{\sum_{j=1}^{N} (Y_{j} - \bar{Y})^{2}}$$
(2.10)

dove \bar{Y} è la media dei valori Y_i .

In questo caso è però importante tenere conto del numero di descrittori impiegati in ciascuna relazione (gradi di libertà del modello): un gran numero di variabili indipendenti, infatti, migliora la capacità descrittiva del modello, ma ne peggiora la robustezza. A tale scopo, si usa il coefficiente di determinazione corretto $R^2_{\rm adj}$, pari a

$$R_{adj}^2 = 1 - \left(1 - R^2\right) \frac{N - 1}{N - p} \tag{2.11}$$

che consente di comparare modelli con un numero diverso di variabili esplicative. Nell'approccio iWLS (o iGLS), anche la varianza dell'errore del modello σ_{δ}^2 può essere impiegata per selezionare i modelli più appropriati in quanto tiene automaticamente conto dei gradi di libertà del sistema grazie al termine N – p presente al secondo membro dell'equazione (2.6). Inoltre, l'identificazione del modello più efficiente può avvenire anche considerando la varianza media di stima (Average Variance of Predictions) AVP (Griffis e Stedinger, 2007), definita come:

$$AVP = \hat{\sigma}_{\delta}^{2} + \frac{1}{N} \sum_{j=1}^{N} x_{j} \left(X^{T} \hat{\Lambda}^{-1} X \right)^{-1} x_{j}^{T}, \tag{2.12}$$

dove x_j è la riga di X relativa al j-esimo bacino. La AVP include, oltre alla varianza del modello, anche l'effetto medio sulle stime dovuto alla variabilità campionaria.

Infine, è possibile ricorrere ad ulteriori indicatori basati sull'analisi dei residui delle regressione, come ad esempio il coefficiente di efficienza di Nash-Sutcliffe, l'errore quadratico medio (RMSE) e l'errore medio assoluto (MAE). Tali parametri risultano fortemente correlati con la varianza del modello (per varianze elevate si hanno scarti elevati e bassa efficienza) e non sono stati analizzati in quanto non aggiungono informazioni importanti per la classificazione dei modelli.

Per esplorare quale potrebbe essere il comportamento dei diversi modelli nel caso di applicazione a siti non strumentati è utile anche analizzare le previsioni del modello dopo una procedura di *cross-validazione* (anche detta "jack-knife"). Tale procedura prevede che le previsioni del modello vengano calcolate a partire da un vettore stimato \hat{Y}_{cv} , il quale viene ottenuto usando coefficienti di regressione β differenti per ogni singola sezione. In particolare, i coefficienti vengono ristimati, ai fini della ricostruzione del valore in ciascuna sezione j, a partire da un vettore di osservazioni Y_{cv} di dimensione N-1, privato della osservazione relativa alla stazione

j (metodo *leave-one-out*). In questo modo la stima in ciascuna sezione, $\hat{Y}_{cv,j}$ viene effettuata come se ci si riferisse ad un sito non strumentato, andando ad utilizzare esclusivamente le misure disponibili in altri siti. Dopo l'applicazione della procedura di cross-validazione, il vettore delle stime cross-validate \hat{Y}_{cv} viene usato per verificare l'effettiva capacità predittiva del modello.

2.6 STIMA REGIONALE DELLA GRANDEZZA DI INTERESSE E RE-LATIVA INCERTEZZA

Sia dato un modello di regressione per la stima di una delle grandezze sotto esame (Q_{ind} , L_{CV} o L_{CA}). Volendo applicare il modello ad una sezione priva di dati si otterrà la stima regionale della variabile statistica mediante la relazione:

$$\hat{\mathbf{Y}}_{\mathbf{j}} = \mathbf{x} \cdot \hat{\boldsymbol{\beta}} \tag{2.13}$$

dove x è il vettore riga contenente i descrittori relativi al bacino esaminato e $\hat{\beta}$ é il vettore colonna dei coefficienti della regressione (equazione (2.3)). A tale stima è possibile associare un valore di incertezza; nel caso specifico la varianza di \hat{Y} sarà:

$$\sigma_{\hat{\mathbf{Y}}}^2 = \hat{\sigma}_{\delta}^2 + \mathbf{x} \left(\mathbf{X}^{\mathsf{T}} \hat{\mathbf{\Lambda}}^{-1} \mathbf{X} \right)^{-1} \mathbf{x}^{\mathsf{T}},\tag{2.14}$$

con X coincidente con la matrice dei descrittori di taratura, x vettore dei descrittori nel sito di interesse e $\hat{\Lambda}$ stimata secondo la (2.5). È facile notare che l'espressione (2.14) è data dalla somma della varianza del modello $\hat{\sigma}_{\delta}^2$ più un termine che contiene l'informazione relativa alla varianza dei campioni usati in taratura per mezzo della matrice $\hat{\Lambda}$.

Nel caso in cui si sia utilizzata la trasformazione logaritmica delle variabili, non si possono applicare direttamente le equazioni (2.13) e (2.14), ma è necessario ritrasformare la variabile nello spazio originale. Se i residui della regressione sono distribuiti secondo una distribuzione normale, anche le \hat{Y} sono distribuite normalmente e la loro trasformata inversa porterà ad una variabile distribuita secondo una distribuzione lognormale. Pertanto, la media della variabile non trasformata Y' sarà data da:

$$Y' = \exp\left(\mu_{\hat{Y}} + \frac{1}{2}\sigma_{\hat{Y}}^2\right) \tag{2.15}$$

con $\mu_{\hat{Y}}$ corrispondente a \hat{Y} , stimata con la regressione lineare nello spazio logaritmico (equazione (2.13)), e $\sigma_{\hat{Y}}^2$ ottenuta dall'equazione (2.14). La varianza della stima si ottiene come

$$\sigma_{Y'}^2 = Y'^2 \cdot \left[\exp\left(\sigma_{\hat{Y}}^2\right) - 1 \right]. \tag{2.16}$$

Questa trasformazione inversa è fondamentale per evitare distorsioni elevate (Seber e Wild,

DEFINIZIONE DEI MODELLI REGIONALI DI REGRESSIONE MULTIPLA

1989), sebbene spesso sia comunque accettabile la più semplice trasformazione esponenziale

$$Y' = \exp(\hat{Y}). \tag{2.17}$$

per ricostruire la variabile nel suo spazio originale.

3 | APPLICAZIONE DELLA PROCEDURA: 1. STIMA DELLA PIENA INDICE

3.1 STIMA CAMPIONARIA

Considerati N siti strumentati, per i quali si dispone di una serie storica di portate al colmo più o meno consistente e relativa ad un periodo sistematico di misurazioni, la piena indice in ciascuna sezione j viene stimata a partire dalla media campionaria:

$$Q_{ind,j} = \frac{1}{n_j} \sum_{i=1}^{n_j} Q_i$$
 (3.1)

con j = 1, ..., N ed n_i pari al numero di dati della j-esima stazione.

Questa equazione risulta valida se i valori campionari sono ottenuti da misure sistematiche delle portate. È tuttavia possibile che le serie storiche contengano anche valori occasionali o non sistematici, ovvero valori valutati fuori dal periodo di misurazione sistematica, in corrispondenza di eventi particolarmente intensi. Spesso i valori occasionali fanno riferimento a piene storiche avvenute prima dell'installazione della stazione di misura e di cui esistono informazioni indirette (es. tracce di piena rilevate sugli edifici).

In presenza di valori occasionali che integrano la serie storica della stazione, valutare la piena indice tramite l'equazione (3.1) attribuirebbe lo stesso peso alle misure riferite al regime idrometrico medio del deflusso ed a quelle riferite agli eventi "eccezionali". Per tener conto della diversa natura degli eventi sporadici di intensità eccezionale si deve individuare per essi un valore soglia Q*, detto "soglia di percezione", che può in genere essere scelto pari al più piccolo dei valori relativi agli eventi occasionali considerati (Bayliss e Reed, 2001). In tali casi la serie storica è composta da n_{sotto soglia} dati al di sotto della soglia prefissata e da n_{sopra soglia} valori al di sopra di essa. Il calcolo della piena indice dovrà poi essere effettuato attribuendo un peso maggiore ai dati che rappresentano il regime idrometrico medio del deflusso, ed un peso inferiore agli eventi occasionali significativi. Infatti, nel caso in cui questi ultimi venissero trattati alla stessa stregua delle portate relative al regime ordinario, il valore della piena indice potrebbe risultare distorto in modo rilevante.

Per tenere conto dei valori occasionali, il calcolo della piena indice campionaria in una stazione viene dunque effettuato attraverso la somma di due contributi, come definito da Wang (1990):

$$Q_{ind} = \frac{1}{n} \sum_{Q_i < Q_i^*} Q_i + \frac{1}{n_{eq}} \sum_{Q_i \ge Q_i^*} Q_i$$
(3.2)

in cui n rappresenta la numerosità della serie storica riferita al periodo sistematico di misurazione, mentre n_{eq} indica il periodo equivalente di osservazione, ossia la lunghezza complessiva del lasso temporale coperto dalla serie storica completa (integrata con gli eventi occasionali). Questo

significa che il contributo dei valori occasionali significativi viene pesato non in base alla loro numerosità, bensì in relazione al periodo totale di osservazione calcolato, a partire dal primo anno di misure fino, ad arrivare all'anno relativo all'ultimo evento registrato.

Una volta ottenuto il valore campionario della piena indice risulta importante valutare l'incertezza ad esso associata. A tal fine si ricorre alla determinazione della deviazione standard della portata indice, che risulta esprimibile come:

$$\sigma_{Q_{\text{ind,j}}} = \frac{\sigma_{Q_{j}}}{\sqrt{n_{j}}} \tag{3.3}$$

dove σ_{0_i} rappresenta la deviazione standard della j-esima serie storica.

Qualora si stia considerando una serie integrata con informazioni di tipo occasionale, per il calcolo della σ_{Q_j} si fa ricorso a una formulazione analoga a quella indicata nel *Bulletin 17B Appendix 6* (Interagency Advisory Committee on Water Data, 1982):

$$\sigma_{Q_{ind}} = \sqrt{\frac{1}{n^2} \sum_{Q_i < Q^*} (Q_i - Q_{ind})^2 + \frac{1}{n_{eq}^2} \sum_{Q_i \ge Q^*} (Q_i - Q_{ind})^2}$$
(3.4)

dove il valore di Q_{ind} viene calcolata tramite la formula di Wang (eq. 3.2).

3.2 STIMA REGIONALE: SCELTA DEL MODELLO DI REGRESSIONE MULTIPLA NELLA REGIONE DI INTERESSE

La struttura generale dei modelli di regressione esposta nel capitolo 2 è stata utilizzata per la stima della piena indice in siti non strumentati nella regione idrologica Piemonte - Valle d'Aosta. Ai fini pratici, occorre definire:

- la variabile dipendente Y, sia essa la piena indice oppure una sua trasformata (tipicamente la trasformata logaritmica);
- un set di variabili indipendenti X scelte tra i parametri descrittori di bacino a disposizione per il caso studio

Riguardo al primo punto, da un'analisi preliminare e da altri esempi di letteratura (Claps e Laio, 2008) si è potuto osservare che la trasformazione logaritmica permette in generale una stima migliore della piena indice, evitando altresì di produrre valori di portata negativi per bacini di piccola dimensione. Per tali motivi, si riporteranno solo i risultati relativi alla configurazione che riguarda la trasformazione logaritmica della piena indice. In questo caso, anche i descrittori saranno trasformati logaritmicamente in modo da ricondurre il modello finale alla forma moltiplicativa dell'equazione (2.7).

Inoltre, si è operato in modo da considerare tutti i dati a disposizione come provenienti da misure sistematiche, utilizzando di fatto l'equazione (3.1) per la stima della piena indice campionaria.

Per quanto riguarda i descrittori tra i quali selezionare i modelli migliori si è proceduto ad una procedura di pruning come descritto nella sezione 2.4. A valle dello sfoltimento dei descrittori,

è stata implementata la procedura che permette di selezionare i modelli migliori. La procedura considerata può essere riassunta secondo i seguenti punti:

- si analizzano tutti i possibili modelli di regressione contenenti da uno a quattro descrittori, selezionati dall'elenco risultante dalla procedura di pruning. Un numero di descrittori superiore a quattro è stato escluso in quanto, oltre ad aumentare notevolmente l'onere computazionale, in genere non migliora particolarmente la qualità delle stime e produce modelli poco robusti (Claps e Laio, 2008).
- i modelli possibili sono filtrati sulla base della significatività dei coefficienti della regressione. La significatività dei coefficienti è stata valutata con il test t di Student, utilizzando appropriati valori di significatività specificati nel seguito (vedere eq. (2.8)).
- un'ulteriore selezione è stata effettuata in base al valore della statistica VIF (vedere eq. (2.9)) utilizzata per valutare l'eventuale mutua dipendenza (lineare) dei descrittori.
- un'analisi dettagliata dei modelli migliori attraverso l'uso dei diagrammi diagnostici permette infine di escludere eventuali modelli che non rispettano le ipotesi base del modello (ad es. la non normalità dei residui).
- tutti i modelli che superano le selezioni precedenti possono essere considerati statisticamente validi: essi vengono quindi ordinati sulla base della varianza del modello e della varianza media in previsione (AVP, eq. (2.12)).
- tra modelli che presentano le stesse performances statistiche, viene selezionato quello che contiene descrittori di bacino più facili da determinare, oppure già sistematicamente disponibili per bacini non strumentati.
- una valutazione complessiva dell'efficacia dei modelli scelti può essere infine effettuata analizzando in cross-validazione gli scarti tra i valori stimati dal modello e i valori di partenza.

Dalle analisi effettuate, seguendo i passi appena esposti, si è ottenuto l'elenco di cui si riportano i primi 25 elementi nella tabella 5. Come si può notare, i modelli con cui si sono ottenute migliori prestazioni sono dipendenti dall'area di bacino e dalle medie spaziali di grandezze pluviometriche.

Analizzando i residui e la natura dei descrittori utilizzati, si suggerisce di utilizzare come modelli operativi per la stima della piena indice i primi due modelli della tabella 5. Tali modelli sono basati su relazioni lineari tra variabili trasformate logaritmicamente, ma possono essere facilmente riportati in forma moltiplicativa. Nel primo caso si ha:

$$Q_{ind} = 0.01099 \cdot area^{0.79291} \cdot IDF_{a}^{2.23345} \cdot IDF_{n}^{1.91592} \cdot c_{f}^{0.40866}, \tag{3.5} \label{eq:3.5}$$

dove area è l'area del bacino, IDF_a e IDF_n sono i parametri della curva di possibilità pluviometrica media nella forma $h=a\cdot d^n$, e c_f è un parametro di permeabilità ottenuto da Villani (2003a).

Tabella 5: Elenco dei primi 25 modelli per la stima di $log(Q_{ind})$ classificati in ordine di varianza del modello. I modelli hanno superato il test di Student con $\alpha = 1\%$ e il VIF test con valore limite pari a 5. I modelli evidenziati sono suggeriti per le applicazioni operative.

posizione	$\sigma_{\hat{\mathbf{Y}}}^2$	n. descr.	modello
1	0.10684	4	intercept + log.area+ log.IDFa + log.IDFn + log.cf
2	0.10936	4	intercept + log.area+ log.IDFa + log.IDFn + log.LCV1h
3	0.11010	4	intercept + log.area+ log.IDFa + log.MAP + log.cf
4	0.11413	4	intercept + log.area+ log.IDFa + log.MAP + log.LCV12h
5	0.11855	4	intercept + log.area+ log.IDFa + log.MAP + log.LCV3h
6	0.11918	3	intercept + log.area+ log.IDFa + log.IDFn
7	0.12042	4	intercept + log.longest_drainage_path_length_km + log.R_al + log.IDFa + log.IDFn
8	0.12042	4	intercept + log.area+ log.quota_massima + log.IDFa + log.cf
9	0.12062	4	intercept + log.area+ log.Hmedia + log.IDFa + log.cf
10	0.12222	4	intercept + log.area+ log.pendenza_media_LDP + log.IDFa + log.cf
11	0.12366	4	intercept + log.area+ log.IDFa + log.clc3 + log.cf
12	0.12406	4	intercept + log.area+ log.IDFa + log.cf + log.CN3_cv
13	0.12427	4	intercept + log.area+ log.Hmedia + log.MAP + log.cf
14	0.12721	4	intercept + log.area+ log.quota_massima + log.IDFa + log.LCV1h
15	0.12795	4	intercept + log.area+ log.Hmedia + log.IDFa + log.LCV1h
16	0.12852	4	intercept + log.area+ log.quota_massima + log.IDFa + log.LCV3h
17	0.13017	4	intercept + log.area+ log.Hmedia + log.IDFa + log.LCV3h
18	0.13060	4	intercept + log.area+ log.Hmedia + log.MAP + log.LCV12h
19	0.13074	4	intercept + log.area+ log.pendenza_media_LDP + log.IDFa + log.IDFa_cv
20	0.13092	4	intercept + log.area+ log.quota_massima + log.MAP + log.cf
21	0.13218	4	intercept + log.area+ log.NDVIanno + log.MAP + log.cf
22	0.13233	4	intercept + log.area+ log.pendenza_media_LDP + log.IDFa + log.LCV1h
23	0.13234	4	intercept + log.area+ log.IDFa + log.clc2 + log.CN3_cv
24	0.13300	4	intercept + log.area+ log.pendenza_media_LDP + log.IDFa + log.LCV3h
25	0.13303	4	intercept + log.area+ log.IDFa + log.IDFa_cv + log.cf

Alternativamente, è possibile utilizzare un secondo modello nel quale il descrittore c_f viene sostituito dal valore medio spaziale del L_{CV} delle piogge massime annua di durata di un'ora (LCV_{1h}):

$$Q_{ind} = 0.01324 \cdot area^{0.7995} \cdot IDF_a^{2.82089} \cdot IDF_n^{2.06805} \cdot LCV_{1h}^{1.33232}. \tag{3.6}$$

I diagrammi diagnostici relativi al modello dell'equazione (3.5) sono riportati nella figura 7 dove i primi due pannelli in alto riportano il confronto tra i valori campionari (in ascissa) e i valori stimati con la procedura regionale (in ordinata). I valori sono espressi in m³/s, con rappresentazione nel piano bilogaritmico per l'immagine di destra. Sulla seconda riga della stessa figura si hanno i diagrammi diagnostici dei residui: l'immagine di sinistra mostra come in residui non formino raggruppamenti e non abbiano distorsioni particolari, confermando quindi l'ipotesi di omoschedasticità; l'immagine di destra riporta invece i residui in carta probabilistica Normale, che permette di confermare l'ipotesi di normalità.

L'ultima immagine della figura 7 riporta i risultati dell'analisi di sensitività sui singoli descrittori del modello. Ogni box-plot rappresenta, in ordinata, la variabilità di $log (Q_{ind})$ dovuta alla variabilità del singolo descrittore, avendo assegnato a tutti gli altri descrittori il loro valore mediano. La linea centrale di ogni box-plot rappresenta il caso in cui tutti i descrittori sono assunti pari al loro rispettivo valore mediano. Questa analisi permette di individuare i descrittori che hanno un'influenza maggiore nel determinare il valore finale della variabile, e che quindi devono essere determinati con particolare accuratezza.

Si noti che le regressioni utilizzate, essendo basate su una procedura GLS, implicitamente danno più "peso" ai valori relativi alle stazioni con varianza minore, ovvero alle serie storiche più numerose. Questo permette di includere anche bacini con pochi dati senza che questi influenzino negativamente il modello, anche se rende più difficile l'analisi visiva dei residui, che andrebbero anch'essi pesati. I residui maggiori potrebbero infatti essere trascurati se "pesano" poco, ovvero se corrispondono a valori campionari molto incerti. Per consentire di attribuire il giusto valore ai residui, grafici riportano gli errori come punti colorati, dove le categorie di colore permettono di individuare la numerosità, e quindi l'affidabilità, del dato campionario su cui l'analisi si basa.

Considerazioni del tutto analoghe possono essere fatte per il modello riportato nell'equazione (3.6) i cui diagrammi diagnostici sono visualizzati nella figura 8.

3.2.1 Incertezza di stima

La valutazione dell'incertezza di stima regionale viene effettuata seguendo le indicazioni riportate nel paragrafo 2.6. Essendo i modelli prescelti basati sulla linearizzazione del modello moltiplicativo mediante l'utilizzo della trasformazione logaritmica delle variabili (dipendenti e indipendenti), il primo passo da compiere è il calcolo della varianza della stima di $log(Q_{ind})$, per poi ricondursi al valore non trasformato.

Per il modello regionale di equazione (3.5), si può riscrivere l'equazione (2.14) come

$$\sigma_{\hat{Y}}^2 = 0.10684 + x \begin{pmatrix} 0.26381 & -0.00178 & -0.07771 & -0.03713 & 0.0478 \\ -0.00178 & 0.00053 & 0.00019 & 0.00282 & -0.00032 \\ -0.07771 & 0.00019 & 0.02817 & 0.02804 & -0.01322 \\ -0.03713 & 0.00282 & 0.02804 & 0.09753 & -0.01001 \\ 0.0478 & -0.00032 & -0.01322 & -0.01001 & 0.01395 \end{pmatrix} x^T$$
 (3.7)

dove il vettore dei descrittori di bacino è

$$x^T = \begin{pmatrix} 1 \\ log(area) \\ log(IDF_a) \\ log(IDF_n) \\ log(c_f) \end{pmatrix}.$$

Questa grandezza può quindi essere inserita nelle equazioni (2.15) e (2.16) per ottenere il valore richiesto. Utilizzando la semplificazione dell'equazione (2.17), si ottiene

$$\sigma_{\mathbf{Q}_{\text{ind}}}^2 = \mathbf{Q}_{\text{ind}}^2 \cdot \left[\exp\left(\sigma_{\hat{\mathbf{Y}}}^2\right) - 1 \right]. \tag{3.8}$$

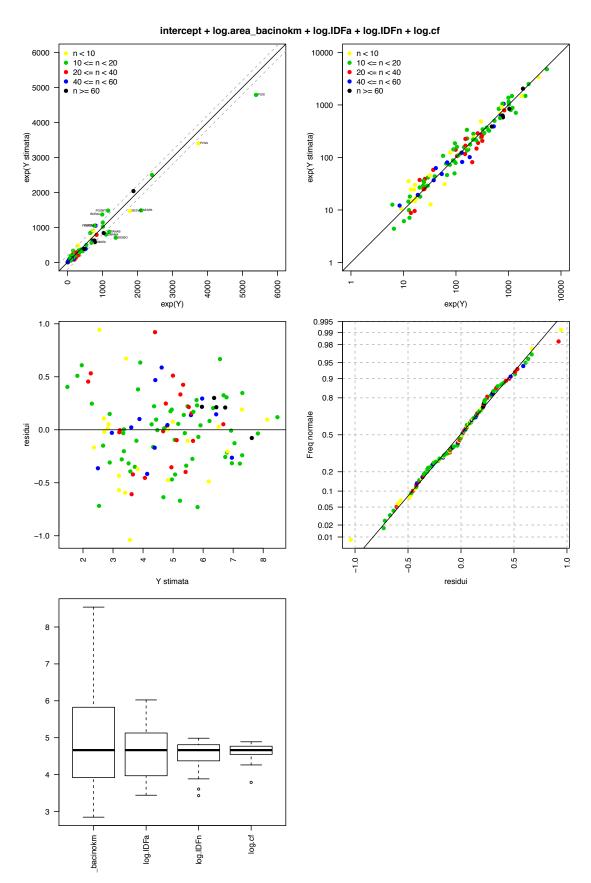


Figura 7: Diagrammi diagnostici del primo modello selezionato per la stima della piena indice.

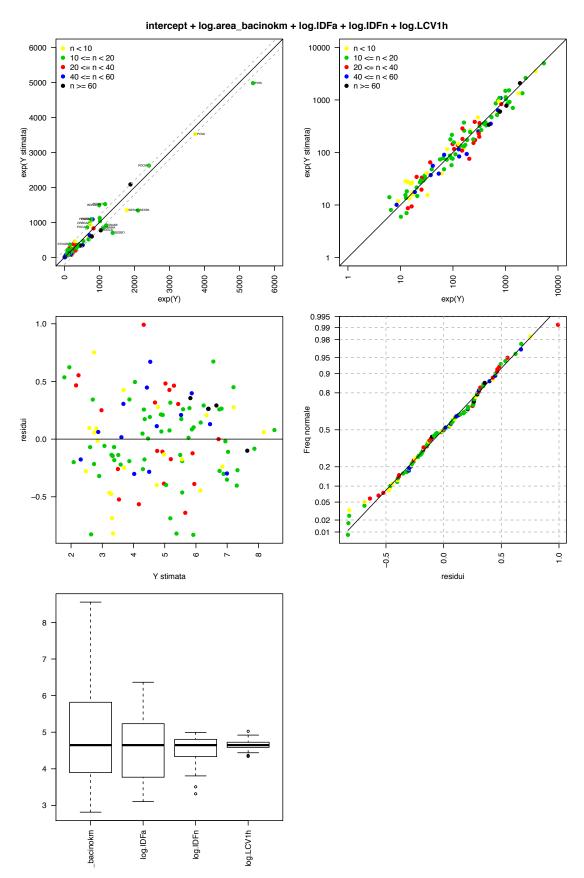


Figura 8: Diagrammi diagnostici del primo modello selezionato per la stima della piena indice.

Analogamente, l'incertezza del secondo modello può essere valutata considerando

$$\sigma_{\hat{\mathbf{Y}}}^2 = 0.10936 + \mathbf{x} \begin{pmatrix} 0.36331 & -0.00115 & -6e - 05 & -0.0261 & 0.21945 \\ -0.00115 & 0.00053 & -0.00017 & 0.00268 & -0.00037 \\ -6e - 05 & -0.00017 & 0.0201 & 0.01597 & 0.0277 \\ -0.0261 & 0.00268 & 0.01597 & 0.09402 & -0.01946 \\ 0.21945 & -0.00037 & 0.0277 & -0.01946 & 0.18428 \end{pmatrix} \mathbf{x}^{\mathsf{T}}$$
(3.9)

dove in questo caso il vettore dei descrittori di bacino è

$$x^{T} = \begin{pmatrix} 1 \\ log(area) \\ log(IDF_a) \\ log(IDF_n) \\ log(LCV_{1h}) \end{pmatrix}.$$

3.3 VERIFICA DELLE STIME IN CROSS-VALIDAZIONE

Una verifica di qualità dei risultati ottenuti è stata effettuata confrontando i valori campionari con le stime effettuate con entrambi i modelli in cross-validazione (leave-one-out) proposti nel paragrafo precedente. I risultati sono riassunti nella tabella 6, che riporta il valore della piena indice campionaria e di quelle regionali. I valori sono accompagnati dalla loro incertezza di stima in termini di deviazione standard e dalla numerosità campionaria n. L'elenco dei bacini analizzati fa riferimento ai 118 bacini descritti nel capitolo 1.1 per i quali si dispone di almeno 5 anni di valori campionari di portata massima al colmo di piena. I valori espressi in tabella non sono altro che la rappresentazione numerica delle devianze già visibili nei pannelli superiori delle figure 7 e 8. Risulta tuttavia molto utile per assistere la decisione sul modello probabilistico finale da adottare, che sarà basato sull'entità della varianza di stima locale e regionale.

Tabella 6: Valori della piena indice calcolati sui valori campionari e su base regionale (dopo cross-validazione) attraverso l'equazione (3.5) e (3.6) indicati con i pedici REG1 e REG2 rispettivamente. Le stime sono corredate delle rispettive deviazioni standard. I valori sono espressi in m³/s.

Denominazione	n	Q_{ind}	$\sigma_{ m Q_{ind}}$	$\hat{Q}_{\text{ind}, \textbf{REG1}}$	$\hat{\sigma}_{ extsf{Q}_{ ext{indREG1}}}$	$\hat{Q}_{\text{ind}, \textbf{REG2}}$	$\hat{\sigma}_{\mathrm{Q}_{\mathrm{indREG}_{2}}}$
Agogna a Novara	11	163.6	28.3	235.5	87.8	266.7	99.1
Artanavaz a Saint Oyen	14	12.4	1.7	14.6	5.4	15.8	6.1
Ayasse a Champorcher	22	20.3	2.2	38.1	13.6	34.8	12.6
Banna a Santena	13	98.4	31.6	76.3	31.8	73.2	31
Belbo a Castelnuovo Belbo	13	142.4	33.7	158.6	62.3	132.7	51.3
Borbera a Baracche	22	317.1	57.6	203.9	74.2	196.2	72
Bormida di Millesimo a Cessole	10	214.5	64.3	283.6	102.6	260.2	95.1
Bormida di Millesimo a Murialdo	9	77-4	17	125.4	44.8	116.1	42.2
Bormida ad Alessandria	17	996.2	126.2	1384.3	501.4	1517.3	559.3
Bormida a Cassine (Presa Canale Carlo	30	832.7	77.8	788.4	285.9	832.2	307.5
Alberto)							
Bormida di Mallare a Ferrania	24	204.3	39.3	78.2	27.7	73.1	25.9
Bormida di Spigno a Mombaldone	12	428.8	73.5	321.9	115.9	325.7	119

Denominazione	n	Q_{ind}	$\sigma_{ m Q_{ind}}$	$\hat{Q}_{\text{ind}, \textbf{REG1}}$	$\hat{\sigma}_{Q_{indREG1}}$	$\hat{Q}_{\text{ind}, \textbf{REG2}}$	$\hat{\sigma}_{Q_{indREG2}}$
Bousset a Tetti Porcera	6	15.9	3.8	24.8	9	25.6	9.3
Breuil ad Alpette	14	13.1	0.9	6.9	2.5	6.8	2.5
Borbore a San Damiano d'Asti	11	23.5	3.4	30.5	12.8	28	11.8
Bormida di Spigno a Valla	52	131.2	16.8	80.4	29.1	82.1	30.3
Bucera a Ponte Rovine	6	17.1	5	16.8	6.1	17.3	6.4
Cannobino a Traffiume	27	151.3	17.6	230.2	84.3	304	113.5
Cervo a Passobreve	22	151.7	29.8	168.1	62.4	182	68.2
Cervo a Quinto Vercellese	9	694.4	87.4	673.3	246.7	554.7	210.1
Cervo a Vigliano Biellese	9	216.7	65.9	241.1	88.7	259.6	96.4
Chiavanne ad Alpette	14	10.2	1.5	6	2.2	5.8	2.1
Chiusella a Gurzia	34	246.1	35.7	145.8	52.1	150.1	54.4
Chisone a Fenestrelle	19	29.2	6.5	41.9	15.2	33.6	12.3
Chisone a Soucheres Basses	18	20.3	4.4	27.1	9.8	21.6	7.9
Chisone a San Martino	34	264	47.9	187.9	67.4	171.1	61.9
Corsaglia a Presa Centrale Molline	25	36.9	4.6	59.6	21.8	66	23.9
Dora Baltea ad Aosta	16	300.3	34.2	237	87.5	249	93.9
Dora Baltea a Mazzè	10	1103.7	221.5	783.5	288.1	838.7	316
Dora Baltea a Ponte di Mombardone	14	93.9	3.6	48.6	17.3	55.9	20.4
Dora Baltea a Tavagnasco	82	785.4	48.8	565.7	210.5	587.3	223.7
Dora di Bardonecchia a Beaulard	12	27.4	2.9	28.3	10.3	29.4	10.9
Dora di Courmayeur a Prè Saint Didier	7	60.7	7.2	30.2	10.8	39	14.3
Dora di Rhemes a Notre Dame	14	13.2	0.7	18.2	6.6	18.4	6.8
Dora di Rhemes a Pèlaud	5	16.5	1.6	14.7	5.4	15.5	5.8
Dora di Rhemes a Saint Georges	6	16.6	2	30.6	10.9	27.1	9.8
Dora Riparia a Oulx	43	53.6	7.4	48.3	17.5	38.9	14.4
Dora Riparia a Sant'Antonino di Susa	37	98.4	7.3	142.3	51.7	146.9	53.9
Dora Riparia a Torino Ponte Washington	17	212.5	32	219.4	80.4	244.4	89.7
Erro a Sassello	18	104.2	8.6	162.4	59.1	158.2	58.4
Evancon a Champoluc	21	25.6	3.3	40.3	15	33.5	12.3
Gesso della Barra a San Giacomo	6	14.6	3.9	14.9	5.4	13.2	4.9
Gesso di Monte Colombo a San Giacomo	5	18.2	4.3	17.3	6.3	16.6	6.2
Gesso di Entracque ad Entracque	12	76.4	19.5	72.5	26.1	72.7	26.6
Grand'Eyvia a Cretaz	10	65	8	76.7	27.7	77.8	28.5
Grana a Monterosso	55	37.7	5.7	36.8	13.3	37.1	13.6
Gesso della Valletta a San Lorenzo	11	67.6	16.5	45.8	16.5	47.6	17.4
Isorno a Pontetto	14	93	18.4	84.1	30.7	77.8	28.6
Lys a d'Ejola	10	12.7	1.2	9.7	3.7	13.6	5
Lys a Gressoney Saint Jean	18	29	3.6	28.9	10.5	36.5	13.5
Lys a Guillemore	29	105.2	18.7	106.6	38.9	117.2	44.1
Maira a Racconigi	10	95.4	20.7	190.3	68.2	219.8	78.4
Maira a Saretto	17	6.2	0.6	13	4.6	14.6	5.2
Maira a San Damiano Macra	57	67.9	7.8	80.8	29.2	90.9	33.2
Malone a Brandizzo	10	243.7	35.4	210.3	77.7	173	65.7
Malone a Front	15	171.7	19.8	140.8	51.4	137.9	51.1
Marmore a Perreres	15	20.9	4.2	17.9	6.6	14.7	5.4
Mastallone a Varallo	43	308.9	32	266.4	98.2	246.9	92.4
Melezet a Melezet	15	6.6	0.7	3.5	1.7	8.1	3
Meris a Sant'Anna Valdieri	5	9	2	10.7	3.9	12	4.5
Nontey a Valnontey	5	13.8	2.2	24.8	8.9	27.9	10
Orba a CasalCermelli	14	722.5	87.6	901.1	327.8	992	368.9
Orco a Pont Canavese	49	524.6	61.6	386.4	139.8	347.8	126.8

Denominazione	n	Q_{ind}	$\sigma_{ m Q_{ind}}$	$\hat{Q}_{ind, \textbf{REG1}}$	$\hat{\sigma}_{Q_{indREG1}}$	$\hat{Q}_{\text{ind}, REG_2}$	$\hat{\sigma}_{Q_{indREG2}}$
Orco a San Benigno Canavese	11	542.3	119.2	497.7	179.6	467.7	171
Pellice a Luserna San Giovanni	8	159	52.5	147.1	53.2	119.8	43.6
Pellice a Villafranca Piemonte	10	321.5	80.1	343.8	123.9	317.5	116.1
Po a Carignano	16	651.9	116.8	849.3	309.3	866.2	319.2
Po a Casale Monferrato	19	2414.6	356.3	2501.5	930.7	2633.1	991.6
Po a Crissolo	24	25.2	7.1	25.3	9.3	19.5	7.1
Po a Isola Sant'Antonio	13	5388.8	714.9	4727.8	1777.1	4936.6	1880.3
Po a Meirano Moncalieri	58	807.7	65.8	1066.3	391.1	1104.2	409.2
Po a San Mauro Torinese	18	1164.2	204.5	1496	550.2	1541.3	573.2
Po a Torino Murazzi	13	766.9	158	1065.1	390.7	1104.7	409.3
Po a Valenza	6	3741.7	545.7	3368.4	1257.1	3503.2	1323.7
Rio Bagni a Bagni di Vinadio	20	24.2	7.3	24.8	8.9	28.1	10.3
Rio Freddo a Rio Freddo	7	32.8	4	12.4	4.3	14.8	5.4
Ripa a Bousson	5	12.5	1.8	36.2	12.4	29.6	10.7
Rutor a La Joux	29	13.8	0.9	8.5	3.1	8.4	3.1
Rutor a Promise	33	16.3	1.5	9.3	3.4	9.1	3.3
Savara a Eau Rousse	18	24.6	2	34	12.3	29.6	10.9
Savara a Fenille	6	31.5	6.1	46	16.6	40.5	14.8
San Bernardino a San Bernardino Santino	23	320.4	29.4	271.2	100.2	368.1	143.8
San Bernardino a Trobaso	24	259.5	22.2	289.8	107.1	403.5	156.1
Scrivia a Isola del Cantone	13	385.5	80.4	368.9	135.7	353	131.4
Scrivia a Serravalle Scrivia	40	721.2	73.3	619.2	225.6	629.7	232.9
Stura di Demonte a Fossano	11	415.5	73.3	327.9	118.4	373.9	136.8
Stura di Demonte a Gaiola	34	123.8	21.1	120	43.4	138.3	50.5
Stura di Demonte a Pianche	18	39.5	7.5	43.8	15.8	48	17.5
Stura di Demonte a Roccasparvera	9	126.7	37.4	125.9	45.5	144.8	52.9
Sermenza a Rimasco	44	182.6	16.4	98.8	35.4	90.9	32.7
Sesia a Borgosesia Ponte Aranco	17	1379.8	232.5	685.3	246.8	681.3	248.6
Sesia a Campertogno	34	149.2	21.3	115.5	41.8	107.5	39.4
Sesia a Palestro	16	2063.1	274.7	1469.7	532.5	1312.5	484.2
Sesia a Vercelli	7	1781.4	461	1462.1	531.8	1336.8	495.3
San Giovanni a Possaccio	14	89.4	27.9	145.7	54	186	70.9
Stura di Lanzo a Lanzo	64	481.7	39.1	384	139.6	334	121.5
Stura di Lanzo a Torino	10	691	106.9	559.7	202.1	512.8	186.6
Strona di Omegna a Gravellona Toce	10	161.7	38.3	351.8	129.7	385.3	141
Stura di Viù a Malciaussia	49	8.4	0.7	12.4	4.5	10.1	3.7
Stura di Viù a Usseglio	11	24.1	5	36.2	13.2	28	10.2
Tanaro ad Alba	16	1193.8	237.5	870.8	315.2	909.1	334
Tanaro ad Alessandria	15	1009.5	215.6	1151.3	423.9	1131.6	422
Tanaro a Farigliano	69	774.6	62.6	622.2	224.2	592.2	215.8
Tanaro a Garessio	15	186.3	25.5	175.8	63.8	172.1	63.6
Tanaro a Masio	11	1016.4	153	1024	375.2	1036.1	384.8
Tanaro a Montecastello	66	1887.4	84.2	2047.5	755.2	2098.5	785.3
Tanaro a Nucetto	39	309.8	40.9	248.7	89.5	225.6	83
Tanaro a Ormea	13	162.2	22.7	135.5	49	129.9	47.9
Tanaro a Piantorre	14	346	60.4	291.1	104.4	265.3	96.9
Tanaro a Ponte di Nava	46	128.7	20.2	122.9	44.4	114.4	42.3
Tanaro a San Martino Alfieri	6	742.2	135.9	915	332.2	947-4	348.5
Toce a Candoglia	68	1009.5	69.8	830.1	306.7	761.1	284.2
Toce a Cadarese	15	56.9	6.1	109.1	38.5	76.3	29.8
Toce a Domodossola	7	298.3	68.7	493.5	179.4	471.8	173.8
	-		•				

3.3 verifica delle stime in cross-validazione

Denominazione	n	Q_{ind}	$\sigma_{Q_{ind}}$	\hat{Q}_{ind, REG_1}	$\hat{\sigma}_{ extsf{Q}_{ ext{indREG1}}}$	Q̂ind,REG2	$\hat{\sigma}_{ ext{Q}_{ ext{indREG2}}}$
Varaita a Castello	56	18.8	1.1	19.4	7	17.6	6.5
Varaita a Rossana	12	111.7	25.1	110.1	39.6	91.7	33.7
Varaita a Rore	58	41.3	6.3	63.1	22.5	56.3	20.6
Vobbia a Isola del Cantone	14	87.6	26.1	87.9	32.8	87.1	32.9

4

APPLICAZIONE DELLA PROCEDURA:

2. STIMA DELLA CURVA DI CRESCITA

4.1 STIMA DELLA CURVA DI CRESCITA

Nelle classiche procedure di analisi di frequenza regionale la determinazione delle curve di crescita viene effettuata suddividendo i dati in regioni statisticamente omogenee ed attribuendo ad ogni regione omogenea una diversa curva di crescita, ottenuta adattando ai dati opportune distribuzioni la cui forma si ritiene nota a meno di un numero finito p di parametri incogniti $\theta_1, \dots, \theta_p$. Ne consegue che la curva di crescita nella j-esima stazione, $K_j(T)$, può essere intesa come $K_j(T, \theta_1, \dots, \theta_p)$, dove T è il periodo di ritorno ed i parametri assumono valori diversi in ognuna delle regioni considerate.

Hosking e Wallis (1997) suggeriscono di stimare i p parametri incogniti della distribuzione tramite il metodo degli L-momenti (Appendice A), che, al contrario dell'usuale metodo dei momenti, risulta particolarmente indicato per la stima da campioni poco numerosi ed è meno soggetto dell'altro alla distorsione di stima.

Il metodo degli L-momenti consiste nell'esprimere i parametri della distribuzione di probabilità (ovvero della curva di crescita) in funzione degli L-momenti della distribuzione, $L_1, ..., L_p$, ottenendo $K_j(T, L_1, ..., L_p)$, e successivamente nell'eguagliare i p L-momenti campionari ai corrispondenti L-momenti della distribuzione. Se si considera ancora che la curva di crescita è adimensionale, per essa si ha che $L_1 = 1$ (L_1 rappresenta la media della curva di crescita). Tenendo conto che i modelli probabilistici comunemente utilizzati nelle analisi regionali hanno di solito 3 (p = 3) oppure 4 (p = 4) parametri, risulta conveniente esprimere la curva di crescita tramite descrittori statistici adimensionali, definiti come (si veda l'Appendice A),

$$L_{CV} = \frac{L_2}{L_1}$$
, $L_{CA} = \frac{L_3}{L_2}$, $L_{kur} = \frac{L_4}{L_2}$

adatti a rappresentare rispettivamente la variabilità, l'asimmetria e l'appiattimento della curva di crescita. Si perviene pertanto ad una rappresentazione della curva di crescita del tipo

$$K_i(T, L_{CV}, L_{CA})$$

se p = 3, oppure

$$K_{i}(T, L_{CV}, L_{CA}, L_{kur})$$

quando p = 4.

Uno svantaggio dell'analisi regionale classica appena descritta è la necessità di ricorrere ad una suddivisione in regioni al cui interno si suppone che possa valere un'unica curva di crescita. Sia quando le regioni sono costituite su base geografica, sia quando si aggregano i bacini in ba-

2. STIMA DELLA CURVA DI CRESCITA

se ai valori di opportuni descrittori geomorfoclimatici (cluster analysis) si incorre nel problema che la curva di crescita presenta brusche discontinuità nel passaggio da una regione ad un'altra. Inoltre non sono sempre chiare le modalità di definizione del numero di regioni da considerare nell'analisi. Infine, le procedure di verifica dell'omogeneità statistica dei campioni raggruppati nelle regioni omogenee sono spesso inefficienti (Viglione et al., 2007) e, qualora venissero impiegate le procedure più selettive, si verrebbero ad identificare regioni troppo piccole, ossia con troppi pochi dati, perché si possa garantire una buona accuratezza delle stime con periodi di ritorno elevati.

I metodi di analisi regionale basati sulla teoria dell'Area di Influenza o Region of Influence tentano di superare questi svantaggi: quando si utilizzano questi metodi il numero di regioni non viene infatti fissato a priori, ma ogni sito considerato viene attribuito ad una diversa regione, definita associando al bacino considerato i bacini strumentati ad esso più simili (la similitudine viene di solito valutata in base ai valori di opportuni descrittori geomorfoclimatici). Anche l'utilizzo di questi metodi non consente comunque di risolvere completamente i problemi legati alla presenza di brusche discontinuità nella curva di crescita: infatti, supponendo di muoversi lungo un'asta fluviale da monte verso valle, ci si troverà sicuramente in una situazione in cui incrementando di poco l'area del bacino si otterranno descrittori che verranno attribuiti ad una regione diversa da quella attribuita al bacino più a monte. Tale diversità, anche solo minima, della regione, modificherà i valori dei parametri $\theta_1, ..., \theta_p$ inducendo la discontinuità di cui sopra. E' chiaro che la discontinuità sarà meno brusca che nel caso di regioni fisse, dal momento che solo una parte del campione si modifica nel passaggio da una regione ad un'altra, ma comunque rimane una irregolarità spaziale nella curva di crescita, non facilmente spiegabile dal punto di vista fisico. Inoltre il metodo dell'Area di Influenza richiede di rideterminare la regione di appartenenza del sito di interesse per ogni bacino non strumentato, cosa che complica in maniera rilevante l'applicazione operativa per un utente esterno quando non si voglia ricorrere alla predisposizione di procedure automatiche (software) per la definizione della curva di crescita. È, infine, ancora poco rigorosa la procedura di selezione delle grandezze morfoclimatiche in base alle quali selezionare le regioni omogenee.

Per superare le difficoltà di cui sopra, in Laio et al. (2011) è stato proposto un metodo definito SSEM (spatially smooth estimation method) che si basa sui seguenti presupposti:

- variabilità continua della curva di crescita nello spazio. Si ipotizza che la curva di crescita sia diversa da sezione a sezione, ossia non si ricorre alla classica suddivisione della regione di interesse in sottoregioni supposte omogenee.
- Rappresentazione della curva di crescita in funzione di due L-coefficienti, $K_j(T, L_{CV}, L_{CA})$; si suppone dunque di utilizzare modelli probabilistici con 3 parametri.
- Stima degli L-coefficienti L_{CV} e L_{CA} tramite regressioni multiple, utilizzando come variabili dipendenti i descrittori geomorfoclimatici già utilizzati per la stima della piena indice. Verranno considerate anche procedure alternative basate sulla stima diretta da dati di portata al colmo.
- Scelta del modello probabilistico di rappresentazione della curva di crescita effettuata solo a valle della stima degli L-coefficienti. Il modello viene selezionato tra diverse distribuzioni

di probabilità: la distribuzione di Gumbel (utilizzato solo ai fini di confronto, in quanto la distribuzione ha 2 parametri), la distribuzione di Pareto generalizzata, la distribuzione Generalizzata del Valore Estremo, la distribuzione Logistica generalizzata, la distribuzione Lognormale a 3 parametri, la distribuzione Gamma a 3 parametri (vedere Appendice B).

4.2 METODO DI STIMA LOCALE E REGIONALE DEGLI L-MOMENTI

Nel presente paragrafo si analizzano in dettaglio le modalità di stima degli L-momenti per ciascuna delle sezioni considerate (stime locali), considerando anche i metodi di stima per le stazioni prive di misure dirette (stime regionali). In particolare si considera la possibilità di stimare gli L-coefficienti L_{CV} e L_{CA} a partire:

- dal campione di osservazioni al colmo a disposizione, dove le serie storiche sono misurate in maniera sistematica
- dal campione di osservazioni che include valori storici occasionali oltre ai dati sistematici;
- da modelli di regressione.

Verrà infine discusso come affiancare a ciascun L-coefficiente un criterio utile alla valutazione della sua incertezza di stima. La statistica utilizzata a tale scopo è la deviazione standard $\sigma_{L_{CV}}$ o $\sigma_{L_{CV}}$, che viene opportunamente definita per ciascun metodo sviluppato.

Qualora si voglia utilizzare una distribuzione a 4 parametri (ad es. la distribuzione dei valori estremi a due componenti, nota come TCEV, o la distribuzione Kappa), è necessario disporre anche del valore di L-kurtosis. Tuttavia, in presenza di serie campionarie brevi, la stima del valore campionario di L-kurtosis non risulta affidabile, essendo L-kurtosis un L-momento del quarto ordine. Nel caso della TCEV, per poter avere un'indicazione sommaria del comportamento della distribuzione anche in presenza di campioni brevi, si suggerisce di utilizzare L-kurtosis pari a 2/3 del valore di L_{CA} campionario. Tale approssimazione deriva dalle considerazioni contenute in Arnell e Beran (1988) riguardo la stima dei parametri della distribuzione TCEV con il metodo degli L-momenti. Arnell e Beran (1988) mostrano che il dominio di validità della distribuzione TCEV è limitato nel piano L_{CA} - L_{kur} ad un fuso il cui centro cade approssimativamente lungo la retta di equazione $L_{pur} = 2/3L_{CA}$. Con questo criterio L-kurtosis può essere determinato, seppure in maniera approssimata, in modo da ricadere nel dominio di validità della TCEV.

4.2.1 Stima campionaria

Considerato un sito per il quale si dispone di una serie storica di portate al colmo, gli L-coefficienti possono essere calcolati in funzione dei momenti pesati in probabilità b_0 , b_1 , b_2 e b_3 , come spiegato in appendice A. In particolare risulta:

$$L_{CV} = \frac{2b_1 - b_0}{b_0} \tag{4.1}$$

$$L_{CA} = \frac{6b_2 - 6b_1 + b_0}{2b_1 - b_0} \tag{4.2}$$

$$\mathsf{L}_{\mathsf{kur}} = \frac{20\mathsf{b}_3 - 30\mathsf{b}_2 + 12\mathsf{b}_1 - \mathsf{b}_0}{2\mathsf{b}_1 - \mathsf{b}_0} \tag{4.3}$$

dove L_{CV} , L_{CA} ed L_{kur} rappresentano, rispettivamente, il coefficiente di L-variazione, di L-asimmetria e di L-kurtosis.

Nel caso in cui il campione di n_j osservazioni a disposizione per la j-esima sezione sia relativo a un periodo sistematico di misurazioni, il valore dei momenti pesati in probabilità o *Probability Weigthed Moments* (PWM, Greenwood et al., 1979) viene calcolato come:

$$b_{r} = \frac{1}{n} \sum_{i=1}^{n} \frac{(i-1) \cdot (i-2) \cdot ... \cdot (i-r)}{(n-1) \cdot (n-2) \cdot ... \cdot (n-r)} Q_{(i)} \quad \text{con} \quad r = 1, 2, ...$$
(4.4)

dove $Q_{(i)}$ rappresenta l'i-esimo valore di portata al colmo del campione ordinato in senso crescente.

Qualora le serie storiche siano state integrate con informazioni storiche occasionali, relative ad eventi alluvionali di particolare rilevanza occorsi in anni recenti o durante interruzioni del periodo sistematico di misurazione, il valore dei momenti pesati in probabilità non viene più calcolato tramite la relazione (4.4), in quanto il campione statistico non è più costituito da osservazioni effettuate con sistematicità. Per tener conto con diverso peso della differente natura degli eventi sporadici di intensità eccezionale, si individua per essi un valore soglia Q*, che può normalmente essere scelto pari al più piccolo dei valori relativi agli eventi storici occasionali considerati (Bayliss e Reed, 2001). È importante sottolineare come tale valore soglia corrisponda a quello definito per la stima empirica della piena indice nel paragrafo 3.1. Lo stesso valore soglia corrisponde a quello considerato per l'attribuzione delle plotting positions ai dati osservati seguendo il metodo di Hirsch (descritto nel seguito).

Per calcolare i momenti pesati in probabilità del campione esteso con i dati non sistematici si suggerisce il metodo proposto da Wang (1990): dati sistematici e occasionali vengono uniti in un unico campione, ordinato in senso crescente

$$x_{(1)} \le x_{(2)} \le \dots x_{(m-l+1)} \le x_{(m-l+2)} \le \dots \le x_{(m)}$$
 (4.5)

dove il pedice in parentesi indica la posizione ordinata; gli l eventi più intensi, che eccedono la soglia Q^* sono considerati un campione censurato, i cui elementi possono appartenere sia ai dati sistematici che a quelli occasionali. Quando si lavora con i campioni censurati, la formulazione del generico momento pesato in probabilità b_r deve essere modificata per tenere conto della componente sistematica e della componente occasionale. In particolare si ha

$$b_r = b_r' + b_r''$$
 (4.6)

dove

$$b_{r}'' = \frac{1}{n} \sum_{i=1}^{n} \frac{(i-1)(i-2) \dots (i-r)}{(n-1)(n-2) \dots (n-r)} Q_{(i)}''$$
(4.7)

tiene conto dei valori sotto soglia, con Q''_(i) dedotto dal campione complessivo ordinato secondo

$$Q_{(i)}'' = \begin{cases} Q_{(i)} & \text{if } x_{(i)} < Q^*, \\ 0 & \text{if } x_{(i)} \geq Q^*. \end{cases}$$

Il termine b'_r viene invece calcolato come

$$b'_{r} = \frac{1}{m} \sum_{i=1}^{m} \frac{(i-1)(i-2)...(i-r)}{(m-1)(m-2)...(m-r)} Q'_{(i)}$$
(4.8)

dove Q'_(i) rappresenta il campione completo sopra-soglia

$$x_{(i)}' = \begin{cases} 0 & \text{if } x_{(i)} < Q^*, \\ Q_{(i)} & \text{if } x_{(i)} \geq Q^*. \end{cases}$$

In assenza di informazioni occasionali, le equazioni sopra riportate si riducono alla usuale forma dell'equazione (4.4).

I momenti pesati in probabilità calcolati considerando dati occasionali possono dunque essere facilmente introdotti nel calcolo degli L-momenti e degli L-coefficienti seguendo le equazioni (4.1) - (4.3).

Una volta stimati i coefficienti di L-variazione e di L-asimmetria risulta importante valutare l'incertezza associata alla stima. Una statistica adeguata a descrivere l'incertezza di stima è la deviazione standard (o la varianza) associata alla stima stessa. La valutazione della deviazione standard associata agli L-coefficienti campionarti è stata effettuata facendo riferimento alle equazioni di Elamir e Seheult (2004) che riportano una procedura per la stima indistorta e distribution-free delle varianze e covarianze degli L-momenti campionari. Tali equazioni sono piuttosto complesse, ma sono state implementate nel pacchetto nsRFA (Viglione, 2007a) del software R.

Tuttavia, le equazioni di Elamir e Seheult (2004), nonostante diverse apprezzabili caratteristiche, non permettono di avere sempre stime affidabili della deviazione standard degli L-coefficienti in presenza di campioni molto corti. Per poter valutare l'incertezza campionaria anche in questi casi, per le sole stazioni che presentavano problemi nella stima della deviazione standard, si è ricorso all'uso di formulazioni semplificate ottenute da Viglione (2007b). Tali equazioni, che possono anche essere utilizzate per valutazioni speditive, definiscono l'incertezza

di L_{CV}

$$\sigma_{\mathsf{L}_{\mathsf{CV}}} = \frac{0.9 \cdot \mathsf{L}_{\mathsf{CV}}}{\sqrt{\mathsf{n}}},\tag{4.9}$$

e l'incertezza di L_{CA}

$$\sigma_{L_{CA}} = \frac{0.45 + 0.6 \cdot |L_{CA}|}{\sqrt{n}},\tag{4.10}$$

rispettivamente.

Inoltre, i valori campionari di L_{CV} e L_{CA} risultano correlati, con un coefficiente di correlazione valutabile in maniera semplificata come

$$\rho = \frac{1 - \exp(-5 \cdot \mathsf{L}_{CA})}{1 + \exp(-5 \cdot \mathsf{L}_{CA})}.$$
 (4.11)

Le equazioni di Elamir e Seheult (2004) e di Viglione (2007b) sono basate sull'utilizzo di sole informazioni sistematiche. La loro estensione a campioni contenenti dati occasionali non è quindi immediata, e se ne consiglia l'applicazione alla sola componente sistematica.

4.2.2 Stima regionale con modelli di regressione multipla

Il criterio di selezione del modello di regressione multipla di riferimento per la stima di L_{CV} e L_{CA} è del tutto identico alla struttura presentata per la piena indice al capitolo 3. La variabile Y dell'equazione (2.1) viene però fissata come:

- L_{CV} per la stima nel campo lineare del coefficiente di L-variazione;
- log (L_{CV}) per la stima nel campo logaritmico del coefficiente di L-variazione (modello moltiplicativo);
- L_{CA} per la stima nel campo lineare del coefficiente di L-asimmetria.

Tutti i modelli possibili, basati su un numero di descrittori variabile da 1 a 4, sono stati esaminati e classificati applicando il modello di regressione descritto nel capitolo 3. Anche in questo caso, analogamente a quanto fatto per la piena indice, si è operato in modo da considerare tutti i dati a disposizione come provenienti da misure sistematiche, utilizzando di fatto l'equazione (4.4) per la stima dei PWM campionari.

Stima di L_{CV}

Per la valutazione di L_{CV} regionale sono state considerate sia la forma moltiplicativa che quella additiva e i modelli ottenuti sono stati ordinati, come per la piena indice, in base alla varianza del modello.

I risultati ottenuti nel caso logaritmico sono riassunti nella tabella 7, dove sono riportati i primi 25 tra i modelli classificati che superano il test di multicollinearità con soglia pari a 5 e il test t di Student con un livello di significatività del 5%.

Con gli stessi livelli di selettività nei test statistici sono stati classificati anche i modelli relativi alla stima lineare di L_{CV}. I risultati sono elencati nella tabella 8 per i migliori 25 modelli.

Tabella 7: Elenco dei primi 25 modelli per la stima di log(LCV) classificati in ordine di varianza modello. I modelli hanno superato il test di Student con $\alpha = 5\%$ e il VIF test con valore limite pari a 5.

posizione	$\sigma_{\hat{Y}}^2$	n. descr	modello
1	0.04267	4	intercept + log.Hmin + log.NDVI + log.IDFa_cv + log.LCV6h_cv
2	0.04389	4	intercept + log.Hmin + log.NDVI + log.IDFa_cv + log.LCV12h_cv
3	0.04468	4	intercept + log.Hmin + log.NDVI + log.IDFa_cv + log.LCV24h_cv
4	0.04564	4	intercept + log.NDVI + log.IDFa_cv + log.LCV6h_cv + log.LCA6h
5	0.04569	4	intercept + log.Hmin + log.NDVI + log.IDFa_cv + log.LCV3h_cv
6	0.04668	4	intercept + log.NDVI + log.IDFa_cv + log.LCV6h_cv + log.LCV24h_cv
7	0.04673	4	intercept + log.NDVI + log.IDFa_cv + log.LCV12h_cv + log.LCA6h
8	0.04714	4	intercept + log.NDVI + log.LCV6h_cv + log.LCA1h + log.LCA6h
9	0.04717	4	intercept + log.NDVI + log.NDVI_cv + log.LCV12h_cv + log.LCA6h
10	0.04719	4	intercept + log.NDVI + log.LCV6h_cv + log.LCA1h + log.LCA3h
11	0.04721	4	intercept + log.Hmedia + log.NDVI + log.LCV6h_cv + log.LCA6h
12	0.04731	4	intercept + log.NDVI + log.LCV6h_cv + log.LCA6h + log.cf
13	0.04737	4	intercept + log.NDVI + log.NDVI_cv + log.LCV6h_cv + log.LCA6h
14	0.04745	4	intercept + log.slope_medio2 + log.NDVI + log.LCA6h + log.LCA24h
15	0.04746	4	intercept + log.NDVI + log.IDFa_cv + log.LCV3h_cv + log.LCV24h_cv
16	0.04751	4	intercept + log.NDVI + log.LCV12h_cv + log.LCA1h + log.LCA3h
17	0.04752	4	intercept + log.NDVI + log.IDFa_cv + log.LCV6h_cv + log.LCA3h
18	0.04761	4	intercept + log.lungh_media_vers + log.NDVI + log.LCV6h_cv + log.LCA6h
19	0.04775	4	intercept + log.Hmedia + log.NDVI + log.LCV12h_cv + log.LCA6h
20	0.04776	4	intercept + log.NDVI + log.LCV12h_cv + log.LCA1h + log.LCA6h
21	0.04787	4	intercept + log.a75percento + log.NDVI + log.LCV6h_cv + log.LCA6h
22	0.04796	4	intercept + log.NDVI + log.LCV3h_cv + log.LCA1h + log.LCA3h
23	0.04808	4	intercept + log.Hmin + log.NDVI + log.LCA6h + log.cf
24	0.04809	4	intercept + log.NDVI + log.LCV3h_cv + log.LCA1h + log.LCA6h
25	0.04824	4	intercept + log.slope_medio2 + log.NDVI + log.LCA1h + log.LCA6h

I modelli riportati nelle tabelle 7 e 8 non sono direttamente confrontabili in termini di varianza del modello, perché sono relativi a regressioni basate rispettivamente su variabili trasformate logaritmicamente e variabili non trasformate. Per questo motivo è necessario procedere ad un'analisi di dettaglio dei risultati dei vari modelli al fine di selezionare quelli più adatti alla stima di L_{CV} in siti non strumentati.

Per il caso in esame si suggerisce di utilizzare un modello espresso in forma moltiplicativa

$$L_{CV} = 0.17719 \cdot H_{min}^{0.20969} \cdot NDVI^{0.71067} \cdot CV[IDF_a]^{0.21581} \cdot CV[LCV_{6h}]^{-0.19252} \tag{4.12}$$

affiancato da un modello alternativo in forma additiva

$$L_{CV} = 0.52485 - 9.7881 \cdot 10^{-5} \cdot H_{min} - 1.39978 \cdot CV[LCV_{6h}] - 0.78171 \cdot LCA_{6h} + 0.23892 \cdot c_f. \ \, (4.13)$$

Le variabili in gioco per il calcolo del L_{CV} sono la quota media del bacino H_{min} , il valore dell'indice di vegetazione NDVI medio annuo (NDVI), il L_{CV} delle piogge intense con durata di 6 ore (LCV_{6h}), e i già citati IDF_a e c_f . Si noti che, le variabili che presentano il simbolo $CV[\cdot]$ hanno il significato di coefficiente di variazione spaziale (a scala di bacino) del descrittore. Esso è facilmente determinabile in ambiente GIS, dividendo la deviazione standard ottenuta considerando i valori delle celle contenute nel bacino per la loro media.

Un'analisi ulteriore dei modelli selezionati nelle tabelle 7 e 8 si può effettuare analizzando i

Tabella 8: Elenco dei primi 25 modelli per la stima di LCV classificati in ordine di varianza mode	ello. I	
modelli hanno superato il test di Student con $\alpha = 5\%$ e il VIF test con valore limite pari a	5.	

posizione	$\sigma_{\hat{Y}}^2$	n. descr.	modello
1	0.00457	4	intercept + cf + fourier_B2 + CN3 + CN3_cv
2	0.00459	4	intercept + cf + fourier_B2 + CN1 + CN3_cv
3	0.00465	4	intercept + MAP + cf + CN1 + CN3_cv
4	0.00472	4	intercept + Hmin + LCV6h_cv + LCA6h + cf
5	0.00473	4	intercept + MAP + cf + CN ₃ + CN ₃ _cv
6	0.00473	4	intercept + Hmin + LCV3h_cv + LCA6h + cf
7	0.00474	4	intercept + LCA1h + cf + CN1 + CN3_cv
8	0.00475	4	intercept + LCA1h + cf + CN3 + CN3_cv
9	0.00477	4	intercept + IDFa + cf + CN1 + CN3_cv
10	0.00478	4	intercept + IDFa + cf + CN ₃ + CN ₃ _cv
11	0.00478	4	intercept + LCA6h + cf + CN3 + CN3_cv
12	0.00479	3	intercept + fourier_B2 + CN1 + CN3_cv
13	0.00481	3	intercept + fourier_B2 + CN3 + CN3_cv
14	0.00485	4	intercept + LCV6h_cv + LCA6h + clc4 + cf
15	0.00486	4	intercept + LCV6h + LCA6h + CN1 + CN3_cv
16	0.00488	4	intercept + IDFa_cv + LCV24h_cv + CN1 + CN3_cv
17	0.00488	4	intercept + IDFa + cf + CN1 + CN1_cv
18	0.00488	4	intercept + LCV12h + LCA6h + CN1 + CN3_cv
19	0.00489	4	intercept + LCV6h_cv + LCA12h_cv + cf + CN3_cv
20	0.00490	4	intercept + IDFa_cv + LCV6h_cv + CN1 + CN3_cv
21	0.00490	4	intercept + LCV6h_cv + LCA6h_cv + cf + CN3_cv
22	0.00490	4	intercept + NDVI_cv + IDFa_cv + LCV6h_cv + LCA6h_cv
23	0.00490	4	intercept + IDFa_cv + LCV24h_cv + CN3 + CN3_cv
24	0.00491	4	intercept + LCA6h + cf + CN1 + CN1_cv
25	0.00491	4	intercept + IDFa_cv + LCV6h_cv + CN3 + CN3_cv

diagrammi diagnostici riportati nella figura 9 per quanto riguarda il modello (4.12) e la figura 10 per il modello (4.13).

Nel primo caso si nota una buona capacità di riprodurre il valore campionario, sebbene ci sia una leggera tendenza alla sottostima dei valori più elevati. L'analisi dei residui non mette in evidenza un comportamento particolarmente eteroschedastico o non-normale. Infine, è possibile notare, nell'ultimo grafico, l'effetto relativo di ogni descrittore sul valore stimato. In questo caso, a differenza di quanto accadeva per la piena indice, si osserva che i descrittori selezionati hanno un peso confrontabile.

Considerazioni del tutto analoghe possono essere fatte per il secondo modello, per il quale risulta leggermente più accentuata la sottostima dei valori di L_{CV} elevati.

L'ultimo passo è la definizione dell'incertezza di stima del L_{CV} . Il modello regionale (4.12) è basato sulla trasformazione logaritmica (come per la piena indice), per cui si procede riscrivendo l'equazione (2.14) come

$$\sigma_{\hat{Y}}^2 = 0.04267 + x \begin{pmatrix} 0.03953 & -0.00835 & -0.00975 & -0.00172 & 0.00067 \\ -0.00835 & 0.00284 & 0.00304 & 0.00078 & 0.00137 \\ -0.00975 & 0.00304 & 0.00714 & 0.00117 & -0.00043 \\ -0.00172 & 0.00078 & 0.00117 & 0.00258 & -0.00151 \\ 0.00067 & 0.00137 & -0.00043 & -0.00151 & 0.0045 \end{pmatrix} x^T \qquad (4.14)$$

dove il vettore dei descrittori di bacino è

$$x^{T} = \begin{pmatrix} 1 \\ log(H_{min}) \\ log(NDVI) \\ log(CV[IDF_{a}]) \\ log(CV[LCV_{6h}]) \end{pmatrix}.$$

Questa grandezza può quindi essere inserita nelle equazioni (2.15) e (2.16) per ottenere il valore richiesto. Per semplicità, utilizzando la semplificazione dell'equazione (2.17), si ottiene

$$\sigma_{\mathsf{L}_{\mathsf{CV}}}^2 = \mathsf{L}_{\mathsf{CV}}^2 \cdot \left[\exp\left(\sigma_{\hat{\mathsf{V}}}^2\right) - 1 \right]. \tag{4.15}$$

Nel caso del modello regionale (4.13), che non richiede trasformate logaritmiche, la procedura è più diretta. La varianza di stima può essere valutata come

$$\sigma_{\mathsf{LCV}}^2 = 0.00472 + x \begin{pmatrix} 0.00327 & 0 & -0.01221 & -0.00509 & -0.00217 \\ 0 & 0 & 0 & 0 & 0 \\ -0.01221 & 0 & 0.1068 & 0.00673 & 0.00281 \\ -0.00509 & 0 & 0.00673 & 0.03204 & -0.00315 \\ -0.00217 & 0 & 0.00281 & -0.00315 & 0.00516 \end{pmatrix} x^\mathsf{T} \tag{4.16}$$

dove il vettore dei descrittori di bacino è

$$x^T = \begin{pmatrix} 1 \\ H_{min} \\ CV[LCV_{6h}] \\ LCA_{6h} \\ c_f \end{pmatrix}.$$

Stima di L_{CA}

L'ultimo elemento da stimare è l'indicatore di asimmetria L_{CA}, per la quale sono stati analizzati soltanto modelli in forma aditiva, in quanto esso può avere valori negativi che non potrebbero essere ricostruiti dal modello in forma moltiplicativa. Come per le altre variabili, i migliori modelli ottenuti sono stati classificati sulla base dell'errore del modello e riassunti nella tabella 9.

In base ai risultati dei vari modelli testati, quello più efficiente consente di procedere alla stima regionale di L_{CA} con la relazione

$$\mathsf{L}_{\mathsf{CA}} = 0.79468 - 2.14568 \cdot \mathsf{LCA}_{\mathsf{6h}} - 0.87195 \cdot CV[\mathsf{LCA}_{\mathsf{24h}}] + 0.00192 \cdot \mathsf{clc}_2 + 0.01555 \cdot \mathsf{fourier}_{\mathsf{B2}} \ \ \textbf{(4.17)}$$

nella quale compaiono, oltre i descrittori già citati, anche il coefficiente di variazione spaziale dell'asimmetria delle piogge intense a 24 ore ($CV[L_{CA}]$), il parametro clc_2 , basato sulle mappe di uso del suolo del progetto $CORINE\ Land\ Cover$, e un parametro che caratterizza la forma dei regimi pluviometrici medi spaziali fourier_{B2}. Questi mostrano caratteristiche dei residui

non molto dissimili da quelle evidenziate nei diagrammi delle due figure precedenti relative ai modelli per la stima di L_{CV} .

Anche nel caso di L_{CA} è necessario validare il modello prescelto attraverso la visualizzazione dei diagrammi diagnostici (riportati nella figura 11).

Analogamente a quanto effettuato in precedenza, l'incertezza del modello (4.17) può essere valutata considerando

$$\sigma_{L_{CA}}^2 = 0.00858 + x \begin{pmatrix} 0.00562 & -0.02156 & -0.00834 & 0 & 5e - 05 \\ -0.02156 & 0.11172 & 0.02563 & -6e - 05 & -1e - 04 \\ -0.00834 & 0.02563 & 0.03136 & -3e - 05 & -0.00011 \\ 0 & -6e - 05 & -3e - 05 & 0 & 0 \\ 5e - 05 & -1e - 04 & -0.00011 & 0 & 1e - 05 \end{pmatrix} x^T \quad (4.18)$$

dove in questo caso il vettore dei descrittori è

$$x^{T} = \begin{pmatrix} 1 \\ LCA_{6h} \\ CV[LCA_{24h}] \\ clc_{2} \\ fourier_{B2} \end{pmatrix}.$$

Tabella 9: Elenco dei primi 25 modelli per la stima di LCA classificati in ordine di varianza modello. I modelli hanno superato il test di Student con $\alpha = 5\%$ e il VIF test con valore limite pari a 5.

posizione	$\sigma_{\hat{\mathbf{Y}}}^2$	n. descr.	modello
1	0.00829	4	intercept + LCA6h + LCA24h_cv + cf_cv + fourier_B2
2	0.00858	4	intercept + LCA6h + LCA24h_cv + clc2 + fourier_B2
3	0.00861	4	intercept + longest_drainage_path_length_km + fourier_B2 + CN1_cv + CN3_cv
4	0.00881	4	intercept + LCA6h + LCA24h_cv + cf + fourier_B2
5	0.00887	4	intercept + LCV24h_cv + fourier_B2 + CN1_cv + CN3_cv
6	0.00888	4	intercept + LCA1h_cv + fourier_B2 + CN1_cv + CN3_cv
7	0.00892	4	intercept + IDFn_cv + LCA6h + cf_cv + fourier_B2
8	0.00894	4	intercept + LCA6h + LCA24h_cv + fourier_B2 + CN1
9	0.00904	4	intercept + IDFn_cv + fourier_B2 + CN1_cv + CN3_cv
10	0.00916	4	intercept + clc4 + fourier_B2 + CN1 + CN3_cv
11	0.00921	4	intercept + LCV6h_cv + fourier_B2 + CN1_cv + CN3_cv
12	0.00922	4	intercept + LCA24h_cv + fourier_B2 + CN1_cv + CN3_cv
13	0.00922	4	intercept + LCV6h_cv + LCA6h + cf_cv + fourier_B2
14	0.00929	4	intercept + LCV24h_cv + LCA6h + cf_cv + fourier_B2
15	0.00931	4	intercept + LCV12h_cv + LCA6h + cf_cv + fourier_B2
16	0.00933	4	intercept + LCV6h_cv + LCA6h + cf + fourier_B2
17	0.00933	4	intercept + LCV12h_cv + fourier_B2 + CN1_cv + CN3_cv
18	0.00934	4	intercept + quota_media + fourier_B2 + CN1 + CN3_cv
19	0.00935	4	intercept + quota_massima + slope_medio1 + LCA6h + fourier_B2
20	0.00937	4	intercept + quota_media + fourier_B2 + CN3 + CN3_cv
21	0.00942	4	intercept + NDVI_cv + IDFn_cv + LCA6h + fourier_B2
22	0.00943	4	intercept + LCV6h_cv + LCV12h + LCA6h + fourier_B2
23	0.00944	4	intercept + IDFn_cv + LCA6h + fourier_B2 + CN3_cv
24	0.00947	4	intercept + slope_medio2 + fourier_B2 + CN1 + CN3_cv
25	0.00951	4	intercept + LCV24h_cv + LCA6h + fourier_B2 + CN1

4.3 RISULTATI E CONFRONTI IN CROSS-VALIDAZIONE

Nei precedenti paragrafi è stata definita una procedura regionale per la valutazione di L_{CV} e L_{CA} attraverso un approccio multiregressivo basato sull'uso di descrittori di bacino. Sono stati proposti due diversi modelli per L_{CV} , entrambi con quattro descrittori, e un modello per L_{CA} con quattro descrittori

I risultati ottenuti sono riassunti nella tabella 10, che riporta il valore degli L-coefficienti campionari e regionali calcolati dopo cross-validazione. I valori sono accompagnati dalla loro incertezza di stima in termini di deviazione standard e dalla numerosità campionaria n. L'elenco dei bacini analizzati fa riferimento ai 118 bacini descritti nel capitolo 1.1 che dispongono di almeno 5 anni di valori campionari di portata massima al colmo di piena.

Come segnalato anche per la stima di Q_{ind}, questa tabella sarà utile per la selezione delle distribuzioni da usare.

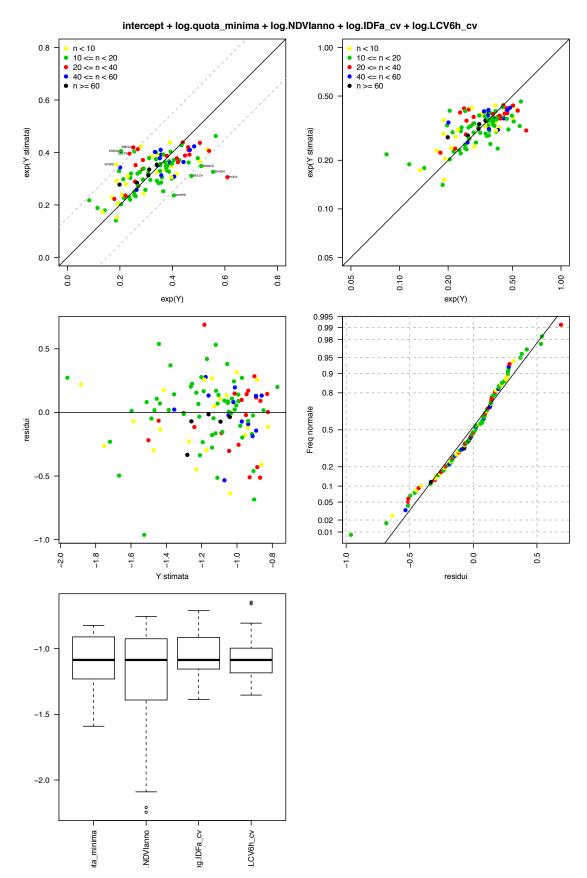


Figura 9: Diagrammi diagnostici del modello selezionato per la stima di L-CV in forma moltiplicativa.

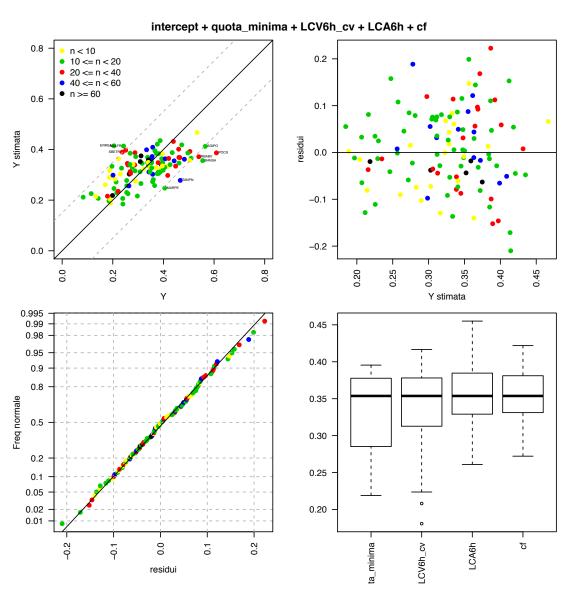


Figura 10: Diagrammi diagnostici del modello selezionato per la stima di L-CV in forma additiva.

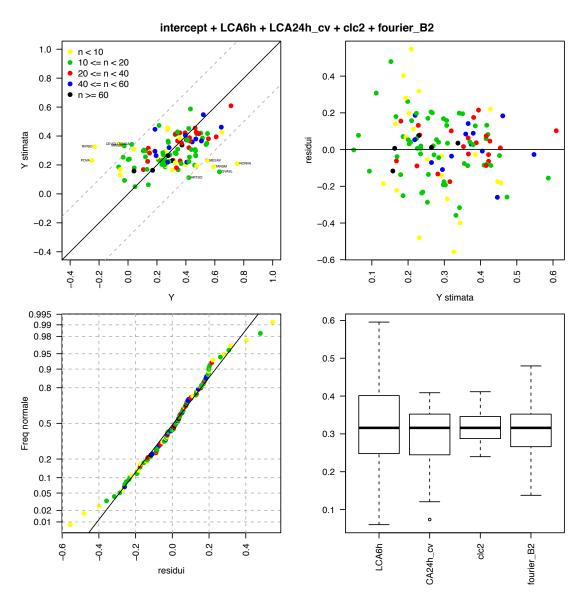


Figura 11: Diagrammi diagnostici del modello selezionato per la stima di L-CA in forma additiva.

4.3 RISULTATI E CONFRONTI IN CROSS-VALIDAZION

Tabella 10: Valori degli L-coeffcienti calcolati sui valori campionari e su base regionale dopo cross-validazione. I modelli indicati con i pedici REG1 e REG2 fanno riferiemnto alla stima di L_{CV} attraverso le equazioni (4.12) e (4.13); il modello con il pedice REG è relativo alla stima di L_{CA} mediante l'equazione (4.17). Le stime sono corredate delle rispettive deviazioni standard. I valori sono adimensionali.

Denominazione	n	LCV	σ_{LCV}	$\widehat{L_{CV}}_{\textbf{REG1}}$	$\hat{\sigma}_{L_{CV}REG_{1}}$	$\widehat{L_{CV}}_{REG_2}$	$\hat{\sigma}_{L_{CV}REG_2}$	LCA	σ_{LCA}	$\widehat{L_{CA}}_{REG}$	$\hat{\sigma}_{L_{CA}REG}$
Agogna a Novara	11	0.341	0.0612	0.281	0.0454	0.336	0.0716	0.105	0.0966	0.301	0.093
Artanavaz a Saint Oyen	14	0.24	0.0709	0.301	0.0464	0.181	0.0741	0.42	0.197	0.102	0.101
Ayasse a Champorcher	22	0.258	0.0504	0.282	0.0436	0.35	0.0716	0.343	0.102	0.367	0.0995
Banna a Santena	13	0.555	0.092	0.315	0.0468	0.352	0.0698	0.514	0.135	0.379	0.0996
Belbo a Castelnuovo Belbo	13	0.472	0.0537	0.285	0.0471	0.415	0.0728	0.346	0.131	0.16	0.0979
Borbera a Baracche	22	0.465	0.0403	0.384	0.0595	0.365	0.0703	0.311	0.108	0.231	0.0969
Bormida di Millesimo a Cessole	10	0.509	0.0642	0.335	0.0522	0.362	0.0697	0.425	0.223	0.254	0.0963
Bormida di Millesimo a Murialdo	9	0.391	0.111	0.435	0.0706	0.323	0.0711	0.0394	0.124	0.328	0.0994
Bormida ad Alessandria	17	0.308	0.0575	0.312	0.0501	0.312	0.0715	-0.0243	0.0779	0.103	0.0978
Bormida a Cassine (Presa Canale Carlo	30	0.287	0.041	0.329	0.0517	0.341	0.0706	0.106	0.0799	0.172	0.0967
Alberto)											
Bormida di Mallare a Ferrania	24	0.505	0.0316	0.423	0.0669	0.385	0.0706	0.36	0.0855	0.215	0.102
Bormida di Spigno a Mombaldone	12	0.354	0.0771	0.344	0.0539	0.35	0.0706	0.00944	0.137	0.247	0.0955
Bousset a Tetti Porcera	6	0.346	0.0849	0.375	0.0614	0.328	0.0713	0.257	0.247	0.293	0.0999
Breuil ad Alpette	14	0.142	0.0384	0.177	0.0309	0.211	0.0717	0.123	0.227	0.302	0.0988
Borbore a San Damiano d'Asti	11	0.276	0.0324	0.312	0.0532	0.338	0.0748	0.257	0.122	0.181	0.104
Bormida di Spigno a Valla	52	0.442	0.0353	0.354	0.0549	0.353	0.0696	0.444	0.0547	0.354	0.0968
Bucera a Ponte Rovine	6	0.416	0.0815	0.301	0.0491	0.331	0.0705	0.401	0.204	0.194	0.104
Cannobino a Traffiume	27	0.288	0.0577	0.361	0.0572	0.392	0.0716	0.335	0.125	0.172	0.1
Cervo a Passobreve	22	0.461	0.0599	0.402	0.0617	0.367	0.0696	0.395	0.0899	0.423	0.098
Cervo a Quinto Vercellese	9	0.223	0.0552	0.273	0.0443	0.366	0.0691	-0.0555	0.155	0.352	0.0925
Cervo a Vigliano Biellese	9	0.396	0.156	0.338	0.0513	0.383	0.0704	0.648	0.207	0.424	0.0971
Chiavanne ad Alpette	14	0.297	0.062	0.25	0.0394	0.212	0.0715	0.29	0.0924	0.268	0.1
Chiusella a Gurzia	34	0.439	0.0374	0.423	0.0671	0.431	0.0717	0.358	0.0637	0.426	0.0978
Chisone a Fenestrelle	19	0.462	0.0319	0.353	0.054	0.342	0.0694	0.55	0.0912	0.411	0.0962
Chisone a Soucheres Basses	18	0.376	0.111	0.343	0.0538	0.303	0.0715	0.475	0.229	0.414	0.098
Chisone a San Martino	34	0.46	0.0672	0.408	0.0644	0.4	0.0708	0.472	0.102	0.424	0.0974
Corsaglia a Presa Centrale Molline	25	0.268	0.0696	0.408	0.061	0.315	0.072	0.425	0.166	0.388	0.0988
Dora Baltea ad Aosta	16	0.255	0.0387	0.247	0.0394	0.229	0.0718	0.234	0.114	0.203	0.0973
Dora Baltea a Mazzè	10	0.36	0.0273	0.297	0.0483	0.278	0.0705	0.211	0.167	0.236	0.0961
Dora Baltea a Ponte di Mombardone	14	0.0831	0.0121	0.224	0.0308	0.221	0.0699	-0.0647	0.0666	0.202	0.0926

Dora Baltea a Tavagnasco 82 0.265 0.0303 0.279 0.0447 0.304 0.0705 0.305 0.0771 0.228 0.0957 Dora di Bardonecchia a Beaulard 12 0.213 0.0302 0.296 0.0453 0.274 0.0701 0.243 0.111 0.273 0.0958 Dora di Cournayeur a Prè Saint Didier 7 0.191 0.047 0.022 0.0323 0.184 0.0732 0.0703 0.00109 0.095 0.249 0.0946 Dora di Rhemes a Notre Dame 14 0.115 0.0196 0.188 0.0314 0.233 0.0703 0.00109 0.095 0.249 0.0946 Dora di Rhemes a Saint Georges 6 0.17 0.0598 0.225 0.0353 0.262 0.0969 0.262 0.0998 0.0959 Dora di Rhemes a Saint Georges 6 0.17 0.0598 0.225 0.0353 0.262 0.0909 0.0626 0.0948 0.0940 Dora Riparia a Char Antonino di Susa 37 0.26 0.0211 0.346 0.0916 0.345 0.0715 0.14 0.0709 0.32 0.0929 Dora Riparia a Torino Ponte Washington 17 0.338 0.0232 0.3991 0.045 0.355 0.0733 0.343 0.125 0.399 0.0929 Evancon a Champoluc 21 0.271 0.064 0.264 0.0264 0.0412 0.308 0.0736 0.464 0.125 0.453 0.104 Gesso di India Barra a San Giacomo 6 0.372 0.12 0.319 0.365 0.0661 0.323 0.0713 0.152 0.242 0.294 0.0997 Gesso di Intracque ad Entracque 12 0.426 0.023 0.0359 0.0359 0.033 0.0706 0.468 0.152 0.242 0.294 0.0997 Grand Eyvia a Cretaz 10 0.216 0.0531 0.046 0.051 0.048 0.052 0.027 0.023 0.025 0.0950 Lys a Gressoney Saint Jean 18 0.26 0.0534 0.029 0.054 0.035 0.054 0.027 0.0693 0.066 0.131 0.0950 Lys a Gressoney Saint Jean 18 0.26 0.0534 0.029 0.054 0.054 0.057 0.0693 0.046 0.035 0.017 0.068 0.0595 0.033 0.0706 0.024 0.027 0.0473 0.034 0.0950 Lys a Gressoney Saint Jean 18 0.26 0.0531 0.036 0.051 0.048 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.0595 0.	Denominazione	n	LCV	σ_{LCV}	$\widehat{L_{CV}}_{\mathbf{REG_1}}$	$\hat{\sigma}_{L_{CV}REG_1}$	LCV REG2	$\hat{\sigma}_{L_{CV}REG_2}$	LCA	σ_{LCA}	$\widehat{L_{CA}}_{REG}$	$\hat{\sigma}_{L_{CA}REG}$
Dora di Courmayeur a Prè Saint Didier 7	Dora Baltea a Tavagnasco	82	0.265	0.0303	0.279	0.0447	0.304	0.0705	0.305	0.0771	0.228	0.0957
Dora di Rhemes a Notre Dame	Dora di Bardonecchia a Beaulard	12	0.213	0.0302	0.296	0.0453	0.274	0.0701	0.243	0.111	0.273	0.0953
Dora di Rhemes a Pèlaud 5 0.133 0.0537 0.167 0.0293 0.218 0.0717 0.2 0.255 0.254 0.098 Dora di Rhemes a Saint Georges 6 0.17 0.0598 0.225 0.0353 0.262 0.0669 0.262 0.0998 0.193 0.0967 Dora Riparia a Oulx 43 0.358 0.065 0.308 0.0478 0.301 0.0702 0.508 0.104 0.364 0.0967 Dora Riparia a Sant'Antonino di Susa 37 0.26 0.0211 0.346 0.0516 0.345 0.0715 0.14 0.0709 0.32 0.0929 Dora Riparia a Torino Ponte Washington 17 0.338 0.0232 0.391 0.0645 0.35 0.0733 0.343 0.125 0.309 0.0952 Erro a Sassello 18 0.204 0.0221 0.407 0.0586 0.424 0.0669 0.11 0.076 0.325 0.0991 Evancon a Champoluc 21 0.271 0.064 0.264 0.0412 0.308 0.0736 0.464 0.125 0.453 0.104 Gesso di Barra a San Giacomo 6 0.372 0.12 0.319 0.0515 0.328 0.0708 0.326 0.264 0.212 0.104 Gesso di Monte Colombo a San Giacomo 12 0.426 0.023 0.0552 0.0552 0.339 0.0706 0.468 0.193 0.259 0.0997 Grand Etracque ad Entracque 12 0.426 0.0531 0.223 0.0552 0.339 0.0706 0.458 0.193 0.259 0.0997 Grana a Monterosso 55 0.483 0.046 0.413 0.064 0.357 0.0697 0.521 0.0468 0.555 0.0077 Grana a Monterosso 55 0.483 0.046 0.413 0.064 0.357 0.0697 0.521 0.0468 0.555 0.102 Isorno a Pontetto 14 0.387 0.0819 0.345 0.0981 0.0981 0.0727 0.0333 0.138 0.265 0.0995 Isya a Gressoney Saint Jean 18 0.26 0.0534 0.229 0.0552 0.331 0.0777 0.0325 0.133 0.0995 Lys a Gressoney Saint Jean 18 0.26 0.0534 0.229 0.0564 0.347 0.0727 0.0333 0.138 0.265 0.0995 Lys a Gressoney Saint Jean 19 0.385 0.0651 0.394 0.0615 0.362 0.0777 0.0333 0.138 0.265 0.0995 Maira a Racconigi 10 0.393 0.051 0.394 0.0615 0.362 0.0771 0.065 0.0473 0.0952 0.0952 Maira a Sanetto 17 0.268 0.0241 0.045 0	Dora di Courmayeur a Prè Saint Didier	7	0.191	0.047	0.202	0.0332	0.189	0.0728	-0.0537	0.147	0.139	0.098
Dora di Rhemes a Saint Georges	Dora di Rhemes a Notre Dame	14	0.115	0.0196	0.188	0.0314	0.233	0.0703	0.00109	0.095	0.249	0.0946
Dora Riparia a Oulx 43 0.358 0.0665 0.308 0.0478 0.301 0.0702 0.508 0.104 0.364 0.0949 Dora Riparia a Sant'Antonino di Susa 37 0.26 0.0211 0.346 0.0516 0.345 0.0715 0.14 0.0709 0.32 0.0929 Dora Riparia a Torino Ponte Washington 17 0.338 0.0232 0.391 0.0645 0.35 0.0733 0.125 0.399 0.0991 Evancon a Champoluc 21 0.271 0.064 0.264 0.0412 0.388 0.0736 0.464 0.125 0.453 0.010 Gesso della Barra a San Giacomo 6 0.372 0.12 0.199 0.0515 0.328 0.0708 0.246 0.224 0.104 Gesso di Monte Colombo a San Giacomo 5 0.322 0.119 0.365 0.0661 0.323 0.0713 0.122 0.104 Gesso di Intracque ad Entracque 10 0.216 0.0531 0.223 0.0539 0.023 0.0716	Dora di Rhemes a Pèlaud	5	0.133	0.0537	0.167	0.0293	0.218	0.0717	0.2	0.255	0.254	0.0981
Dora Riparia a Sant'Antonino di Susa 37 0.26 0.0211 0.346 0.0516 0.345 0.0715 0.14 0.0709 0.32 0.0992 Dora Riparia a Torino Ponte Washington 17 0.338 0.0232 0.391 0.0645 0.35 0.0733 0.343 0.125 0.399 0.0952 Erro a Sassello 18 0.204 0.0221 0.407 0.0586 0.424 0.0669 0.11 0.076 0.325 0.093 Evancon a Champoluc 21 0.271 0.064 0.264 0.0412 0.308 0.0736 0.464 0.125 0.453 0.104 Gesso di Barra a San Giacomo 6 0.372 0.12 0.319 0.0565 0.0661 0.323 0.0706 0.464 0.124 0.097 Gesso di Barra a San Giacomo 5 0.322 0.119 0.365 0.0661 0.333 0.0716 0.424 0.294 0.0997 Gesso di Barra a Carbarco 10 0.216 0.051 0.223 0.0359	Dora di Rhemes a Saint Georges	6	0.17	0.0598	0.225	0.0353	0.262	0.0699	0.262	0.0998	0.193	0.0967
Dora Riparia a Torino Ponte Washington 17 0.338 0.0232 0.391 0.0645 0.35 0.0733 0.343 0.125 0.309 0.0992 Erro a Sassello 18 0.204 0.0221 0.407 0.0586 0.424 0.0669 0.11 0.076 0.325 0.0991 Evancon a Champoluc 21 0.271 0.064 0.264 0.0412 0.308 0.0736 0.464 0.125 0.404 Gesso della Barra a San Giacomo 6 0.372 0.119 0.365 0.0661 0.323 0.0708 0.326 0.264 0.212 0.104 Gesso di Monte Colombo a San Giacomo 5 0.322 0.119 0.365 0.0661 0.323 0.0713 0.152 0.242 0.294 0.0997 Gesso di Entracque ad Entracque 12 0.426 0.102 0.359 0.0515 0.339 0.0766 0.486 0.193 0.227 0.235 0.0977 Grad Eviva a Cretaz 10 0.216 0.0493 0.348	Dora Riparia a Oulx	43	0.358	0.0665	0.308	0.0478	0.301	0.0702	0.508	0.104	0.364	0.0943
Erro a Sassello 18 0.204 0.0214 0.407 0.0586 0.424 0.0669 0.11 0.076 0.325 0.0991 Evancon a Champoluc 21 0.271 0.064 0.264 0.0412 0.308 0.0736 0.464 0.125 0.453 0.104 Gesso della Barra a San Giacomo 6 0.372 0.12 0.319 0.0515 0.328 0.0708 0.326 0.264 0.212 0.104 Gesso di Monte Colombo a San Giacomo 5 0.322 0.119 0.365 0.0661 0.323 0.0716 0.426 0.224 0.0997 Gesso di Entracque ad Entracque 10 0.216 0.0531 0.223 0.0359 0.23 0.0716 0.254 0.227 0.235 0.0997 Grand Eyvia a Cretaz 10 0.216 0.0531 0.223 0.0359 0.23 0.0716 0.224 0.227 0.235 0.0977 Grand Eyvia a Cretaz 10 0.216 0.0531 0.223 0.0531 0.0249<	Dora Riparia a Sant'Antonino di Susa	37	0.26	0.0211	0.346	0.0516	0.345	0.0715	0.14	0.0709	0.32	0.0929
Evancon a Champoluc 21 0.271 0.064 0.264 0.0412 0.308 0.0736 0.464 0.125 0.453 0.104 Gesso della Barra a San Giacomo 6 0.372 0.12 0.319 0.0515 0.328 0.0708 0.326 0.264 0.212 0.104 Gesso di Monte Colombo a San Giacomo 5 0.322 0.119 0.365 0.0661 0.323 0.0713 0.152 0.242 0.294 0.0997 Gesso di Entracque ad Entracque 12 0.426 0.0531 0.223 0.0359 0.23 0.0716 0.468 0.193 0.2978 Grand Eyvia a Cretaz 10 0.246 0.0531 0.223 0.0359 0.23 0.0706 0.468 0.193 0.0978 Grand a Monterosso 55 0.483 0.046 0.413 0.0644 0.357 0.0697 0.521 0.0688 0.55 0.102 Gesso della Valletta a San Lorenzo 11 0.353 0.0126 0.311 0.024 0.0727	Dora Riparia a Torino Ponte Washington	17	0.338	0.0232	0.391	0.0645	0.35	0.0733	0.343	0.125	0.309	0.0952
Gesso della Barra a San Giacomo 6 0.372 0.12 0.319 0.0515 0.328 0.0708 0.326 0.264 0.212 0.109 Gesso di Monte Colombo a San Giacomo 5 0.322 0.119 0.365 0.0661 0.323 0.0713 0.152 0.242 0.294 0.0997 Gesso di Entracque ad Entracque 12 0.426 0.102 0.359 0.0552 0.339 0.0766 0.468 0.193 0.259 0.0978 Grana Cretaz 10 0.216 0.0531 0.223 0.0359 0.23 0.0766 0.254 0.227 0.235 0.0977 Grana a Monterosso 55 0.483 0.046 0.413 0.064 0.357 0.0697 0.521 0.0468 0.555 0.102 Gesso della Valletta a San Lorenzo 11 0.387 0.046 0.316 0.357 0.0697 0.521 0.0688 0.55 0.131 0.091 0.972 0.0225 0.138 0.021 0.984 0.021 0.937 <td>Erro a Sassello</td> <td>18</td> <td>0.204</td> <td>0.0221</td> <td>0.407</td> <td>0.0586</td> <td>0.424</td> <td>0.0669</td> <td>0.11</td> <td>0.076</td> <td>0.325</td> <td>0.0991</td>	Erro a Sassello	18	0.204	0.0221	0.407	0.0586	0.424	0.0669	0.11	0.076	0.325	0.0991
Gesso di Monte Colombo a San Giacomo 5 0.322 0.119 0.365 0.0661 0.323 0.0713 0.152 0.242 0.294 0.0997 Gesso di Entracque ad Entracque 12 0.426 0.102 0.359 0.0552 0.339 0.0706 0.468 0.193 0.259 0.0978 Grana d Cretaz 10 0.216 0.0531 0.223 0.0359 0.23 0.0716 0.254 0.227 0.235 0.0977 Grana a Monterosso 55 0.483 0.046 0.413 0.064 0.357 0.0697 0.521 0.0468 0.555 0.102 Gesso della Valletta a San Lorenzo 11 0.353 0.126 0.316 0.0581 0.437 0.0697 0.522 0.165 0.131 0.0958 Isorno a Pontetto 14 0.387 0.0815 0.0251 0.437 0.0727 0.325 0.138 0.413 0.0951 Lys a Gressoney Saint Jean 18 0.26 0.0534 0.229 0.0364	Evancon a Champoluc	21	0.271	0.064	0.264	0.0412	0.308	0.0736	0.464	0.125	0.453	0.104
Gesso di Entracque ad Entracque 12 0.426 0.102 0.359 0.0552 0.339 0.0706 0.468 0.193 0.259 0.0978 Grand'Eyvia a Cretaz 10 0.216 0.0531 0.223 0.0359 0.23 0.0716 0.254 0.227 0.235 0.0977 Grana a Monterosso 55 0.483 0.046 0.413 0.064 0.357 0.0697 0.521 0.0468 0.55 0.102 Gesso della Valletta a San Lorenzo 11 0.3533 0.126 0.316 0.0498 0.348 0.0708 0.632 0.165 0.131 0.0959 Isorno a Pontetto 14 0.387 0.0819 0.345 0.0981 0.437 0.0727 0.325 0.138 0.0995 Lys a Gressoney Saint Jean 18 0.0254 0.0224 0.0911 0.465 0.0734 0.229 0.0364 0.224 0.0711 0.465 0.0173 0.297 0.0957 Lys a Guillemore 29 0.448 0.0615 <td>Gesso della Barra a San Giacomo</td> <td>6</td> <td>0.372</td> <td>0.12</td> <td>0.319</td> <td>0.0515</td> <td>0.328</td> <td>0.0708</td> <td>0.326</td> <td>0.264</td> <td>0.212</td> <td>0.104</td>	Gesso della Barra a San Giacomo	6	0.372	0.12	0.319	0.0515	0.328	0.0708	0.326	0.264	0.212	0.104
Grand'Eyvia a Cretaz 10 0.216 0.0531 0.223 0.0359 0.23 0.0716 0.254 0.227 0.235 0.0977 Grana a Monterosso 55 0.483 0.046 0.413 0.064 0.357 0.0697 0.521 0.0468 0.55 0.102 Gesso della Valletta a San Lorenzo 11 0.353 0.126 0.316 0.0498 0.348 0.0708 0.632 0.165 0.131 0.0959 Isorno a Pontetto 14 0.387 0.0819 0.345 0.0581 0.437 0.0727 0.325 0.138 0.413 0.0955 Uys a d'Ejola 10 0.185 0.0275 0.131 0.024 0.198 0.0727 0.325 0.133 0.138 0.263 0.0956 Uys a Gressoney Saint Jean 18 0.26 0.0534 0.229 0.0364 0.224 0.0711 0.465 0.0173 0.297 0.0936 Uys a Guillemore 29 0.448 0.0615 0.378 0.061 0.332 0.0663 0.429 0.0952 0.365 0.0957 Maira a Racconigi 10 0.393 0.051 0.394 0.0615 0.362 0.0727 0.277 0.0473 0.369 0.0959 Maira a Saretto 17 0.235 0.0584 0.223 0.0358 0.331 0.0721 0.0262 0.119 0.36 0.0965 Maira a San Damiano Macra 57 0.391 0.046 0.356 0.0553 0.339 0.0715 0.404 0.0874 0.372 0.0983 Malone a Brandizzo 10 0.268 0.0224 0.0421 0.32 0.0516 0.423 0.0666 0.338 0.109 0.423 0.101 Marmore a Perreres 15 0.405 0.0558 0.0341 0.392 0.0516 0.423 0.0666 0.338 0.109 0.423 0.101 Marmore a Perreres 15 0.405 0.0558 0.0341 0.392 0.0615 0.413 0.0723 0.284 0.0767 0.324 0.0999 Melezet a Melezet 18 Melezet 15 0.239 0.0261 0.216 0.0325 0.0015 0.413 0.0723 0.384 0.0767 0.324 0.0999 Melezet a Melezet 18 Melezet 18 0.288 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.28 0.068 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.289 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.289 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.289 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.289 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.289 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.289 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.0494 0.0266 0.0976	Gesso di Monte Colombo a San Giacomo	5	0.322	0.119	0.365	0.0661	0.323	0.0713	0.152	0.242	0.294	0.0997
Grana a Monterosso 55 0.483 0.046 0.413 0.064 0.357 0.0697 0.521 0.0468 0.555 0.102 Gesso della Valletta a San Lorenzo 11 0.353 0.126 0.316 0.0498 0.348 0.0708 0.632 0.165 0.131 0.0959 Isorno a Pontetto 14 0.387 0.0819 0.345 0.0581 0.437 0.0727 0.325 0.138 0.413 0.0995 Lys a Gressoney Saint Jean 18 0.26 0.0534 0.229 0.0364 0.224 0.0711 0.465 0.0173 0.297 0.0936 Lys a Guillemore 29 0.448 0.0615 0.378 0.061 0.332 0.0693 0.429 0.0952 0.365 0.0957 Maira a Saretto 17 0.235 0.0584 0.223 0.0358 0.331 0.0721 -0.0262 0.119 0.36 0.0965 Maira a Saretto 17 0.235 0.0584 0.0233 0.031 0.0721	Gesso di Entracque ad Entracque	12	0.426	0.102	0.359	0.0552	0.339	0.0706	0.468	0.193	0.259	0.0978
Gesso della Valletta a San Lorenzo 11 0.353 0.126 0.316 0.0498 0.348 0.0708 0.632 0.165 0.131 0.0959 Isorno a Pontetto 14 0.387 0.0819 0.345 0.0581 0.437 0.0727 0.325 0.138 0.413 0.0995 Lys a d'Ejola 10 0.185 0.0275 0.131 0.024 0.198 0.0727 -0.0333 0.138 0.263 0.0956 Lys a Gressoney Saint Jean 18 0.26 0.0534 0.229 0.0364 0.224 0.0711 0.465 0.0173 0.297 0.0936 Lys a Guillemore 29 0.448 0.0615 0.378 0.061 0.332 0.0693 0.429 0.0952 0.365 0.0957 Maira a Racconigi 10 0.393 0.051 0.394 0.0615 0.362 0.0727 0.277 0.0473 0.369 0.0959 Maira a Saretto 17 0.235 0.0584 0.223 0.0358 0.331 0.0721 -0.0262 0.119 0.36 0.0965 Maira a San Damiano Macra 57 0.391 0.046 0.356 0.0553 0.339 0.0715 0.404 0.0874 0.372 0.0983 Malone a Brandizzo 10 0.268 0.0224 0.269 0.0457 0.401 0.073 0.214 0.221 0.479 0.1 Marmore a Perreres 15 0.405 0.0557 0.218 0.034 0.237 0.0713 0.405 0.146 0.377 0.102 Mastallone a Varallo 43 0.358 0.0341 0.392 0.0615 0.413 0.0723 0.284 0.0767 0.324 0.0999 Melezet a Melezet Melezet 15 0.239 0.0261 0.216 0.0352 0.203 0.0733 0.332 0.096 0.274 0.1 Meris a Sant'Anna Valdieri 5 0.28 0.0688 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.189 0.105 0.144 0.026 0.205 0.0762 0.0722 0.568 0.404 0.206 0.0976 0.0976	Grand'Eyvia a Cretaz	10	0.216	0.0531	0.223	0.0359	0.23	0.0716	0.254	0.227	0.235	0.0977
Isorno a Pontetto 14 0.387 0.0819 0.345 0.0581 0.437 0.0727 0.325 0.138 0.433 0.0996 Lys a d'Ejola 10 0.185 0.0275 0.131 0.024 0.198 0.0727 -0.0333 0.138 0.263 0.0996 Lys a Gressoney Saint Jean 18 0.26 0.0534 0.229 0.0364 0.224 0.0711 0.465 0.0173 0.297 0.0936 Lys a Guillemore 29 0.448 0.0615 0.378 0.061 0.332 0.0693 0.429 0.0952 0.365 0.0957 Maira a Racconigi 10 0.393 0.051 0.394 0.0615 0.362 0.0727 0.277 0.0473 0.369 0.0959 Maira a Saretto 17 0.235 0.0584 0.223 0.0358 0.331 0.0721 -0.0622 0.119 0.36 0.0965 Maira a Sarn Damiano Macra 57 0.391 0.046 0.356 0.0553 0.339	Grana a Monterosso	55	0.483	0.046	0.413	0.064	0.357	0.0697	0.521	0.0468	0.55	0.102
Lys a d'Ejola 10 0.185 0.0275 0.131 0.024 0.198 0.0727 -0.0333 0.138 0.263 0.0956 Lys a Gressoney Saint Jean 18 0.26 0.0534 0.229 0.0364 0.224 0.0711 0.465 0.0173 0.297 0.0936 Lys a Guillemore 29 0.448 0.0615 0.378 0.061 0.332 0.0693 0.429 0.0952 0.365 0.0957 Maira a Racconigi 10 0.393 0.051 0.394 0.0615 0.362 0.0727 0.277 0.0473 0.369 0.0959 Maira a Saretto 17 0.235 0.0584 0.223 0.0358 0.331 0.0721 -0.0262 0.119 0.36 0.0965 Maira a San Damiano Macra 57 0.391 0.046 0.356 0.0553 0.339 0.0715 0.404 0.0874 0.372 0.0983 Malone a Brandizzo 10 0.268 0.0224 0.269 0.0457 0.401 0.073 0.214 0.221 0.479 0.1 Malone a Front 15 0.242 0.0421 0.32 0.0516 0.423 0.0696 0.338 0.109 0.423 0.101 Marmore a Perreres 15 0.405 0.0557 0.218 0.034 0.237 0.0713 0.405 0.146 0.377 0.102 Mastallone a Varallo 43 0.358 0.0341 0.392 0.0615 0.413 0.0723 0.284 0.0767 0.324 0.0999 Melezet a Melezet Melezet 15 0.239 0.0261 0.216 0.0352 0.203 0.0733 0.332 0.096 0.274 0.1 Meris a Sant'Anna Valdieri 5 0.28 0.068 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.189 0.105 0.144 0.026 0.205 0.0722 0.756 0.404 0.206 0.0976 Orba a CasalCermelli 14 0.267 0.0468 0.311 0.0495 0.346 0.072 0.0481 0.0788 0.0527 0.102	Gesso della Valletta a San Lorenzo	11	0.353	0.126	0.316	0.0498	0.348	0.0708	0.632	0.165	0.131	0.0959
Lys a Gressoney Saint Jean 18 0.26 0.0534 0.229 0.0364 0.224 0.0711 0.465 0.0173 0.297 0.0936 Lys a Guillemore 29 0.448 0.0615 0.378 0.061 0.332 0.0693 0.429 0.0952 0.365 0.0957 Maira a Racconigi 10 0.393 0.051 0.394 0.0615 0.362 0.0727 0.277 0.0473 0.369 0.0959 Maira a Saretto 17 0.235 0.0584 0.223 0.0358 0.331 0.0721 -0.0262 0.119 0.36 0.0965 Maira a San Damiano Macra 57 0.391 0.046 0.356 0.0553 0.339 0.0715 0.404 0.0874 0.372 0.0983 Malone a Brandizzo 10 0.268 0.0224 0.269 0.0457 0.401 0.073 0.214 0.221 0.479 0.1 Malone a Front 15 0.242 0.0421 0.32 0.0516 0.423 0.0696 0.338 0.109 0.423 0.101 Marmore a Perreres 15 0.405 0.0557 0.218 0.034 0.237 0.0713 0.405 0.146 0.377 0.102 Mastallone a Varallo 43 0.358 0.0341 0.392 0.0615 0.413 0.0723 0.284 0.0767 0.324 0.0999 Melezet a Melezet Melezet 15 0.28 0.0688 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.189 0.105 0.144 0.026 0.205 0.0722 0.756 0.404 0.206 0.0978 0.102 Orba a CasalCermelli 14 0.267 0.0468 0.311 0.0495 0.346 0.072 0.0481 0.0788 0.0527 0.102	Isorno a Pontetto	14	0.387	0.0819	0.345	0.0581	0.437	0.0727	0.325	0.138	0.413	0.0995
Lys a Guillemore 29 0.448 0.0615 0.378 0.061 0.332 0.0693 0.429 0.0952 0.365 0.0957 Maira a Racconigi 10 0.393 0.051 0.394 0.0615 0.362 0.0727 0.277 0.0473 0.369 0.0959 Maira a Saretto 17 0.235 0.0584 0.223 0.0358 0.331 0.0721 -0.0262 0.119 0.36 0.0965 Maira a San Damiano Macra 57 0.391 0.046 0.356 0.0553 0.339 0.0715 0.404 0.0874 0.372 0.0983 Malone a Brandizzo 10 0.268 0.0224 0.269 0.0457 0.401 0.073 0.214 0.221 0.479 0.1 Malone a Front 15 0.242 0.0421 0.32 0.0516 0.423 0.0696 0.338 0.109 0.423 0.101 Marmore a Perreres 15 0.405 0.0557 0.218 0.034 0.237 0.0713 0.405 0.146 0.377 0.102 Mastallone a Varallo 43 0.358 0.0341 0.392 0.0615 0.413 0.0723 0.284 0.0767 0.324 0.0999 Melezet a Melezet Melezet 15 0.239 0.0261 0.216 0.0352 0.203 0.0733 0.332 0.096 0.274 0.1 Meris a Sant'Anna Valdieri 5 0.28 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.189 0.105 0.144 0.026 0.205 0.0722 0.756 0.404 0.206 0.0976 0.102	Lys a d'Ejola	10	0.185	0.0275	0.131	0.024	0.198	0.0727	-0.0333	0.138	0.263	0.0956
Maira a Racconigi 10 0.393 0.051 0.394 0.0615 0.362 0.0727 0.277 0.0473 0.369 0.0959 Maira a Saretto 17 0.235 0.0584 0.223 0.0358 0.331 0.0721 -0.0262 0.119 0.36 0.0965 Maira a Saretto 57 0.391 0.046 0.356 0.0553 0.339 0.0715 0.404 0.0874 0.372 0.0983 Malone a Brandizzo 10 0.268 0.0224 0.269 0.0457 0.401 0.073 0.214 0.221 0.479 0.1 Malone a Front 15 0.242 0.0421 0.32 0.0516 0.423 0.0696 0.338 0.109 0.423 0.101 Marmore a Perreres 15 0.405 0.0557 0.218 0.034 0.237 0.0713 0.405 0.146 0.377 0.102 Mastallone a Varallo 43 0.358 0.0341 0.392 0.0615 0.413 0.0723	Lys a Gressoney Saint Jean	18	0.26	0.0534	0.229	0.0364	0.224	0.0711	0.465	0.0173	0.297	0.0936
Maira a Saretto 17 0.235 0.0584 0.223 0.0358 0.331 0.0721 -0.0262 0.119 0.36 0.0965 Maira a San Damiano Macra 57 0.391 0.046 0.356 0.0553 0.339 0.0715 0.404 0.0874 0.372 0.0983 Malone a Brandizzo 10 0.268 0.0224 0.269 0.0457 0.401 0.073 0.214 0.221 0.479 0.1 Malone a Front 15 0.242 0.0421 0.32 0.0516 0.423 0.0696 0.338 0.109 0.423 0.101 Marmore a Perreres 15 0.405 0.0557 0.218 0.034 0.237 0.0713 0.405 0.146 0.377 0.102 Mastallone a Varallo 43 0.358 0.0341 0.392 0.0615 0.413 0.0723 0.284 0.0767 0.324 0.0999 Melezet a Melezet 15 0.239 0.0261 0.216 0.0352 0.203 0	Lys a Guillemore	29	0.448	0.0615	0.378	0.061	0.332	0.0693	0.429	0.0952	0.365	0.0957
Maira a San Damiano Macra 57 0.391 0.046 0.356 0.0553 0.339 0.0715 0.404 0.0874 0.372 0.0983 Malone a Brandizzo 10 0.268 0.0224 0.269 0.0457 0.401 0.073 0.214 0.221 0.479 0.1 Malone a Front 15 0.242 0.0421 0.32 0.0516 0.423 0.0696 0.338 0.109 0.423 0.101 Marmore a Perreres 15 0.405 0.0557 0.218 0.034 0.237 0.0713 0.405 0.146 0.377 0.102 Mastallone a Varallo 43 0.358 0.0341 0.392 0.0615 0.413 0.0723 0.284 0.0767 0.324 0.0999 Melezet a Melezet 15 0.239 0.0261 0.216 0.0352 0.203 0.0733 0.332 0.096 0.274 0.1 Meris a Sant'Anna Valdieri 5 0.28 0.0668 0.405 0.0765 0.343	Maira a Racconigi	10	0.393	0.051	0.394	0.0615	0.362	0.0727	0.277	0.0473	0.369	0.0959
Malone a Brandizzo 10 0.268 0.0224 0.269 0.0457 0.401 0.073 0.214 0.221 0.479 0.1 Malone a Front 15 0.242 0.0421 0.32 0.0516 0.423 0.0696 0.338 0.109 0.423 0.101 Marmore a Perreres 15 0.405 0.0557 0.218 0.034 0.237 0.0713 0.405 0.146 0.377 0.102 Mastallone a Varallo 43 0.358 0.0341 0.392 0.0615 0.413 0.0723 0.284 0.0767 0.324 0.0999 Melezet a Melezet 15 0.239 0.0261 0.216 0.0352 0.203 0.0733 0.332 0.096 0.274 0.1 Meris a Sant'Anna Valdieri 5 0.28 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.189 0.105 0.144 0.026 0.205 0.0722	Maira a Saretto	17	0.235	0.0584	0.223	0.0358	0.331	0.0721	-0.0262	0.119	0.36	0.0965
Malone a Front 15 0.242 0.0421 0.32 0.0516 0.423 0.0696 0.338 0.109 0.423 0.101 Marmore a Perreres 15 0.405 0.0557 0.218 0.034 0.237 0.0713 0.405 0.146 0.377 0.102 Mastallone a Varallo 43 0.358 0.0341 0.392 0.0615 0.413 0.0723 0.284 0.0767 0.324 0.0999 Melezet a Melezet 15 0.239 0.0261 0.216 0.0352 0.203 0.0733 0.332 0.096 0.274 0.1 Meris a Sant'Anna Valdieri 5 0.28 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.189 0.105 0.144 0.026 0.205 0.0722 0.756 0.404 0.206 0.0976 Orba a CasalCermelli 14 0.267 0.0468 0.311 0.0495 0.346	Maira a San Damiano Macra	57	0.391	0.046	0.356	0.0553	0.339	0.0715	0.404	0.0874	0.372	0.0983
Marmore a Perreres 15 0.405 0.0557 0.218 0.034 0.237 0.0713 0.405 0.146 0.377 0.102 Mastallone a Varallo 43 0.358 0.0341 0.392 0.0615 0.413 0.0723 0.284 0.0767 0.324 0.0999 Melezet a Melezet 15 0.239 0.0261 0.216 0.0352 0.203 0.0733 0.332 0.096 0.274 0.1 Meris a Sant'Anna Valdieri 5 0.28 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.189 0.105 0.144 0.026 0.205 0.0722 0.756 0.404 0.206 0.0976 Orba a CasalCermelli 14 0.267 0.0488 0.311 0.0495 0.346 0.072 0.0481 0.0527 0.102	Malone a Brandizzo	10	0.268	0.0224	0.269	0.0457	0.401	0.073	0.214	0.221	0.479	0.1
Mastallone a Varallo 43 0.358 0.0341 0.392 0.0615 0.413 0.0723 0.284 0.0767 0.324 0.0999 Melezet a Melezet 15 0.239 0.0261 0.216 0.0352 0.203 0.0733 0.332 0.096 0.274 0.1 Meris a Sant'Anna Valdieri 5 0.28 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.189 0.105 0.144 0.026 0.205 0.0722 0.756 0.404 0.206 0.0976 Orba a CasalCermelli 14 0.267 0.0488 0.311 0.0495 0.346 0.072 0.0481 0.0788 0.0527 0.102	Malone a Front	15	0.242	0.0421	0.32	0.0516	0.423	0.0696	0.338	0.109	0.423	0.101
Melezet a Melezet 15 0.239 0.0261 0.216 0.0352 0.203 0.0733 0.332 0.096 0.274 0.1 Meris a Sant'Anna Valdieri 5 0.28 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.189 0.105 0.144 0.026 0.205 0.0722 0.756 0.404 0.206 0.0976 Orba a CasalCermelli 14 0.267 0.0468 0.311 0.0495 0.346 0.072 0.0481 0.0788 0.0527 0.102	Marmore a Perreres	15	0.405	0.0557	0.218	0.034	0.237	0.0713	0.405	0.146	0.377	0.102
Meris a Sant'Anna Valdieri 5 0.28 0.0668 0.405 0.0765 0.343 0.0712 0.548 0.348 0.227 0.0993 Nontey a Valnontey 5 0.189 0.105 0.144 0.026 0.205 0.0722 0.756 0.404 0.206 0.0976 Orba a CasalCermelli 14 0.267 0.0468 0.311 0.0495 0.346 0.072 0.0481 0.0788 0.0527 0.102	Mastallone a Varallo	43	0.358	0.0341	0.392	0.0615	0.413	0.0723	0.284	0.0767	0.324	0.0999
Nontey a Valnontey 5 0.189 0.105 0.144 0.026 0.205 0.0722 0.756 0.404 0.206 0.0976 Orba a CasalCermelli 14 0.267 0.0468 0.311 0.0495 0.346 0.072 0.0481 0.0788 0.0527 0.102	Melezet a Melezet	15	0.239	0.0261	0.216	0.0352	0.203	0.0733	0.332	0.096	0.274	0.1
Orba a CasalCermelli 14 0.267 0.0468 0.311 0.0495 0.346 0.072 0.0481 0.0788 0.0527 0.102	Meris a Sant'Anna Valdieri	5	0.28	0.0668	0.405	0.0765	0.343	0.0712	0.548	0.348	0.227	0.0993
1 7 1 3 133 31 7 1 7 3 7	Nontey a Valnontey	5	0.189	0.105	0.144	0.026	0.205	0.0722	0.756	0.404	0.206	0.0976
Orco a Pont Canavese 49 0.407 0.0336 0.3 0.0456 0.362 0.0711 0.406 0.0395 0.204 0.0948	Orba a CasalCermelli	14	0.267	0.0468	0.311	0.0495	0.346	0.072	0.0481	0.0788	0.0527	0.102
	Orco a Pont Canavese	49	0.407	0.0336	0.3	0.0456	0.362	0.0711	0.406	0.0395	0.204	0.0948

Denominazione	n	LCV	σ_{LCV}	$\widehat{L_{CV}}_{\boldsymbol{REG_1}}$	$\hat{\sigma}_{L_{CV}REG_{1}}$	$\widehat{L_{CV}}_{\pmb{REG2}}$	$\hat{\sigma}_{L_{CV}REG_2}$	LCA	σ_{LCA}	$\widehat{L_{CA}}_{\textbf{REG}}$	$\hat{\sigma}_{L_{CA}REG}$
Orco a San Benigno Canavese	11	0.397	0.0867	0.294	0.0455	0.347	0.0716	0.283	0.171	0.223	0.0998
Pellice a Luserna San Giovanni	8	0.533	0.0492	0.399	0.0615	0.462	0.0725	0.275	0.217	0.46	0.0994
Pellice a Villafranca Piemonte	10	0.371	0.121	0.356	0.0552	0.385	0.0711	0.503	0.227	0.419	0.0975
Po a Carignano	16	0.381	0.057	0.345	0.0538	0.302	0.0715	0.325	0.171	0.284	0.0976
Po a Casale Monferrato	19	0.357	0.0483	0.274	0.0443	0.267	0.0726	0.241	0.0715	0.236	0.0983
Po a Crissolo	24	0.609	0.0467	0.295	0.0398	0.361	0.0709	0.609	0.0434	0.357	0.0977
Po a Isola Sant'Antonio	13	0.255	0.0646	0.269	0.0446	0.253	0.0744	0.254	0.148	0.201	0.0978
Po a Meirano Moncalieri	58	0.343	0.0295	0.346	0.0538	0.31	0.0718	0.186	0.0513	0.302	0.0964
Po a San Mauro Torinese	18	0.399	0.0694	0.351	0.0547	0.316	0.0707	0.241	0.159	0.286	0.0967
Po a Torino Murazzi	13	0.379	0.0664	0.345	0.0535	0.308	0.0715	0.466	0.124	0.294	0.096
Po a Valenza	6	0.209	0.0715	0.282	0.0458	0.282	0.0723	-0.249	0.245	0.237	0.0945
Rio Bagni a Bagni di Vinadio	20	0.54	0.0862	0.379	0.0618	0.365	0.0712	0.712	0.0633	0.591	0.103
Rio Freddo a Rio Freddo	7	0.187	0.0636	0.345	0.0524	0.319	0.0698	0.273	0.268	0.448	0.0965
Ripa a Bousson	5	0.187	0.081	0.292	0.0457	0.292	0.0707	-0.231	0.263	0.33	0.0927
Rutor a La Joux	29	0.179	0.0356	0.222	0.0355	0.218	0.0717	0.328	0.112	0.421	0.102
Rutor a Promise	33	0.221	0.0562	0.232	0.0368	0.235	0.0713	0.489	0.129	0.41	0.102
Savara a Eau Rousse	18	0.205	0.0319	0.195	0.0322	0.248	0.0718	0.043	0.0922	0.188	0.0978
Savara a Fenille	6	0.29	0.12	0.233	0.0372	0.275	0.0711	-0.0533	0.388	0.171	0.0982
San Bernardino a San Bernardino Santino	23	0.251	0.033	0.419	0.0614	0.403	0.069	0.149	0.0597	0.298	0.0993
San Bernardino a Trobaso	24	0.237	0.0349	0.393	0.0571	0.394	0.0688	0.136	0.0981	0.232	0.1
Scrivia a Isola del Cantone	13	0.366	0.0729	0.385	0.0608	0.396	0.0716	0.467	0.203	0.264	0.0984
Scrivia a Serravalle Scrivia	40	0.352	0.0255	0.372	0.0573	0.364	0.0712	0.272	0.0714	0.217	0.0977
Stura di Demonte a Fossano	11	0.337	0.034	0.366	0.0569	0.371	0.0716	0.232	0.0666	0.226	0.0989
Stura di Demonte a Gaiola	34	0.421	0.0615	0.356	0.0538	0.363	0.0716	0.556	0.0519	0.368	0.0955
Stura di Demonte a Pianche	18	0.376	0.073	0.329	0.0514	0.424	0.0747	0.432	0.167	0.594	0.103
Stura di Demonte a Roccasparvera	9	0.504	0.0565	0.361	0.0546	0.35	0.0701	0.357	0.112	0.387	0.098
Sermenza a Rimasco	44	0.333	0.0294	0.4	0.062	0.404	0.0716	0.194	0.0621	0.27	0.098
Sesia a Borgosesia Ponte Aranco	17	0.405	0.0534	0.367	0.0578	0.327	0.0706	0.141	0.112	0.057	0.106
Sesia a Campertogno	34	0.379	0.0583	0.379	0.0598	0.348	0.0702	0.421	0.119	0.318	0.0946
Sesia a Palestro	16	0.311	0.0454	0.285	0.0455	0.346	0.0704	0.131	0.0828	0.174	0.0983
Sesia a Vercelli	7	0.396	0.0776	0.296	0.0462	0.335	0.0704	0.305	0.239	0.165	0.0984
San Giovanni a Possaccio	14	0.565	0.0447	0.422	0.0761	0.396	0.0723	0.539	0.207	0.335	0.102
Stura di Lanzo a Lanzo	64	0.341	0.0277	0.35	0.055	0.36	0.0711	0.276	0.0528	0.265	0.095

Denominazione	n	LCV	σ_{LCV}	$\widehat{L_{CV}}_{\boldsymbol{REG_1}}$	$\hat{\sigma}_{L_{CV}REG_{1}}$	$\widehat{L_{CV}}_{\textbf{REG2}}$	$\hat{\sigma}_{L_{CV}REG_2}$	LCA	σ_{LCA}	$\widehat{L_{CA}}_{\textbf{REG}}$	$\hat{\sigma}_{L_{CA}REG}$
Stura di Lanzo a Torino	10	0.291	0.0261	0.332	0.0515	0.375	0.07	0.121	0.214	0.258	0.0947
Strona di Omegna a Gravellona Toce	10	0.38	0.107	0.324	0.0499	0.384	0.0717	0.42	0.146	0.453	0.101
Stura di Viù a Malciaussia	49	0.264	0.0473	0.254	0.0402	0.255	0.0737	0.397	0.111	0.404	0.101
Stura di Viù a Usseglio	11	0.365	0.0598	0.248	0.0401	0.25	0.0725	0.438	0.215	0.305	0.0964
Tanaro ad Alba	16	0.387	0.0762	0.319	0.0492	0.31	0.0707	0.42	0.18	0.22	0.0974
Tanaro ad Alessandria	15	0.347	0.118	0.272	0.0436	0.312	0.071	0.461	0.254	0.197	0.0978
Tanaro a Farigliano	69	0.312	0.036	0.33	0.0515	0.376	0.0697	0.373	0.0713	0.337	0.0972
Tanaro a Garessio	15	0.311	0.0515	0.379	0.0601	0.264	0.0711	0.0259	0.146	0.355	0.0969
Tanaro a Masio	11	0.287	0.0415	0.289	0.0461	0.317	0.0709	0.246	0.18	0.207	0.0991
Tanaro a Montecastello	66	0.199	0.0217	0.284	0.0449	0.224	0.078	0.0412	0.0727	0.166	0.097
Tanaro a Nucetto	39	0.417	0.0398	0.372	0.0584	0.294	0.0692	0.369	0.0491	0.352	0.1
Tanaro a Ormea	13	0.255	0.068	0.408	0.0631	0.278	0.0707	0.411	0.155	0.37	0.101
Tanaro a Piantorre	14	0.354	0.0656	0.35	0.0551	0.327	0.0704	0.279	0.174	0.357	0.0979
Tanaro a Ponte di Nava	46	0.467	0.0539	0.403	0.0646	0.274	0.0681	0.469	0.0743	0.371	0.101
Tanaro a San Martino Alfieri	6	0.23	0.112	0.304	0.0472	0.304	0.071	0.59	0.222	0.18	0.0971
Toce a Candoglia	68	0.316	0.0225	0.304	0.0473	0.354	0.0704	0.197	0.0408	0.163	0.0969
Toce a Cadarese	15	0.197	0.0631	0.322	0.0504	0.339	0.0705	0.367	0.231	0.209	0.0971
Toce a Domodossola	7	0.34	0.0352	0.312	0.0484	0.35	0.0717	0.474	0.272	0.192	0.0964
Varaita a Castello	56	0.201	0.0319	0.345	0.0481	0.304	0.0706	0.186	0.135	0.458	0.0977
Varaita a Rossana	12	0.435	0.0407	0.418	0.0663	0.386	0.071	0.342	0.159	0.43	0.0965
Varaita a Rore	58	0.355	0.085	0.403	0.0632	0.373	0.0716	0.645	0.0997	0.452	0.0965
Vobbia a Isola del Cantone	14	0.497	0.108	0.365	0.0581	0.385	0.0701	0.545	0.175	0.345	0.0992

5 | SCELTA DELLA DISTRIBUZIONE DI PROBABILITÀ

5.1 DISTRIBUZIONI CONSIDERATE

Nell'analisi di frequenza regionale l'obiettivo è determinare valore indice e curva di crescita $K_j(T)$, che siano rappresentativi dell'andamento degli eventi estremi in una qualsiasi sezione del reticolo idrografico della regione di interesse. Per individuare la distribuzione che permetta la migliore stima dei quantili per vari periodi di ritorno è necessario selezionare le forme analitiche di $K_i(T)$ e verificarne la bontà di adattamento alle serie storiche osservate.

Le distribuzioni candidate alla rappresentazione della curva di crescita vengono scelte tenendo conto che la variabile idrologica di interesse è rappresentata dalle portate di piena, e, di conseguenza, si dovrà considerare con particolare attenzione l'andamento della coda superiore di ciascuna distribuzione. Le distribuzioni considerate nel presente lavoro sono:

- la distribuzione di Gumbel;
- la distribuzione Pareto generalizzata;
- la distribuzione Generalizzata del Valore Estremo;
- la distribuzione Logistica generalizzata;
- la distribuzione Lognormale;
- la distribuzione Gamma.

Si tratta di distribuzioni a 3 parametri, ad eccezione della distribuzione di Gumbel (2 parametri) che, proprio per la sua scarsa flessibilità, è stata considerata solo per confronto, non essendo in grado di rappresentare in maniera adeguata molte delle curve di frequenza campionarie. A queste distribuzioni si potrebbero aggiungere distribuzioni a quattro parametri, come la distribuzione dei valori estremi a due componenti (TCEV) o la distribuzione Kappa. Tuttavia, per identificare queste distribuzioni risulta necessario stimare anche un L-momento del quarto ordine, cosa che rende la procedura poco robusta. Infatti, la base dati, pur essendo piuttosto numerosa, è formata da molte serie storiche troppo brevi per poter calcolare il parametro di L-kurtosis con sufficiente affidabilità.

5.2 IL METODO DI HIRSCH PER SERIE NON SISTEMATICHE

L'adattamento delle curve di crescita analitiche ai dati può essere giudicato graficamente sovrapponendo le curve ai punti campionari, ai quali viene associato un adeguato valore di frequenza di non superamento (*plotting position*) o, analogamente, un periodo di ritorno. In generale il criterio adottato per associare una probabilità di non superamento ad ogni dato è quello di attribuire ad esso un adeguato indice di posizione nella serie ordinata, e successivamente calcolarne il valore della plotting position. Una delle definizioni più utilizzate per la plotting position è quella di Hazen, che tuttavia non risulta applicabile in presenza di osservazioni significative ma occasionali. Si ricorre quindi all'applicazione del metodo di Hirsch, che permette il calcolo della plotting position anche in presenza di valori non sistematici, modificando la definizione di plotting position data da Hazen (Hirsch, 1987). Per tale scopo è necessario determinare il valore della soglia di portata come nel caso del calcolo della piena indice e degli L-momenti. La probabilità di non superamento (CDF) $P_j = 1 - 1/T_j$ (dove T è il corrispondente periodo di ritorno) associata al valore di portata viene determinata tramite le seguenti relazioni:

$$p_{j} = \begin{cases} \frac{k}{n_{eq}} + \frac{n_{eq} - k}{n_{eq}} \cdot \frac{j - k - 0.5}{n_{tot} - k} & j = 1, ..., g - k \\ \frac{j - 0.5}{k} \cdot \frac{k}{n_{eq}} & j = g - k + 1, ..., g \end{cases}$$
(5.1)

dove

- j rappresenta la posizione del valore di portata Q_i nella serie ordinata in senso crescente;
- k indica il numero totale di picchi al di sopra della soglia di percezione Q*;
- n_{eq} è il periodo equivalente di osservazione, ossia la lunghezza complessiva del lasso temporale coperto dalla serie storica;
- n_{tot} è il numero complessivo di osservazioni che costituiscono la serie storica in esame.

5.3 SCELTA DELLA DISTRIBUZIONE

Una prima verifica grafica dell'adattamento delle differenti distribuzioni candidate alle serie storiche deriva dalla rappresentazione della curva di frequenza campionaria di ogni distribuzione, calcolata cioè sulla base degli L-momenti campionari, sovrapposta alla CDF del campione a cui è stata associata la plotting position di Hirsch. Nella figura 12 è riportato il caso del Po a Carignano, ma il catalogo completo per tutti i bacini aventi almeno 5 dati al colmo è disponibile nell'allegato H. Questi grafici forniscono una prima indicazione della qualità dell'approssimazione fornita dai modelli probabilistici qui considerati.

Dalla figura 12 e dall'allegato H risulta evidente come le diverse distribuzioni tendono ad avere andamenti molto simili tra loro per periodi di ritorno medio-bassi, per poi divergere nella parte destra del diagramma. Una valutazione più sistematica ed oggettiva della qualità dell'adattamento delle diverse distribuzioni ai dati si potrebbe conseguire applicando opportuni test di bontà di adattamento. Tuttavia si è riscontrato (Laio et al., 2009) che i test non risultano particolarmente efficaci a tal fine: infatti, spesso le distribuzioni producono risultati molto simili tra loro in corrispondenza delle osservazioni, cosa che impedisce di scegliere oggettivamente quale distribuzione possa ritenersi la migliore.

Po a Carignano

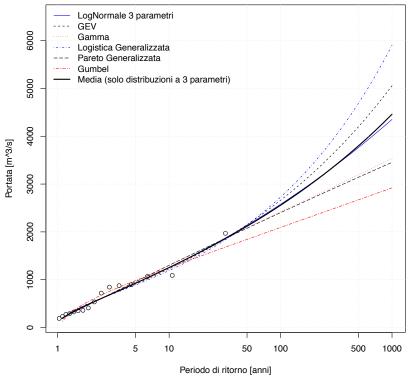


Figura 12: Esempio di adattamento di diverse distribuzioni al campione di dati. Le curve a 3 parametri si adattano egualmente bene per periodi di ritorno coperti dai dati, ma divergono significativamente per periodi di ritorno di interesse ingegneristico.

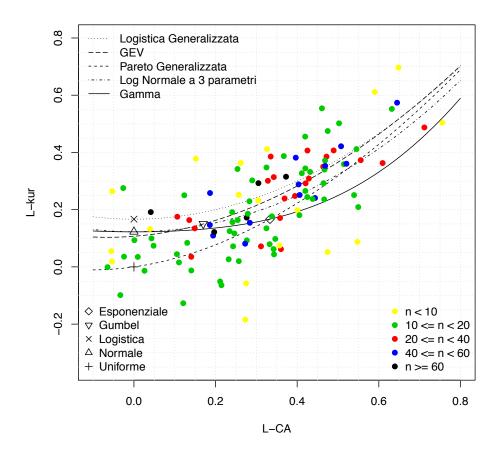


Figura 13: Diagramma diagnostico di Hosking e Wallis (1997).

Una ulteriore conferma della difficoltà nella scelta della distribuzione si ha osservando il diagramma diagnostico di Hosking e Wallis (1997) riportato nella figura 13. Tale diagramma riporta sul piano L_{CA} - $L_{kurtosis}$ l'andamento teorico delle distribuzioni a tre parametri (rappresentate come linee) e a due parametri (rappresentate come punti). In questo diagramma, ogni punto rappresenta una serie storica. La vicinanza di un punto alla curva rappresentatnte una distribuzione teorica ne suggerisce l'adozione per quella particolare serie storica. In questo caso si nota come non sia possibile selezionare a priori una distribuzione contemporaneamente valida per tutte le stazioni.

D'altra parte, la scelta della distribuzione influenza in maniera rilevante i risultati che si ottengono nell'analisi regionale, perché le distribuzioni hanno andamenti molto diversi per periodi di ritorno elevati, cioè per quelli di interesse ingegneristico (in molti casi il fascio di curve si apre al di sopra di T = 100 anni). Da una parte ci si trova quindi con test di adattamento non in grado di selezionare oggettivamente una specifica distribuzione, e dall'altra si è invece nella necessità di scegliere un unico modello probabilistico per le successive analisi. La situazione è analoga a quella che si ha nella modellistica idrologica, quando si trovano diversi modelli, o diversi valori dei parametri, ugualmente adatti a rappresentare i dati reali (principio dell'*equifinalità*).

La soluzione che si può adottare in questi casi può essere il non-scegliere, ossia utilizzare tutti i modelli probabilistici proposti per stimare altrettanti valori di Q(T), e poi utilizzare come stimatore finale la media (o la mediana) dei valori così trovati. Questa procedura (chiamata *model averaging* nella letteratura anglosassone, Burnham e Anderson (2002)) è sicuramente adeguata dal punto di vista statistico, ma è tuttavia piuttosto complicata nelle applicazioni pratiche, dal momento che richiede di stimare tutti i modelli probabilistici in ogni sezione di interesse. Si è dunque deciso di adottare una strategia simile ma meno complicata: scegliere un singolo modello probabilistico che produca delle stime di Q(T) simili a quelle che si troverebbero, per periodi di ritorno elevati, adottando la procedura di model averaging.

Dall'analisi delle figure riportate nell'allegato H si riscontra chiaramente che alcune distribuzioni hanno un comportamento molto ben definito nella coda alta della distribuzione, ed in particolare la Lognormale a 3 parametri risulta sempre molto prossima alla curva media. In base a queste considerazioni si è dunque deciso di scegliere la distribuzione **Lognormale a 3 parametri**, definita come in appendice B, quale distribuzione di riferimento per le successive elaborazioni.

5.4 VALUTAZIONE DELL'INCERTEZZA DI STIMA DEI QUANTILI Q_{T}

Una volta scelto il modello probabilistico da impiegare per la stima della curva di frequenza delle piene, si passa a considerare i metodi per la valutazione dell'incertezza di stima dei rispettivi quantili Q(T). Un possibile indicatore dell'incertezza di stima è dato dalla varianza di Q(T), che risulta essere funzione del periodo di ritorno considerato, oltre che della varianza di stima di Q_{ind} , L_{CV} ed L_{CA} , ottenute in precedenza. Tuttavia la stima della varianza di Q(T) richiede l'impiego di metodi asintotici (validi per dimensioni campionarie molto elevate) peraltro non privi di problemi di distorsione. Infatti, la forte asimmetria delle distribuzioni considerate e la non linearità delle relazioni tra Q(T) ed L_{CA} rendono marcatamente non-normale la distribuzione di Q(T), invalidando gran parte delle soluzioni asintotiche. Si è preferito dunque procedere alla definizione degli intervalli di confidenza mediante una procedura Monte-Carlo, come descritto di seguito.

5.4.1 Stima campionaria della varianza dei quantili mediante simulazione

Si consideri innanzitutto il caso in cui siano disponibili dati campionari di portata al colmo di piena e si voglia stimare la varianza di Q(T) partendo dalle stime empiriche di Q_{ind} , L_{CV} ed L_{CA} . In tal caso la procedura Monte-Carlo per definire gli intervalli di confidenza prevede i seguenti passaggi:

- 1. fissata una stazione j, si stima la piena indice tramite l'equazione (3.1) (oppure l'equazione (3.2) se si dispone di valori occasionali) ed L_{CV} ed L_{CA} tramite le equazioni (4.1) e (4.1);
- 2. si determina la varianza di Q_{ind} (equazione (3.3) o (3.4)); si determinano inoltre le varianze ed il coefficiente di correlazione degli stimatori di L_{CV} ed L_{CA} tramite le relazioni di Elamir

e Seheult (2004); laddove le equazioni di Elamir e Seheult (2004) fornissero risultati negativi o non convergessero, si utilizzano le equazioni semplificate di Viglione (2007b).

- 3. si estraggono 10000 terne di valori di Q_{ind} , L_{CV} ed L_{CA} dalle rispettive distribuzioni, tenendo conto che:
 - Q_{ind} deve essere estratta da una distribuzione normale con media e varianza stimate come ai passi 1 e 2;
 - L_{CV} ed L_{CA} devono essere estratti da una distribuzione normale bivariata, i cui 5 parametri sono le due medie determinate al punto 1, mentre le varianze e il coefficiente di correlazione sono stati determinati al passo 2;
- 4. per ogni i-esima terna $[Q_{ind}, L_{CV}, L_{CA}]$ si calcola $Q_i(T)$, i=1,...,10000, per ogni periodo di ritorno T di interesse;
- 5. si fissa un livello di confidenza α (ossia, una probabilità di ricadere all'interno dell'intervallo di confidenza) e si calcolano i limiti inferiore e superiore, $\{l_{inf}(\alpha), l_{sup}(\alpha)\}$, dell'intervallo di confidenza di Q(T) selezionando il p-esimo elemento del campione ordinato in senso crescente dei $K_i(T)$, con p = $(0.5 \alpha/2) \cdot 10000$ per il limite inferiore e p = $(0.5 + \alpha/2) \cdot 10000$ per il limite superiore;
- 6. si ripetono i passi da 1 a 5 per tutte le stazioni.

Si noti che la procedura qui utilizzata non presuppone che la distribuzione di Q(T) sia normale, ma, più ragionevolmente, che sia normale la distribuzione di Q_{ind} , L_{CV} ed L_{CA} .

5.4.2 Stima della varianza del quantile regionale

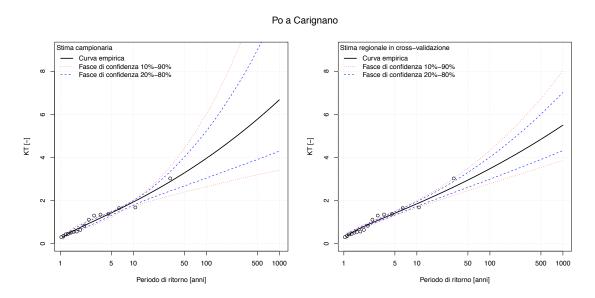
Nel caso in cui tutte e tre le grandezze di riferimento, Q_{ind} , L_{CV} ed L_{CA} , siano stimate tramite le regressioni multiple del metodo regionale, la procedura per determinare gli intervalli di confidenza di Q(T) è molto simile a quella descritta per la stima empirica. Tuttavia occorre rilevare che:

- per quanto riguarda il termine Q_{ind}, poiché la stima proviene da un modello basato su una trasformazione logaritmica, i valori utilizzati nella simulazione devono essere estratti da una distribuzione log Normale, con media ottenuta con l'equazione (2.15) (o, in maniera approssimata con la (2.17)) e varianza ottenuta con l'equazione (2.16);
- per quanto riguarda L_{CV} ed L_{CA}, le due variabili non risultano più essere correlate tra di loro (essendo state stimate indipendentemente), quindi possono essere campionate rispettivamente da due distribuzioni normali univariate, ognuna caratterizzata dalla propria media e varianza secondo le equazioni di Elamir e Seheult (2004) o la versione semplificata di Viglione (2007b).

5.5 VERIFICA DELLA PROCEDURA SUI BACINI DI TARATURA

L'applicabilità e l'efficacia delle procedure di analisi regionale di frequenza delle piene può essere valutata confrontando le curve di crescita K_T e le curve di frequenza Q_T stimate con i campioni di dati osservati.

Si faccia ad esempio riferimento alla figura 14, che riporta la curva di crescita ottenuta per il Po a Carignano. Nel pannello di sinistra della figura si possono osservare i dati campionari (posizionati utilizzando il metodo di Hirsch) ai quali viene sovrapposta la curva log-Normale a 3 parametri costruita sulla base di L_{CV} ed L_{CA} campionari. La curva log-Normale, come spiegato in precedenza, è stata ritenuta rappresentativa del comportamento medio delle distribuzioni analizzate ed è quindi considerata la curva di riferimento. In questo caso, trattandosi di una curva di crescita, il parametro di posizione è imposto pari all'unità. La stessa figura riporta anche le fasce di confidenza ($\alpha=60\%$ e 80%) ottenute mediante le simulazioni Monte Carlo descritte al paragrafo 5.4.2; si noti come le fasce di confidenza si aprano nettamente quando vanno oltre gli ultimi dati campionari.


Il pannello di destra della figura 14 mostra lo stesso risultato ottenuto considerando L_{CV} ed L_{CA} regionali ottenuti in cross-validazione. Anche in questo caso le fasce di confidenza sono state costruite mediante simulazioni Monte Carlo, seguendo però le indicazioni riportate nel paragrafo 5.4.2. Si noti come, per il Po a Carignano, la configurazione ottenuta con il metodo regionale produca fasce di confidenza più strette rispetto a quelle del caso campionario.

Il fatto che le fasce di confidenza regionale siano più strette di quelle del caso campionario mettono in luce il vantaggio che si può ottenere considerando la procedura regionale anche in un generico sito strumentato, specialmente se si dispone di un campione non molto esteso (16 anni di misure in questo caso). Infatti, se si osservano i valori di deviazione standard riportati nella tabella 10 per il Po a Carignano, le stime di L_{CV} campionaria e regionale hanno un grado di incertezza paragonabile, mentre la varianza di L_{CA} campionario è decisamente superiore all'equivalente varianza di L_{CA} regionale, derivante dalla procedura di regressione.

Sempre per il Po a Carignano, la figura 15 riporta la curva di frequenza completa integrata con le fasce di confidenza. In questo caso viene introdotto anche l'effetto della piena indice andando a moltiplicare le curve ottenute nella figura 14 rispettivamente per Q_{ind} campionario (pannello di sinistra) e regionale (pannello di destra). In questo caso, a differenza di quanto notato per la figura 14, si può osservare che le fasce di confidenza dei due metodi hanno un'ampiezza paragonabile. Questo è dovuto al fatto che la stima della piena indice basata su un campione di 16 elementi è meno incerta della corrispondente stima regionale, come si può osservare anche dalla tabella 6, da cui si osserva che la deviazione standard della piena indice campionaria del Po a Carignano è inferiore a quella regionale.

Applicando in cross-validazione l'equazione (3.6) per Q_{ind} , l'equazione (4.12) per L_{CV} e l'equazione (4.17) per L_{CA} con riferimento a tutti i 118 bacini dotati di valori al colmo di piena si sono ottenuti i coefficienti di crescita riportati in tabella 11, mentre gli allegati I e J riportano nel dettaglio le curve di crescita e di frequenza ottenute sia su base campionaria che su base regionale.

I valori dei coefficienti di crescita K_T , calcolati per il periodo di ritorno T=100 anni, sono raffigurati sulla mappa di figura 16, nella quale i bacini più piccoli sono stati sovrapposti a quelli

Figura 14: Fasce di confidenza relative alla curva di crescita log-Normale del Po a Carignano calcolata sulla base degli L-momenti campionari (a sinistra) e sui corrispettivi L-momenti regionali in cross-validazione (a destra).

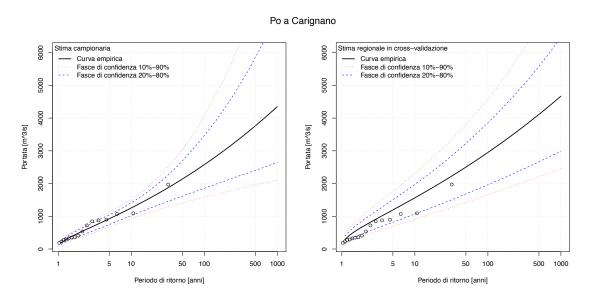


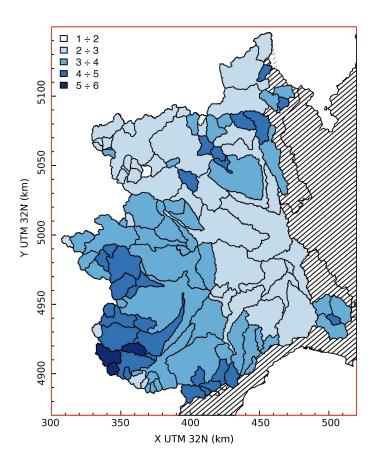
Figura 15: Fasce di confidenza relative alla curva di frequenza log-Normale del Po a Carignano calcolata sulla base della piena indice e degli L-momenti campionari (a sinistra) e sui corrispettivi L-momenti regionali in cross-validazione (a destra).

più estesi.

Tabella 11: Stime regionali in dopo cross-validazione relative ai bacini strumentati analizzati. Vengono riportati la piena indice, ottenuta sulla base del modello (3.6), e i fattori di crescita per diversi periodi di ritorno, basati sulla distribuzione log-Normale a 3 parametri (utilizzando il modello (4.12) per L_{CV} e il modello (4.17) per L_{CA}).

Denominazione	Q_{ind}	K_5	K ₁₀	K ₂₀	K ₅₀	K ₁₀₀	K ₂₀₀	K ₅₀₀	K ₁₀₀₀
Agogna a Novara	266.7	1.32	1.68	2.07	2.62	3.08	3.57	4.28	4.87
Artanavaz a Saint Oyen	15.8	1.43	1.71	1.97	2.29	2.51	2.73	3.01	3.22
Ayasse a Champorcher	34.8	1.29	1.68	2.12	2.79	3.37	4.02	5	5.84
Banna a Santena	73.2	1.31	1.75	2.26	3.03	3.71	4.47	5.63	6.62
Belbo a Castelnuovo Belbo	132.7	1.39	1.69	1.97	2.34	2.61	2.88	3.24	3.51
Borbera a Baracche	196.2	1.48	1.94	2.39	3.01	3.49	3.99	4.68	5.23
Bormida di Millesimo a Cessole	260.2	1.41	1.82	2.24	2.81	3.27	3.75	4.43	4.97
Bormida di Millesimo a Murialdo	116.1	1.47	2.05	2.68	3.61	4.39	5.24	6.5	7.54
Bormida ad Alessandria	1517.3	1.44	1.74	2.01	2.34	2.57	2.8	3.09	3.31
Bormida a Cassine (presa canale Carlo Alberto)	832.2	1.44	1.8	2.14	2.57	2.9	3.23	3.67	4.01
Bormida di Mallare a Ferrania	73.1	1.54	2.03	2.51	3.15	3.65	4.16	4.86	5.41
Bormida di Spigno a Mombaldone	325.7	1.42	1.84	2.26	2.84	3.3	3.78	4.45	4.99
Bousset a Tetti Porcera	25.6	1.43	1.91	2.42	3.14	3.74	4.37	5.29	6.03
Breuil ad Alpette	6.8	1.2	1.43	1.68	2.03	2.32	2.63	3.08	3.45
Borbore a San Damiano d'Asti	28	1.42	1.76	2.09	2.51	2.83	3.16	3.6	3.93
Bormida di Spigno a Valla	82.1	1.37	1.85	2.39	3.2	3.9	4.68	5.83	6.81
Bucera a Ponte Rovine	17.3	1.4	1.73	2.06	2.49	2.81	3.15	3.6	3.95
Cannobino a Traffiume	304	1.48	1.87	2.25	2.73	3.09	3.45	3.93	4.3
Cervo a Passobreve	182	1.35	1.94	2.63	3.74	4.75	5.91	7.73	9.33
Cervo a Quinto Vercellese	554.7	1.29	1.66	2.07	2.7	3.23	3.82	4.7	5.45
Cervo a Vigliano Biellese	259.6	1.3	1.79	2.38	3.31	4.16	5.14	6.67	8.02
Chiavanne ad Alpette	5.8	1.3	1.61	1.93	2.38	2.74	3.12	3.66	4.09
Chiusella a Gurzia	150.1	1.37	1.99	2.72	3.9	4.96	6.2	8.14	9.85
Chisone a Fenestrelle	33.6	1.32	1.83	2.43	3.38	4.23	5.2	6.71	8.04
Chisone a Soucheres Basses	21.6	1.31	1.81	2.39	3.31	4.15	5.1	6.58	7.89
Chisone a San Martino	171.1	1.36	1.95	2.66	3.79	4.81	6	7.84	9.48
Corsaglia a presa centrale Molline	66	1.39	1.97	2.63	3.66	4.57	5.59	7.15	8.5
Dora Baltea ad Aosta	249	1.32	1.6	1.88	2.24	2.52	2.8	3.19	3.49
Dora Baltea a Mazzè	838.7	1.37	1.72	2.08	2.56	2.94	3.33	3.88	4.31
Dora Baltea a Ponte di Mombardone	55.9	1.29	1.55	1.79	2.12	2.37	2.63	2.98	3.25
Dora Baltea a Tavagnasco	587.3	1.35	1.68	2.01	2.45	2.8	3.16	3.65	4.05
Dora di Bardonecchia a Beaulard	29.4	1.35	1.72	2.11	2.64	3.08	3.54	4.19	4.72
Dora di Courmayeur a Prè Saint Didier	39	1.28	1.49	1.68	1.92	2.1	2.27	2.5	2.67
Dora di Rhemes a Notre Dame	18.4	1.23	1.46	1.69	2.01	2.26	2.52	2.89	3.18
Dora di Rhemes a Pèlaud	15.5	1.2	1.41	1.62	1.9	2.13	2.37	2.71	2.98
Dora di Rhemes a Saint Georges	27.1	1.3	1.55	1.79	2.11	2.35	2.6	2.93	3.19
Dora Riparia a Oulx	38.9	1.31	1.74	2.22	2.95	3.57	4.27	5.33	6.23
Dora Riparia a Sant'Antonino di Susa	146.9	1.38	1.84	2.33	3.06	3.66	4.32	5.27	6.07
Dora Riparia a Torino Ponte Washington	244.4	1.44	1.95	2.5	3.29	3.94	4.65	5.68	6.54
Erro a Sassello	158.2	1.45	1.99	2.57	3.43	4.16	4.95	6.1	7.07
Evancon a Champoluc	33.5	1.21	1.61	2.08	2.87	3.6	4.46	5.83	7.06
Gesso della Barra a San Giacomo	13.2	1.41	1.78	2.14	2.62	2.99	3.37	3.89	4.3
Gesso di Monte Colombo a San Giacomo	16.6	1.42	1.89	2.38	3.09	3.67	4.29	5.18	5.92
Gesso di Entracque ad Entracque	72.7	1.44	1.88	2.33	2.96	3.46	3.98	4.73	5.33
Grand'Eyvia a Cretaz	77.8	1.28	1.54	1.81	2.17	2.46	2.75	3.16	3.49
Grana a Monterosso	37.1	1.22	1.86	2.71	4.26	5.81	7·77	11.1	14.29
Gesso della Valletta a San Lorenzo	47.6	1.44	1.76	2.05	2.42	2.68	2.95	3.29	3.55
The second of th	4/.0	~· ''	1.70	0)	4-		70	J. - 9	5.55

Denominazione	Q_{ind}	K ₅	K ₁₀	K ₂₀	K ₅₀	K ₁₀₀	K ₂₀₀	K ₅₀₀	K ₁₀₀₀
Isorno a Pontetto	77.8	1.31	1.81	2.4	3.33	4.16	5.12	6.61	7.92
Lys a d'Ejola	13.6	1.16	1.32	1.49	1.72	1.9	2.1	2.37	2.6
Lys a Gressoney Saint Jean	36.5	1.26	1.56	1.87	2.32	2.68	3.08	3.65	4.12
Lys a Guillemore	117.2	1.38	1.91	2.5	3.39	4.16	5.02	6.32	7.42
Maira a Racconigi	219.8	1.4	1.94	2.56	3.5	4.32	5.24	6.62	7.8
Maira a Saretto	14.6	1.23	1.54	1.88	2.4	2.85	3.35	4.1	4.74
Maira a San Damiano Macra	90.9	1.36	1.85	2.42	3.28	4.02	4.86	6.13	7.22
Malone a Brandizzo	173	1.2	1.6	2.11	2.97	3.78	4.75	6.32	7.76
Malone a Front	137.9	1.28	1.75	2.3	3.18	3.98	4.91	6.35	7.63
Marmore a Perreres	14.7	1.22	1.52	1.87	2.4	2.86	3.39	4.18	4.86
Mastallone a Varallo Ponte Folle	246.9	1.43	1.95	2.52	3.34	4.03	4.79	5.9	6.82
Melezet a Melezet	8.1	1.26	1.53	1.81	2.2	2.52	2.86	3.34	3.73
Meris a Sant'Anna Valdieri	12	1.51	1.99	2.46	3.1	3.6	4.12	4.83	5.39
Nontey a Valnontey	27.9	1.19	1.35	1.51	1.72	1.89	2.06	2.29	2.46
Orba a Casalcermelli	992	1.45	1.72	1.96	2.23	2.42	2.6	2.82	2.98
Orco a Pont Canavese	347.8	1.39	1.73	2.06	2.5	2.84	3.19	3.66	4.03
Orco a San Benigno Canavese	467.7	1.37	1.72	2.06	2.52	2.87	3.24	3.75	4.15
Pellice a Luserna San Giovanni	119.8	1.32	1.91	2.64	3.85	4.98	6.31	8.45	10.37
Pellice a Villafranca Piemonte	317.5	1.32	1.83	2.45	3.42	4.29	5.31	6.88	8.27
Po a Carignano	866.2	1.4	1.84	2.3	2.95	3.47	4.04	4.84	5.5
Po a Casale Monferrato	2633.1	1.34	1.67	2	2.44	2.79	3.15	3.66	4.06
Po a Crissolo	19.5	1.3	1.71	2.16	2.85	3.44	4.09	5.07	5.9
Po a Isola Sant'Antonio	4936.6	1.35	1.65	1.95	2.34	2.64	2.94	3.36	3.68
Po a Meirano (Moncalieri)	1104.2	1.4	1.84	2.32	3.01	3.57	4.18	5.07	5.8
Po a San Mauro Torinese	1541.3	1.41	1.86	2.32	2.98	3.52	4.1	4.93	5.6
Po a Torino Murazzi	1104.7	1.4	1.84	2.31	2.97	3.52	4.11	4.95	5.64
Po a Valenza	3503.2	1.35	1.69	2.02	2.48	2.85	3.22	3.74	4.16
Rio Bagni a Bagni di Vinadio	28.1	1.15	1.74	2.56	4.1	5.72	7.81	11.47	15.08
Rio Freddo a Rio Freddo	14.8	1.28	1.8	2.42	3.43	4.37	5.47	7.22	8.78
Ripa a Bousson	29.6	1.32	1.71	2.13	2.76	3.28	3.86	4.71	5.42
Rutor a La Joux	8.4	1.2	1.52	1.9	2.51	3.07	3.71	4.7	5.58
Rutor a Promise	9.1	1.21	1.55	1.94	2.56	3.11	3.75	4.73	5.6
Savara a Eau Rousse	29.6	1.26	1.47	1.68	1.95	2.16	2.37	2.65	2.87
Savara a Fenille	40.5	1.31	1.56	1.8	2.11	2.34	2.57	2.88	3.12
San Bernardino a Santino	368.1	1.48	2.02	2.59	3.41	4.09	4.81	5.86	6.72
San Bernardino a Trobaso	403.5	1.49	1.96	2.42	3.05	3.55	4.06	4.77	5.34
Scrivia a Isola del Cantone	353	1.47	1.94	2.43	3.11	3.66	4.23	5.05	5.7
Scrivia a Serravalle Scrivia	629.7	1.48	1.91	2.33	2.9	3.34	3.8	4.42	4.92
Stura di Demonte a Fossano	373.9	1.46	1.89	2.32	2.9	3.35	3.81	4.45	4.96
Stura di Demonte a Gaiola	138.3	1.36	1.85	2.41	3.26	3.99	4.82	6.06	7.12
Stura di Demonte a Pianche	48	1.13	1.64	2.35	3.7	5.11	6.95	10.17	13.35
Stura di Demonte a Roccasparvera	144.8	1.35	1.86	2.45	3.35	4.15	5.05	6.43	7.62
Sermenza a Rimasco	90.9	1.48	1.98	2.49	3.22	3.8	4.41	5.29	6
Sesia a Borgosesia Ponte Aranco	681.3	1.53	1.86	2.14	2.46	2.69	2.91	3.18	3.37
Sesia a Campertogno	107.5	1.42	1.92	2.46	3.25	3.9	4.62	5.66	6.53
Sesia a Palestro	1312.5	1.38	1.69	1.98	2.36	2.65	2.94	3.32	3.62
Sesia a Vercelli	1336.8	1.4	1.71	2.01	2.4	2.68	2.97	3.35	3.64
San Giovanni a Possaccio	186	1.45	2.02	2.64	3.56	4.34	5.19	6.45	7.51
Stura di Lanzo a Lanzo	334	1.42	1.85	2.3	2.92	3.42	3.95	4.69	5.29
Stura di Lanzo a Torino	512.8	1.41	1.81	2.23	2.8	3.26	3.75	4.43	4.98
Strona di Omegna a Gravellona Toce	385.3	1.26	1.74	_		-			8.44


Denominazione	Q_{ind}	K_5	K ₁₀	K ₂₀	K ₅₀	K ₁₀₀	K ₂₀₀	K_{500}	K ₁₀₀₀
Stura di Viù a Malciaussia	10.1	1.24	1.6	2.02	2.69	3.29	3.97	5.02	5.93
Stura di Viù a Usseglio	28	1.28	1.6	1.95	2.44	2.85	3.3	3.94	4.47
Tanaro ad Alba	909.1	1.41	1.78	2.15	2.64	3.02	3.42	3.96	4.39
Tanaro ad Alessandria	1131.6	1.36	1.66	1.96	2.35	2.65	2.95	3.36	3.68
Tanaro a Farigliano	592.2	1.35	1.8	2.29	3.01	3.62	4.29	5.28	6.12
Tanaro a Garessio	172.1	1.39	1.91	2.49	3.37	4.12	4.95	6.2	7.26
Tanaro a Masio	1036.1	1.37	1.7	2.03	2.46	2.79	3.13	3.59	3.95
Tanaro a Montecastello	2098.5	1.38	1.69	1.98	2.35	2.62	2.9	3.27	3.55
Tanaro a Nucetto	225.6	1.39	1.9	2.46	3.31	4.04	4.84	6.04	7.06
Tanaro a Ormea	129.9	1.41	1.98	2.62	3.6	4.44	5.4	6.83	8.06
Tanaro a Piantorre	265.3	1.36	1.84	2.38	3.19	3.89	4.67	5.83	6.82
Tanaro a Ponte di Nava	114.4	1.4	1.97	2.6	3.57	4.41	5.36	6.78	8
Tanaro a San Martino Alfieri	947.4	1.4	1.74	2.06	2.47	2.78	3.1	3.52	3.85
Toce a Candoglia	761.1	1.41	1.73	2.04	2.43	2.72	3.01	3.4	3.7
Toce a Cadarese	76.3	1.42	1.78	2.14	2.62	3	3.37	3.89	4.3
Toce a Domodossola	471.8	1.41	1.76	2.1	2.54	2.88	3.22	3.68	4.04
Varaita a Castello	17.6	1.27	1.79	2.42	3.46	4.43	5.57	7.4	9.06
Varaita a Rossana	91.7	1.36	1.97	2.7	3.88	4.95	6.19	8.13	9.86
Varaita a Rore	56.3	1.33	1.92	2.65	3.85	4.96	6.27	8.35	10.22
Vobbia a Vobbietta Isola del Cantone	87.1	1.39	1.88	2.43	3.24	3.94	4.71	5.84	6.81

5.6 CONSIDERAZIONI SULL'APPLICAZIONE DEL METODO REGIO-NALE

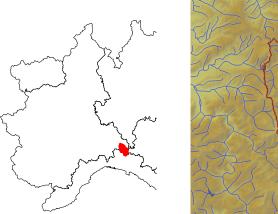
La procedura descritta nei precedenti capitoli basa la stima di Q_T in sezioni qualsiasi sulla determinazione di tre grandezze: Q_{ind}, L_{CV} e L_{CA}. Tali grandezze vengono utilizzate successivamente per stimare la portata di piena per un assegnato periodo di ritorno il relativo intervallo di confidenza. Negli esempi riportati nei paragrafi precedenti si è fatto riferimento a due possibili scenari: Q_{ind}, L_{CV} e L_{CA} stimati esclusivamente su base campionaria (in presenza di osservazioni), oppure Q_{ind}, L_{CV} e L_{CA} stimati esclusivamente su base regionale. In sezioni con pochi dati, non è immediato decidere quali delle procedure convenga utilizzare. Analizzando le figure 14 e 15 emerge però che gli L-momenti campionari e quelli regionali potrebbero essere usati congiuntamente per ottenere una stima più efficiente del quantile di interesse. La struttura del modello è infatti pensata anche per essere applicata ad uno scenario intermedio, in cui siano disponibili serie storiche brevi, utilizzando più efficientemente:

- Q_{ind} campionaria e L_{CV} e L_{CA} regionali;
- Q_{ind} e L_{CV} campionari, e L_{CA} regionale.

Per poter operare in tal senso è necessario calcolare i valori di Q_{ind} , L_{CV} e L_{CA} e le loro varianze sia relativamente al campione, sia dai rispettivi modelli regionali. Si confrontano quindi le varianze

Figura 16: Mappa del fattore di crescita K_100 calcolato considerando la distribuzione log-Normale a 3 parametri (tabella 11). Per bacini annidati, la colorazione relativa al bacino più piccolo si sovrappone a quella del bacino idrografico principale.

campionarie e regionali dei singoli L-momenti e si sceglie la stima caratterizzata dalla minore varianza.


Questo approccio può essere considerato un'estensione del metodo della piena indice e viene descritto nell'esempio di applicazione riportato nella sezione 5.7.

5.7 ESEMPI DI APPLICAZIONE

5.7.1 Sezione non strumentata

Un primo esempio di applicazione della procedura riguarda una sezione non strumentata, per la quale è necessario valutare sia Q_{ind} che L_{CV} ed L_{CA} su base regionale (in questo caso è stata scelta la sezione corrispondente al Borbera a Baracche, ipotizzando assenza di dati).

Per prima cosa è necessario delimitare il perimetro di bacino (a titolo di esempio si veda la figura sotto riportata) per poter calcolare i descrittori ad esso relativi.

Incrociando la delimitazione ottenuta con il DEM dell'area di interesse si estraggono i primi due descrittori da utilizzare: l'area del bacino e la quota minima. Si passa quindi a "ritagliare" le cartografie contenenti i parametri di precipitazione e di vegetazione calcolando il valore medio delle grandezze all'interno del bacino e, ove necessario, il coefficiente di variazione delle stesse grandezze. Infine, è necessario calcolare la percentuale di superficie del bacino che ricade nella classe 2 dei raggruppamenti basati sulle carte di uso del suolo del progetto CORINE Land Cover. Nel caso specifico, il set di descrittori necessari per utilizzare le equazioni dei modelli regionali per ottenere le stime di Q_{ind}, L_{CV} ed L_{CA} è presentato nella tabella che segue.

SCELTA DELLA DISTRIBUZIONE DI PROBABILITÀ

area	202.4
H_{min}	338
IDF _a	30.586
CV[IDF _a]	0.062
IDF _n	0.392
LCV _{1h}	0.173
NDVI	0.599
CV[LCV _{6h}]	0.066
LCA _{6h}	0.222
CV[LCA _{24h}]	0.134
fourier _{B2}	-6.964
clc2	73.15

Sulla base dei valori di tali descrittori, applicando le equazioni fornite in precedenza, si ottengono le stime regionali degli L-momenti e delle loro deviazioni standard, in particolare:

• Q_{ind}:

$$\begin{split} Q_{ind} &= 0.01324 \cdot area^{0.7995} \cdot IDF_a^{2.82089} \cdot IDF_n^{2.06805} \cdot LCV_{1h}^{1.33232}, \\ \sigma_{Q_{ind}} &= \sqrt{Q_{ind}^2 \cdot \left[exp\left(\sigma_{\hat{Y}}^2\right) - 1\right]} con \ \sigma_{\hat{Y}}^2 \ ottenuta \ dalla \ (3.9); \end{split}$$

• L_{CV}:

$$\begin{split} L_{CV} &= 0.17719 \cdot H_{min}^{0.20969} \cdot \text{NDVI}^{0.71067} \cdot \text{CV}[\text{IDF}_a]^{0.21581} \cdot \text{CV}[\text{LCV}_{6h}]^{-0.19252}, \\ \sigma_{L_{CV}} &= \sqrt{L_{CV}^2 \cdot \left[\exp\left(\sigma_{\hat{\gamma}}^2\right) - 1 \right]} \text{con } \sigma_{\hat{\gamma}}^2 \text{ ottenuta dalla (4.14);} \end{split}$$

L_{CA}:

$$\mathsf{L_{CA}} = 0.79468 - 2.14568 \cdot \mathsf{LCA_{6h}} - 0.87195 \cdot \mathsf{CV}[\mathsf{LCA_{24h}}] + 0.00192 \cdot \mathsf{clc_2} + 0.01555,$$

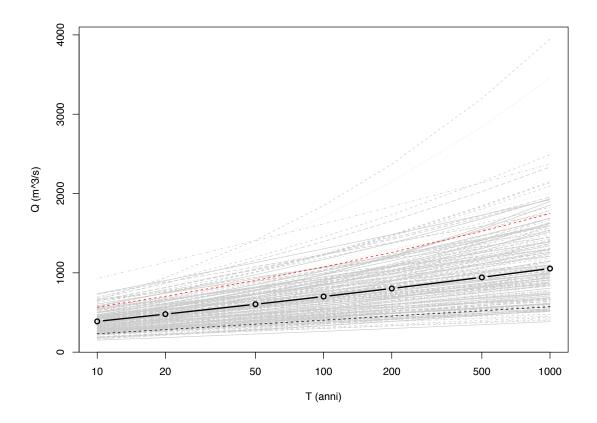
 $\sigma_{L_{CA}}$ ottenuta come radice quadrata dell'equazione (4.18).

I valori numerici, accompagnati dalla loro incertezza di stima (deviazione standard σ), risultato:

Variabile	media	dev. standard
Q_{ind}	199.5	69.34
L _{CV}	0.3866	0.0589
L _{CA}	0.2333	0.0961

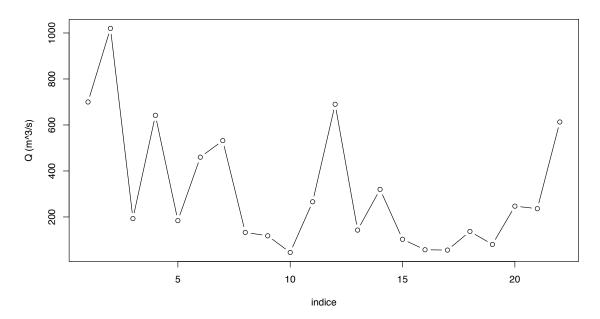
Utilizzando le equazioni (B.50)-(B.51) si ottengono i tre parametri della distribuzione log-Normale

grazie ai quali sono facilmente calcolabili la portata di progetto Q_T e il fattore di crescita $K_T = Q_T/Q_{ind}$ in funzione di un prefissato periodo di ritorno T (o, analogamente, per una frequenza di non superamento F). In questo esempio si ottiene:


Т	F	Q _T	K _T
10	0.900	387.8	1.94
20	0.950	479.4	2.40
50	0.980	603.6	3.03
100	0.990	701.1	3.51
200	0.995	802.4	4.02
500	0.998	942.8	4.73
1000	0.999	1054.2	5.28

La costruzione delle fasce di confidenza della curva di frequenza appena ottenuta richiede l'utilizzo di campionamenti pseudo-casuali di triplette delle grandezze Q_{ind}^* , L_{CV}^* ed L_{CA}^* , ognuna estratta dalla propria distribuzione (caratterizzata dal valore medio e dalla deviazione standard stimati in precedenza.) Seguendo le indicazioni dei paragrafi precedenti, essendo Q_{ind} , L_{CV} ed L_{CA} tutti determinati su base regionale, si procede al campionamento dalle seguenti distribuzioni:

Variabile	Distribuzione	
Q_{ind}	log-Normale:	$Q_{\text{ind}}^* \sim log\mathcal{N}\left(199.5, 69.34^2\right)$
L _{CV}	log-Normale:	$L^*_{CV} \sim \log \mathcal{N}\left(0.3866, 0.0589^2\right)$
L _{CA}	Normale:	$L_{CA}^* \sim \mathcal{N}\left(0.2333, 0.0961^2\right)$


Per ogni tripletta ottenuta si ripete la stima dei parametri della distribuzione log-Normale e dei relativi quantili di interesse, ottenendo quindi un "fascio" di curve di frequenza. Un esempio è riportato nella figura seguente dove la curva di frequenza standard, ottenuta e tabulata in precedenza è riportata con la linea nera spessa. In sottofondo sono riportate, per facilitare la visualizzazione grafica, solo le prime 200 curve di frequenza delle 10000 ottenute con le simulazioni.

In corrispondenza di ogni periodo di ritorno il fascio viene "sezionato", ottenendo 10000 valori di Q_T^* da cui si possono estrarre numericamente le fasce per un assegnato livello di confidenza. Nel caso specifico sono state riportate le fasce di confidenza al 10% e al 90% con una linea tratteggiata, ad indicare che il 20% dei valori di Q_T^* complessivamente simulati rimane fuori da tali fasce.

5.7.2 Sezione strumentata

Il secondo esempio di applicazione è caratterizzato dalla presenza di una serie di misure disponibili nella sezione di interesse. Per semplicità, si consideri la sezione già utilizzata nell'esempio precedente, per la quale sono utilizzabili 22 dati di portata annua al colmo di piena, sintetizzati nella seguente figura.

Sulla base questi dati, applicando le equazioni fornite in precedenza per il calcolo degli L-momenti campionari, si ottengono le stime di Q_{ind} , L_{CV} ed L_{CA} accompagnate dalla loro incertezza di stima (deviazione standard):

	Variabile	media	dev. standard
	Q_{ind}	317.1	57.62
	L _{CV}	0.4650	0.0403
•	L _{CA}	0.3114	0.1083

Confrontando i risultati con quelli dell'analisi puramente regionale dell'esempio precedente si può esservare come la presenza di un campione di osservazioni possa migliorare la qualità della stima di Q_{ind} , ma anche di L_{CV} , sebbene la serie abbia una lunghezza non particolarmente elevata. Sul campione si è ottenuto infatti una deviazione standard minore.

La stima di L_{CA} risulta invece più efficiente se effettuata mediante il metodo regionale, e questo non stupisce vista la scarsa consistenza del campione e il fatto che L_{CA} è un L-momento del terzo ordine, che richiede campioni più lunghi per restituire stime campionarie robuste.

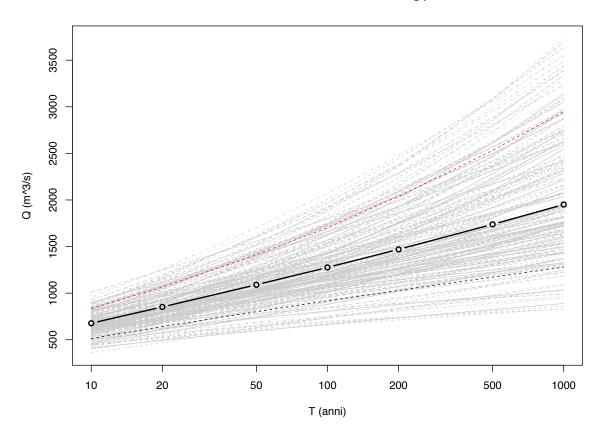
Si procede quindi considerando un approccio misto regionale-campionario dove Q_{ind} ed L_{CV} sono determinati su base campionaria, e solo L_{CA} su base regionale. Tale approccio non influenza la procedura per la stima dei parametri della distribuzione che, sempre sulla base delle equazioni (B.50)-(B.51) permette di ottenere:

$$\begin{array}{c} Q_{ind} \\ L_{CV} \\ L_{CA} \end{array} \right\} \longrightarrow \left\{ \begin{array}{ccc} k & = & -0.48372 \\ \alpha & = & 237.04 \\ \xi & = & 256.28 \end{array} \right. .$$

Di conseguenza si ottengono i valori di portata di progetto Q_T e i fattori di crescita K_T :

SCELTA DELLA DISTRIBUZIONE DI PROBABILITÀ

Т	F	Q_{T}	K _T
10	0.900	677.1	12.13
20	0.950	852.1	2.68
50	0.980	1089.6	3.43
100	0.990	1276.1	4.02
200	0.995	1469.8	4.63
500	0.998	1738.0	5.48
1000	0.999	1951.0	6.15


La valutazione delle fasce di confidenza della curva di frequenza appena ottenuta richiede ancora l'utilizzo di campionamenti pseudo casuali di triplette di Q_{ind}^* , L_{CV}^* ed L_{CA}^* , ognuno estratto dalla propria distribuzione caratterizzata dal valore medio e dalla deviazione standard stimato in precedenza. A differenza dell'esempio precedente, in questo caso le distribuzioni da cui campionare Q_{ind} , L_{CV} ed L_{CA} sono:

Variabile	Distribuzione	
Q_{ind}	Normale:	$Q_{ind}^* \sim \mathcal{N}\left(317.1, 57.62^2\right)$
L _{CV}	Normale:	$L_{CV}^* \sim \mathcal{N}\left(0.4650, 0.0403^2\right)$
L _{CA}	Normale:	$L_{CA}^* \sim \mathcal{N}\left(0.2333, 0.0961^2\right)$

Per ogni tripletta ottenuta si ripete la stima dei parametri della distribuzione log-Normale e dei relativi quantili di interesse, ottenendo quindi un "fascio" di curve di frequenza. Analogamente all'esempio precedente, si riporta nella figura seguente la curva di frequenza standard ottenuta e tabulata in precedenza (linea nera spessa) con in sottofondo le prime 200 curve di frequenza delle 10000 ottenute con le simulazioni (se ne riportano solo 200 per facilitarne la visualizzazione grafica).

In corrispondenza di ogni periodo di ritorno il fascio viene "sezionato", ottenendo 10000 valori di Q_T^* da cui si possono estrarre numericamente le fasce per un assegnato livello di confidenza. Nel caso specifico sono state riportate le fasce di confidenza al 10% e al 90% con una linea tratteggiata, ad indicare che il 20% dei valori di Q_T^* complessivamente simulati rimane fuori da tali fasce.

5.7 ESEMPI DI APPLICAZIONE

BIBLIOGRAFIA

- European Environment Agency. Corinne land cover. URL http://www.eea.europa.eu/publications/CORO-landcover/page001.html. (Citato a pagina 108.)
- N. Arnell e M. Beran. Probability-weighted moments estimators for toev parameters. Technical report, Institute of Hydrology (NERC), 1988. (Citato a pagina 39.)
- S. Barbero, M. Graziadei, M. Zaccagnino, A. Saladin, P. Claps, D. Ganora, F. Laio, e R. Radice. *Catalogo delle portate massime annuali al colmo del bacino occidentale del Po.* Number ISBN 978-88-7479-112-5. Arpa Piemonte, 2012. (Citato a pagina 3 and 5.)
- E. Bartolini, P. Allamano, F. Laio, e P. Claps. Analisi spaziale delle precipitazioni medie ed intense su piemonte e valle d'aosta. Working Paper 02, Politecnico di Torino, September 2011a. (Citato a pagina 106.)
- E. Bartolini, P. Allamano, F. Laio, e P. Claps. Analisi spaziale delle precipitazioni medie ed intense su piemonte e vallde d'aosta. Working Paper 02/11, Politecnico di Torino, Settembre 2011b. (Citato a pagina 10.)
- AC Bayliss e DW Reed. The use of historical data in flood frequency estimation. Technical report, Centre for Ecology and Hydrology, 2001. (Citato a pagina 25 and 40.)
- KP Burnham e DR Anderson. *Model Selection and Multi-Model Inference*. Springer, second edition edition, 2002. (Citato a pagina 59.)
- D. Carriero. Analisi della distribuzione delle caratteristiche idrologiche dei suoli per applicazioni di modelli di simulazione afflussi-deflussi. PhD thesis, Università degli studi della Basilicata, 2004. (Citato a pagina 109.)
- P Claps e F Laio. Aggiornamento delle procedure di valutazione delle piene in piemonte, con particolare riferimento ai bacini sottesi da invasi artificiali vol. i. Technical report, Politecnico di Torino, 2008. URL http://www.idrologia.polito.it/piene/PienePiemonte08_Volume1.pdf. (Citato a pagina 26 and 27.)
- P. Claps, M. Fiorentino, e F. Laio. Scale di deflusso di piena di corsi d'acqua naturali. In *Atti delle Giornate di Studio su La difesa idraulica del territorio*, Trieste, September 2003. (Citato a pagina 3.)
- P. Claps, D. Ganora, F. Laio, e R. Radice. Riesame ed integrazione di serie di portate al colmo mediante scale di deflusso di piena. In XXXII Convegno Nazionale di Idraulica e Costruzioni Idrauliche, 2010. (Citato a pagina 3.)
- P. Claps, F. Laio, D. Ganora, e R. Radice. Scale di deflusso di piena in sezioni idrometrografiche del piemonte e della valle d'aosta. Working Paper 01, Politecnico di Torino, July 2011. (Citato a pagina 3.)

- EAH Elamir e AH Seheult. Exact variance structure of sample L-moments. *Journal Of Statistical Planning And Inference*, 124(2):337–359, SEP 1 2004. ISSN 0378-3758. doi: {10.1016/S0378-3758(03)00213-1}. (Citato a pagina 41, 42, 59, and 60.)
- Tom G. Farr, Paul A. Rosen, Edward Caro, Robert Crippen, Riley Duren, Scott Hensley, Michael Kobrick, Mimi Paller, Ernesto Rodriguez, Ladislav Roth, David Seal, Scott Shaffer, Joanne Shimada, Jeffrey Umland, Marian Werner, Michael Oskin, Douglas Burbank, e Douglas Alsdorf. The shuttle radar topography mission. *Rev. Geophys.*, 45(2), 05 2007. doi: 10.1029/2005RG000183. URL http://dx.doi.org/10.1029/2005RG000183. (Citato a pagina 9 and 101.)
- JA Greenwood, JM Landwehr, NC Matalas, e JR Wallis. Probability weighted moments definition and relation to parameters of several distributions expressable in inverse form. *Water Resources Research*, 15(5):1049–1054, 1979. (Citato a pagina 40 and 79.)
- VW Griffis e JR Stedinger. The use of GLS regression in regional hydrologic analyses. *Journal Of Hydrology*, 344(1-2):82–95, SEP 30 2007. ISSN 0022-1694. doi: {10.1016/j.jhydrol.2007.06.023}. (Citato a pagina 15 and 22.)
- Curve Number Work Group. *National Engineering Handbook*, volume Section 4. U.S. Department of Agriculture Soil Conservation Service, SCS, Washington DC, 1972 edition, 2004. (Citato a pagina 109.)
- RM Hirsch. Probability plotting position formulas for flood records with historical information. *Journal Of Hydrology*, 96(1-4):185–199, DEC 15 1987. ISSN 0022-1694. (Citato a pagina 56.)
- JRM Hosking e JR Wallis. *Regional Frequency Analysis: An Approach Based on L-Moments*. Cambridge University Press, 1997. (Citato a pagina 37, 58, 79, 81, 83, 89, 91, and 92.)
- Interagency Advisory Committee on Water Data. *Bulletin 17B Guidelines for determining flood flow frequency*. US Department of the Interior Geological Survey, 1982. (Citato a pagina 26.)
- F. Laio, D. Ganora, P. Claps, e G. Galeati. Spatially smooth regional estimation of the flood frequency curve (with uncertainty). *Journal of Hydrology*, 408:67–77, 2011. doi: 10.1016/j.jhydrol. 2011.07.022. (Citato a pagina 13 and 38.)
- F Laio, G Di Baldassarre, e A Montanari. Model selection techniques for the frequency analysis of hydrological extremes. *Water Resources Research*, 45, JUL 18 2009. ISSN 0043-1397. doi: {10.1029/2007WR006666}. (Citato a pagina 56.)
- DC Montgomery, EA Peck, e GG Vining. *Introduction to linear regression analysis*. Wiley Series in Probability and Statistics, third edition, 2001. (Citato a pagina 14, 17, 19, and 22.)
- Nasa. Normalized difference vegetation index (ndvi). URL http://earthobservatory.nasa. gov/Features/MeasuringVegetation. (Citato a pagina 108.)
- DS Reis, JR Stedinger, e ES Martins. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. *Water Resources Research*, 41(10), OCT 26 2005. ISSN 0043-1397. doi: {10.1029/2004WR003445}. (Citato a pagina 16.)

- R. Rigon, E. Ghesla, C. Tiso, e A. Cozzini. The Horton Machine: a system for DEM analysis. Technical report, Università di Trento, 1999-2005. (Citato a pagina 10.)
- GAF Seber e CJ Wild. *Nonlinear Regression*. Series in probability and mathematical statistics. Wiley, New York, 1989. (Citato a pagina 23.)
- JR Stedinger e GD Tasker. Regional Hydrologic Analysis .1. Ordinary, Weighted, And Generalized Least-Squares Compared. *Water Resources Research*, 21(9):1421–1432, 1985. ISSN 0043-1397. (Citato a pagina 13, 14, and 15.)
- A Viglione. Determinazione automatica di parametri morfometrici dei bacini idrografici. Technical report, Politecnico di Torino, 2003a. (Citato a pagina 9.)
- A. Viglione. Determinazione automatica di parametri morfometrici dei bacini idrografici. Technical report, Dipartimento di Idraulica, Trasporti e Infrastrutture Civili, Politecnico di Torino, 2003b. (Citato a pagina 101.)
- A Viglione. *nsRFA: Non-supervised Regional Frequency Analysis*, 2007a. URL http://cran.r-project.org/web/packages/nsRFA/. R package version 0.4-5. (Citato a pagina 41.)
- A Viglione. A simple method to estimate variance and covariance of sample L-CV and L-CA. http://www.idrologia.polito.it/~alviglio/lavori/varcov_t_t3.pdf, December 2007b. (Citato a pagina 41, 42, and 60.)
- A Viglione, F Laio, e P Claps. A comparison of homogeneity tests for regional frequency analysis. *Water Resources Research*, 43(3):Wo3428, 2007. ISSN 0043-1397. (Citato a pagina 38.)
- P Villani. Rapporto sulla valutazione delle piene in piemonte. In *Relazione delle attività del CUGRI fino al 2001*, pages 89–118. Del Paguro, Fisciano, 2003a. (Citato a pagina 27.)
- P Villani. Rapporto sulla valutazione delle piene in piemonte. In *Relazione delle attività del CUGRI fino al 2001*, pages 89–118. Del Paguro, Fisciano, 2003b. (Citato a pagina 109.)
- QJ Wang. Unbiased estimation of probability weighted moments and partial probability weighted moments from systematic and historical flood information and their application to estimating the GEV distribution. *Journal Of Hydrology*, 120(1-4):115–124, DEC 1990. ISSN 0022-1694. (Citato a pagina 25 and 40.)

A L-MOMENTI

Nelle procedure di analisi di frequenza, e di analisi di frequenza regionale, si adattano ai dati delle distribuzioni la cui forma si ritiene conosciuta a meno di un numero finito di parametri incogniti. I momenti campionari ordinari, in particolare media, scarto, skewness e kurtosis, sono spesso utilizzati per la stima dei parametri delle distribuzioni di probabilità. Hosking e Wallis (1997) suggeriscono invece di utilizzare, al posto dei momenti ordinari, gli L-momenti perché adatti a descrivere più distribuzioni, perché più robusti nella stima da campioni poco consistenti di dati in presenza di outliers e perché meno soggetti a distorsione nella stima. In questa appendice, tratta da Hosking e Wallis (1997), si definiscono gli L-momenti in maniera formale.

A.1 L-MOMENTI DELLE DISTRIBUZIONI DI PROBABILITÀ

Gli L-momenti sono un sistema alternativo di descrivere la forma delle distribuzioni di probabilità. Storicamente essi nascono come modifica dei *momenti pesati in probabilità* di Greenwood et al. (1979). I momenti pesati in probabilità di una variabile casuale X con distribuzione di frequenza cumulata F(.) sono le quantità

$$M_{p,r,s} = E[X^{p}\{F(X)\}^{r}\{1 - F(X)\}^{s}]. \tag{A.1}$$

Particolarmente utili sono i momenti pesati in probabilità $\alpha_r = M_{1,0,r}$ e $\beta_r = M_{1,r,0}$. Per una distribuzione caratterizzata da una funzione dei quantili x(u), si ottiene

$$\alpha_r = \int_0^1 x(u)(1-u)^r du$$
, $\beta_r = \int_0^1 x(u)u^r du$. (A.2)

Queste equazioni possono essere paragonate alla definizione dei momenti ordinari, che può essere scritta anche come

$$E(X^{r}) = \int_{0}^{1} \{x(u)\}^{r} du.$$
 (A.3)

Mentre i momenti ordinari considerano successive elevazioni di potenza della funzione dei quantili x(u), i momenti pesati in probabilità considerano successive elevazioni di potenza di u oppure 1 - u e possono essere visti come integrali di x(u) pesati con i polinomi u^r oppure $(1 - u)^r$.

I momenti pesati in probabilità α_r e β_r sono stati usati in letteratura come base di metodi per la stima dei parametri delle distribuzioni di probabilità ma sono difficilmente interpretabili come misure di scala e forma di queste. Queste informazioni sono contenute in certe combinazioni lineari dei momenti pesati in probabilità. Ad esempio, multipli di $\alpha_0 - 2\alpha_1$ o $2\beta_1 - \beta_0$ sono

stime dei parametri di scala delle distribuzioni, mentre lo skewness può essere misurato da $6\beta_2 - 6\beta_1 + \beta_0$. Queste combinazioni lineari derivano naturalmente dall'integrazione di x(u) pesata non con i polinomi u^r o $(1-u)^r$, ma con un set di polinomi ortogonali.

Si definiscano *polinomi di Legendre sfasati* (perché definiti nell'intervallo [0,1] invece che nell'intervallo [-1,+1]) i polinomi $P_r^*(u)$, con r=0,1,2,..., che godono delle seguenti proprietà:

- (i) $P_r^*(u)$ è un polinomio di grado r in u;
- (ii) $P_r^*(1) = 1$;
- (iii) $\int_0^1 P_r^*(u) P_s^*(u) du = 0$ se $r \neq s$ (condizione di ortogonalità).

I polinomi di Legendre sfasati hanno forma esplicita

$$P_{r}^{*}(u) = \sum_{k=0}^{r} p_{r,k}^{*} u^{k} , \qquad (A.4)$$

dove

$$p_{r,k}^* = (-1)^{r-k} \binom{r}{k} \binom{r+k}{k} = \frac{(-1)^{r-k} (r+k)!}{(k!)^2 (r-k)!} \,. \tag{A.5}$$

Gli L-momenti di una variabile casuale X con funzione dei quantili x(u) sono definiti come

$$\lambda_{r} = \int_{0}^{1} x(u) P_{r-1}^{*}(u) du . \tag{A.6}$$

In termini di momenti pesati in probabilità, gli L-momenti sono dati da

$$\lambda_{1} = \alpha_{0} = \beta_{0} ,$$

$$\lambda_{2} = \alpha_{0} - 2\alpha_{1} = 2\beta_{1} - \beta_{0} ,$$

$$\lambda_{3} = \alpha_{0} - 6\alpha_{1} + 6\alpha_{2} = 6\beta_{2} - 6\beta_{1} + \beta_{0} ,$$

$$\lambda_{4} = \alpha_{0} - 12\alpha_{1} + 30\alpha_{2} - 20\alpha_{3} = 20\beta_{3} - 30\beta_{2} + 12\beta_{1} - \beta_{0} ,$$
(A.7)

e, in generale,

$$\lambda_{r+1} = (-1)^r \sum_{k=0}^r p_{r,k}^* \alpha_k = \sum_{k=0}^r p_{r,k}^* \beta_k . \tag{A.8}$$

È conveniente definire le versioni adimensionali degli L-momenti, cosa che si può ottenere dividendo gli L-momenti di ordine superiore per la misura di scala λ_2 . Si ottengono così i rapporti degli L-momenti

$$\tau_r = \lambda_r / \lambda_2$$
, $r = 3, 4, ...$ (A.9)

che misurano la forma di una distribuzione indipendentemente dalla scala. Si definisce inoltre il coefficiente di L-variazione (L-CV) come

$$\tau = \lambda_2/\lambda_1$$
, (A.10)

quantità analoga al coefficiente di variazione CV.

A.2 PROPRIETÀ DEGLI L-MOMENTI

Gli L-momenti λ_1 e λ_2 , l'L_{CV} (detto anche τ) e i rapporti degli L-momenti L_{CA} e L_{kurtosis} (τ_3 e τ_4) sono le quantità che Hosking e Wallis (1997) consigliano di utilizzare per descrivere le distribuzioni di probabilità. Le loro più importanti proprietà sono:

- Esistenza. Se esiste la media della distribuzione, allora esistono tutti i suoi L-momenti.
- Unicità. Se esiste la media della distribuzione, allora gli L-momenti definiscono tale distribuzione in maniera univoca, ovvero non esistono due distribuzioni diverse con gli stessi L-momenti.
- **Terminologia.** Gli L-momenti (ed i rapporti degli L-momenti) che si utilizzano hanno un determinato significato, paragonabile a quello dei momenti campionari: λ_1 è la L-posizione (o la media) della distribuzione; λ_2 è l'L-scala; τ è l'L-CV; τ_3 è l'L-skewness; τ_4 è l'L-kurtosis.
- **Limiti algebrici.** λ_1 può assumere qualsiasi valore; $\lambda_2 \geq 0$; per una distribuzione che assume solo valori positivi $0 \leq \tau < 1$; i rapporti degli L-momenti soddisfano l'uguaglianza $|\tau_r| < 1$ per ogni $r \geq 3$. Limiti più precisi possono essere trovati per ogni τ_r : ad esempio, dato τ_3 , allora $(5\tau_3^2 1)/4 \leq \tau_4 < 1$ e, per distribuzioni che assumono solo valori positivi, dato τ si ha che $2\tau 1 \leq \tau_3 < 1$.
- Trasformazioni lineari. Siano X e Y due variabili casuali con L-momenti λ_r e λ_r^* rispettivamente, e si supponga che Y = aX + b. Allora $\lambda_1^* = a\lambda_1 + b$; $\lambda_2^* = |a|\lambda_2$; $\tau_r^* = (sign(a))^r \tau_r$ per $r \ge 3$.
- **Simmetria.** Sia X una variabile casuale simmetrica con media μ , ossia $\Pr[X \ge \mu + x] = \Pr[X \le \mu x]$ per ogni x. Allora tutti i rapporti degli L-momenti di ordine dispari valgono 0, ovvero $\tau_r = 0$ se r = 3, 5, 7, ...

Gli L-momenti sono stati calcolati per molte distribuzioni. La distribuzione che gioca un ruolo centrale nella teoria degli L-momenti, analoga alla distribuzione Normale nella teoria dei momenti ordinari, è la distribuzione uniforme. Si può dimostrare che tutti gli L-momenti λ_r e rapporti degli L-momenti τ_r di ordine superiore (con $r \geq 3$) valgono zero per la distribuzione uniforme. La distribuzione Normale, per il fatto che è simmetrica, presenta gli L-momenti di ordine dispari nulli, ma quelli di ordine pari non sono particolarmente semplici: ad esempio $\tau_4 \approx 0.123$. La distribuzione esponenziale, invece, ha dei rapporti degli L-momenti particolarmente semplici: $\tau_3 = 1/3$, $\tau_4 = 1/6$.

Un modo conveniente per rappresentare gli L-momenti di diverse distribuzioni è il *diagramma* dei rapporti degli L-momenti, esemplificato nella figura 13 riportata nel testo.

Questo diagramma mostra gli L-momenti in un grafico i cui assi sono l'L-skewness e l'L-kurtosis. Una distribuzione a due parametri, caratterizzata da un parametro di posizione ed uno di scala, viene rappresentata sul diagramma da un punto. Infatti se due distribuzioni

differiscono solo nei parametri di posizione e di scala, allora sono distribuzioni di due variabili casuali X e Y=aX+b con a>0, per cui, dato la proprietà delle trasformazioni lineari degli L-momenti $(\tau_r^*=(\text{sign}(a))^r\tau_r)$, hanno gli stessi L-skewness ed L-kurtosis. Una distribuzione a tre parametri, invece, dal momento che è caratterizzata dai parametri di posizione, scala e forma, viene rappresentata sul diagramma da una linea, i cui punti corrispondono a differenti valori del parametro di forma. Distribuzioni con più di un parametro di forma generalmente ricoprono aree bidimensionali sul diagramma.

A.3 L-MOMENTI CAMPIONARI

Gli L-momenti sono stati definiti per una distribuzione di probabilità, ma nella pratica devono essere stimati a partire da campioni finiti. La loro stima è basata su un campione di lunghezza n, ordinato in senso crescente: $x_{1:n} \le x_{2:n} \le \cdots \le x_{n:n}$. È conveniente cominciare dalla definizione dello stimatore del momento pesato in probabilità β_r . Uno stimatore indistorto di β_r è

$$b_r = n^{-1} \binom{n-1}{r}^{-1} \sum_{j=r+1}^{n} \binom{j-1}{r} x_{j:n} , \qquad (A.11)$$

ovvero

$$b_r = n^{-1} \sum_{j=r+1}^{n} \frac{(j-1)(j-2) \dots (j-r)}{(n-1)(n-2) \dots (n-r)} x_{j:n} . \tag{A.12}$$

Analogamente alle Equazioni (A.9) e (A.10), gli L-momenti campionari sono definiti come

$$\begin{split} l_1 &= b_0 \;, \\ l_2 &= 2b_1 - b_0 \;, \\ l_3 &= 6b_2 - 6b_1 + b_0 \;, \\ l_4 &= 20b_3 - 30b_2 + 12b_1 - b_0 \;, \end{split} \tag{A.13}$$

e, in generale,

$$l_{r+1} = \sum_{k=0}^{r} p_{r,k}^* b_k , \quad r = 0, 1, ..., n-1 , \tag{A.14}$$

dove i coefficienti $p_{r,k}^*$ sono definiti dall'Equazione A.5. L'L-momento campionario l_r è uno stimatore indistorto di λ_r .

Analogamente alle Equazioni A.9 e A.10, i rapporti degli L-momenti campionari sono definiti con

$$t_r = l_r/l_2$$
, $r = 3, 4, ...$, (A.15)

e l'L-CV campionario con

$$t = l_2/l_1. \tag{A.16}$$

Questi sono gli stimatori naturali di τ_r e di τ rispettivamente, ma non sono indistorti. Ad ogni modo la loro distorsione è molto piccola per campioni di lunghezza moderata o grande. Si può dimostrare che il bias relativo asintotico di t_3 per una distribuzione Gumbel vale $0.19n^{-1}$, e che vale $0.03n^{-1}$ per t_4 di una distribuzione Normale (n è la lunghezza del campione). Hosking e Wallis (1997) hanno calcolato il bias per campioni piccoli estratti da diverse distribuzioni con metodi di simulazione Monte-Carlo. Ad esempio, si è visto come generalmente il bias di t_3 si trascurabile per campioni con $n \geq 20$. Per quanto riguarda i bias di t_3 e t_4 , essi sono certamente piccoli in confronto alle differenze negli L-momenti delle diverse famiglie di distribuzioni. Ciò significa che ci si può aspettare che l'identificazione di un tipo di distribuzione generatrice a partire dagli L-momenti di un campione sia comunque indistorta, a prescindere dalla distorsione degli stimatori. Ad ogni modo sia l'L-skewness che l'L-kurtosis sono molto meno distorti dello skewness e del kurtosis ordinari.

A.4 STIMA DEI PARAMETRI MEDIANTE GLI L-MOMENTI

Un problema che ci si pone comunemente in statistica è la stima, a partire da un campione casuale di n dati, della distribuzione di probabilità la cui specificazione coinvolge un numero finito, p, di parametri incogniti. Analogamente all'usuale metodo dei momenti, il *metodo degli* L*-momenti* ottiene una stima dei parametri sostituendo i primi p L-momenti campionari ai corrispondenti L-momenti della distribuzione. Ciò richiede di conoscere l'espressione dei parametri in termini degli L-momenti.

Le distribuzioni esatte degli stimatori dei parametri ottenuti con il metodo degli L-momenti sono generalmente difficili da derivare, ma approssimazioni possono essere ottenute dalla teoria asintotica. Per molte distribuzioni si è riscontrato che tali stimatori sono asintoticamente distribuiti secondo una distribuzione Normale (Hosking e Wallis, 1997), e si sono derivati gli errori standard e gli intervalli di confidenza.

Sempre Hosking e Wallis (1997) sostengono che spesso, con campioni di lunghezza piccola o moderata, il metodo degli L-momenti è più efficiente di quello della massima verosimiglianza.

Dettagli per la stima dei parametri delle distribuzioni più utilizzate sono riportati nell'appendice B.

B DISTRIBUZIONI DI PROBABILITÀ

B.1 DISTRIBUZIONE DI GUMBEL

La distribuzione di Gumbel appartenente alla famiglia esponenziale, è una delle più popolari nella modellazione di distribuzioni di frequenza di eventi naturali estremi. Da numerosi studi effettuati si è riscontrato che la Gumbel fornisce risultati molto consistenti ed è da preferire quando ci si riferisce a periodi di ritorno elevati. Tale distribuzione è caratterizzata da due parametri e rientra in un caso particolare della famiglia GEV (Paragrafo B.3).

B.1.1 Definizioni

Parametri (2): ξ (posizione), α (scala).

Campo di esistenza di x: $-\infty < x < \infty$.

$$f(x) = \frac{1}{\alpha} e^{-\frac{x-\xi}{\alpha}} e^{-e^{-\frac{x-\xi}{\alpha}}}$$
(B.1)

$$F(x) = e^{-e^{-\frac{x-\xi}{\alpha}}}$$
 (B.2)

$$x(F) = \xi - \alpha \log(-\log F) \tag{B.3}$$

B.1.2 L-momenti

$$\lambda_1 = \xi + \alpha \gamma \tag{B.4}$$

dove γ è la costante di Eulero, 0.5772....

$$\lambda_2 = \alpha \log 2 \tag{B.5}$$

$$\tau_3 = 0.1699 = \log(9/8)/\log(2)$$
 (B.6)

DISTRIBUZIONI DI PROBABILITÀ

$$\tau_4 = 0.1504 = [16\log(2) - 10\log(3)]/\log(2) \tag{B.7}$$

B.1.3 Parametri

$$\alpha = \frac{\lambda_2}{\log 2} \quad \xi = \lambda_1 - \gamma \alpha . \tag{B.8}$$

B.2 DISTRIBUZIONE DI PARETO GENERALIZZATA

La distribuzione di Pareto Generalizzata è molto usata nell'analisi degli eventi estremi è stato probabilmente il primo ad utilizzarla in questo contesto), specialmente in idrologia e negli studi di affidabilità, quando occorre utilizzare alternative alla distribuzione esponenziale assumendo più spessa o più sottile la coda superiore della distribuzione.

B.2.1 Definizioni

Parametri (3): ξ (posizione), α (scala), k (forma).

Campo di esistenza di $\xi < x \le \xi + \alpha/k$ se k > 0; $\xi \le x < \infty$ se $k \le 0$.

$$f(x) = \frac{1}{\alpha} e^{-(1-k)y} \tag{B.9}$$

dove

$$y = \begin{cases} -k^{-1} \log\{1 - k(x - \xi)/\alpha\}, & k \neq 0 \\ (x - \xi)/\alpha, & k = 0 \end{cases}$$
 (B.10)

$$F(x) = 1 - e^{-y} (B.11)$$

$$x(F) = \begin{cases} \xi + \alpha [1 - (1 - F)^{k}]/k, & k \neq 0 \\ \xi - \alpha \log(1 - F), & k = 0 \end{cases}$$
 (B.12)

Casi speciali: k=0 è la distribuzione esponenziale; k=1 è la distribuzione uniforme nell'intervallo $\xi \leq x \leq \xi + \alpha$.

B.2.2 L-momenti

Gli L-momenti sono definiti per k > -1.

$$\lambda_1 = \xi + \alpha/(1+k) \tag{B.13}$$

$$\lambda_2 = \alpha / [(1+k)(2+k)]$$
 (B.14)

$$\tau_3 = (1 - k)/(3 + k) \tag{B.15}$$

$$\tau_4 = (1 - k)(2 - k)/[(3 + k)(4 + k)] \tag{B.16}$$

La relazione tra τ_3 e τ_4 è data da

$$\tau_4 = \frac{\tau_3(1+5\tau_3)}{5+\tau_3} \ . \tag{B.17}$$

B.2.3 Parametri

Se si conosce ξ , i due parametri α e k sono dati da

$$k = (\lambda_1 - \xi)/\lambda_2 - 2$$
, $\alpha = (1 + k)(\lambda_1 - \xi)$. (B.18)

Se invece ξ è incognito, i tre parametri sono dati da

$$k = \frac{1 - 3\tau_3}{1 + \tau_2}$$
, $\alpha = (1 + k)(2 + k)\lambda_2$, $\xi = \lambda_1 - (2 + k)\lambda_2$. (B.19)

B.3 DISTRIBUZIONE GENERALIZZATA DEL VALORE ESTREMO

La Generalized Extreme Value, nota anche come GEV, è una distribuzione a tre parametri, derivante dalla teoria dei valori estremi. Fu introdotta da per identificare la distribuzione di frequenza dei valori estremi per dati meterologici. La GEV è largamente utilizzata in ambito idrologico soprattutto per lo studio di piene e piogge intense. Il vantaggio principale della GEV è la sua generalità, ossia il fatto di contemplare tutte le possibili distribuzioni del valore estremo. Infatti, a seconda del valore assunto dal parametro di forma k la GEV è equivalente alle distribuzioni EV-1 (Gumbel), EV-2 ed EV-3.

DISTRIBUZIONI DI PROBABILITÀ

B.3.1 Definizioni

Parametri (3): ξ (posizione), α (scala), k (forma).

Campo di esistenza di $-\infty < x \le \xi + \alpha/k$ se k > 0; $-\infty < x < \infty$ se k = 0; $\xi + \alpha/k \le x < \infty$ se k < 0.

$$f(x) = \frac{1}{\alpha} e^{-(1-k)y - e^{-y}}$$
 (B.20)

dove

$$y = \begin{cases} -k^{-1} \log\{1 - k(x - \xi)/\alpha\}, & k \neq 0 \\ (x - \xi)/\alpha, & k = 0 \end{cases}$$
 (B.21)

$$F(x) = e^{-e^{-y}}$$
 (B.22)

$$x(F) = \begin{cases} \xi + \alpha [1 - (-\log F)^k]/k, & k \neq 0 \\ \xi - \alpha \log(-\log F), & k = 0 \end{cases}$$
 (B.23)

Casi speciali: k = 0 è la distribuzione Gumbel; k = 1 è la distribuzione esponenziale inversa, ovvero 1 - F(-x) è la distribuzione di frequenza cumulata di una distribuzione esponenziale.

B.3.2 L-momenti

Gli L-momenti sono definiti per k > -1.

$$\lambda_1 = \xi + \alpha [1 - \Gamma(1+k)]/k \tag{B.24}$$

dove $\Gamma(.)$ indica la funzione gamma

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \tag{B.25}$$

$$\lambda_2 = \alpha (1 - 2^{-k}) \Gamma(1 + k)] / k \tag{B.26}$$

$$\tau_3 = 2(1 - 3^{-k})/(1 - 2^{-k}) - 3 \tag{B.27}$$

$$\tau_4 = [5(1 - 4^{-k}) - 10(1 - 3^{-k}) + 6(1 - 2^{-k})]/(1 - 2^{-k})$$
(B.28)

в.з.з Parametri

Per ricavare k partendo dalla stima degli L-Momenti campionari è necessario invertire l'Equazione (B.27). Purtroppo non ci sono soluzioni esplicite per ricavare k, quindi si deve ricorrere a un'approssimazione numerica proposta da Hosking e Wallis (1997), che ha una precisione di 9×10^{-4} per $-0.5 \le \tau_3 \le 0.5$:

$$k \approx 7.8590c + 2.9554c^2$$
, $c = \frac{2}{3 + \tau_3} - \frac{\log 2}{\log 3}$. (B.29)

Gli altri due parametri sono ricavabili da

$$\alpha = \frac{\lambda_2 k}{(1 - 2^{-k})\Gamma(1 + k)}, \quad \xi = \lambda_1 - \alpha \left[1 - \Gamma(1 + k)\right] / k.$$
 (B.30)

B.4 DISTRIBUZIONE LOGISTICA GENERALIZZATA

La funzione logistica e la distribuzione logistica sono state utilizzate in moltissimi diversi campi di applicazione. Da un punto di vista puramente statistico, la distribuzione logistica nasce come distribuzione limite ($n \to \infty$) delle medie standardizzate dei valori estremi (grandi e piccoli) di campioni casuali di lunghezza n. Esistono differenti forme di generalizzazione della distribuzione logistica. Quella qui riportata è una versione riparametrizzata della distribuzione loglogistica, che permette di mostrare la somiglianza della distribuzione con la Pareto generalizzata (Paragrafo B.2) e la GEV (Paragrafo B.3).

B.4.1 Definizioni

Parametri (3): ξ (posizione), α (scala), k (forma).

Campo di esistenza di $-\infty < x \le \xi + \alpha/k$ se k > 0; $-\infty < x < \infty$ se k = 0; $\xi + \alpha/k \le x < \infty$ se k < 0.

$$f(x) = \frac{\alpha^{-1}e^{-(1-k)y}}{(1+e^{-y})^2}$$
 (B.31)

dove

$$y = \begin{cases} -k^{-1} \log\{1 - k(x - \xi)/\alpha\}, & k \neq 0 \\ (x - \xi)/\alpha, & k = 0 \end{cases}$$
 (B.32)

$$F(x) = \frac{1}{1 + e^{-y}} \tag{B.33}$$

$$x(F) = \begin{cases} \xi + \alpha [1 - \{(1 - F)/F\}^k]/k, & k \neq 0 \\ \xi - \alpha \log \{(1 - F)/F\}, & k = 0 \end{cases}$$
 (B.34)

Casi speciali: k = 0 è la distribuzione logistica.

B.4.2 L-momenti

Gli L-momenti sono definiti per -1 < k < 1.

$$\lambda_1 = \xi + \alpha [1/k - \pi/\sin(k\pi)] \tag{B.35}$$

$$\lambda_2 = \alpha k \pi / \sin(k\pi) \tag{B.36}$$

$$\tau_3 = -k \tag{B.37}$$

$$\tau_4 = (1 + 5k^2)/6 \tag{B.38}$$

B.4.3 Parametri

$$k = -\tau_3$$
, $\alpha = \frac{\lambda_2 \sin(k\pi)}{k\pi}$, $\xi = \lambda_1 - \alpha \left(\frac{1}{k} - \frac{\pi}{\sin(k\pi)}\right)$. (B.39)

B.5 DISTRIBUZIONE LOGNORMALE A 3 PARAMETRI

È noto come la distribuzione log-Normale sia applicabile ad una gran varietà di fenomeni idrologici, specialmente quando le variabili hanno limite inferiore. Difatti la curva di densità di probabilità si presenta con andamento non simmetrico e limite inferiore. Storicamente si sono susseguiti vari studi che rivelano come la distribuzione log-Normale sia adattabile all'applicazione in svariati campi, dalla modellazione di picchi di portata, alla descrizione delle concentrazioni di inquinanti in atmosfera. È interessante notare che esiste anche una giustificazione teorica all'uso di tale distribuzione: si consideri il prodotto di una serie di variabili $X = W_1 W_2 ... W_N$; facendo il logaritmo di ambo i membri si ricava $ln(X) = ln(W_1) + ln(W_2) + ... + ln(W_N)$, da cui, per il teorema del limite centrale, si ottiene che X deve avere una distribuzione log-Normale, quando il numero di fattori nella moltiplicazione tende ad essere sufficientemente elevato.

B.5.1 Definizioni

Parametri (3): ξ (posizione), α (scala), k (forma).

Campo di esistenza di $-\infty < x \le \xi + \alpha/k$ se k > 0; $-\infty < x < \infty$ se k = 0; $\xi + \alpha/k \le x < \infty$ se k < 0.

$$f(x) = \frac{e^{ky - y^2/2}}{\alpha \sqrt{2\pi}} \tag{B.40}$$

dove

$$y = \begin{cases} -k^{-1} \log\{1 - k(x - \xi)/\alpha\}, & k \neq 0\\ (x - \xi)/\alpha, & k = 0 \end{cases}$$
 (B.41)

$$F(x) = \Phi(y) \tag{B.42}$$

dove $\Phi(.)$ è la distribuzione di frequenza cumulata della distribuzione Normale standardizzata.

Per x(F) non esiste una forma analitica, ma si può ricorrere all'utilizzo di metodi numerici.

Casi speciali: k = 0 è la distribuzione Normale con parametri ξ e α .

In questa parametrizzazione della distribuzione lognormale, proposta in Hosking e Wallis (1997), la variabile casuale X è legata alla variabile casuale Y, che è distribuita secondo una Normale standard, da

$$X = \begin{cases} \xi + \alpha (1 - e^{-kZ})/k, & k \neq 0 \\ \xi + \alpha Z, & k = 0 \end{cases}$$
 (B.43)

La parametrizzazione standard, esprimibile come

$$F(x) = \Phi\left(\frac{\log(x-\zeta) - \mu}{\sigma}\right), \quad \zeta \le x < \infty$$
 (B.44)

può essere ottenuta a partire dalla parametrizzazione di Hosking e Wallis considerando che

$$k = -\sigma$$
, $\alpha = \sigma e^{\mu}$, $\zeta = \zeta + e^{\mu}$. (B.45)

DISTRIBUZIONI DI PROBABILITÀ

B.5.2 L-momenti

Gli L-momenti sono definiti per tutti i valori di k.

$$\lambda_1 = \xi + \alpha (1 - e^{k^2/2})/k$$
 (B.46)

$$\lambda_2 = -\frac{\alpha}{k} e^{k^2/2} [1 - 2\Phi(-k/\sqrt{2})]$$
 (B.47)

Non esistono espressioni semplici per i rapporti degli L-momenti τ_r con $r \ge 3$. Essi sono funzione del solo parametro k e possono essere calcolati tramite integrazione numerica. Hosking e Wallis (1997) propongono un approssimazione per τ_3 e τ_4 che ha un'accuratezza rispettivamente migliore di 2×10^{-7} e 5×10^{-7} per $|k| \le 4$, ovvero per $|\tau_3| \le 0.99$ e $\tau_4 \le 0.98$:

$$\tau_3 \approx -k \frac{A_0 + A_1 k^2 + A_2 k^4 + A_3 k^6}{1 + B_1 k^2 + B_2 k^4 + B_3 k^6} \,, \tag{B.48}$$

$$\tau_4 \approx \tau_4^0 + k^2 \frac{C_0 + C_1 k^2 + C_2 k^4 + C_3 k^6}{1 + D_1 k^2 + D_2 k^4 + D_3 k^6} \,, \tag{B.49}$$

dove i coefficienti sono riportati in Tabella 12.

Tabella 12: Coefficienti di approssimazione per le Equazioni (B.48), (B.49) e (B.50).

	0	
	$\tau_4^0 = 1.2260172 \times 10^{-1}$	
$A_0 = 4.8860251 \times 10^{-1}$	$C_0 = 1.8756590 \times 10^{-1}$	$E_0 = 2.0466534$
$A_1 = 4.4493076 \times 10^{-3}$	$C_1 = -2.5352147 \times 10^{-3}$	$E_1 = -3.6544371$
$A_2 = 8.8027039 \times 10^{-4}$	$C_2 = 2.6995102 \times 10^{-4}$	$E_2 = 1.8396733$
$A_3 = 1.1507084 \times 10^{-6}$	$C_3 = -1.8446680 \times 10^{-6}$	$E_3 = -0.20360244$
$B_1 = 6.4662924 \times 10^{-2}$	$D_1 = 8.2325617 \times 10^{-2}$	$F_1 = -2.0182173$
$B_2 = 3.3090406 \times 10^{-3}$	$D_2 = 4.2681448 \times 10^{-3}$	$F_2 = 1.2420401$
$B_3 = 7.4290680 \times 10^{-5}$	$D_3 = 1.1653690 \times 10^{-4}$	$F_3 = -0.21741801$

B.5.3 Parametri

Il parametro di forma k è funzione del solo τ_3 . Non esiste una soluzione esplicita possibile, ma la seguente approssimazione ha un'accuratezza relativa di 2.5×10^{-6} per $|\tau_3| \le 0.94$, corrispondente a $|k| \le 3$:

$$k \approx -\tau_3 \frac{E_0 + E_1 \tau_3^2 + E_2 \tau_3^4 + E_3 \tau_3^6}{1 + F_1 \tau_3^2 + F_2 \tau_3^4 + F_3 \tau_3^6} \ . \tag{B.50}$$

I coefficienti usati nell'approssimazione sono quelli indicati in Tabella 12. Gli altri parametri sono quindi ottenibili come

$$\alpha = \frac{\lambda_2 k e^{-k^2/2}}{1 - 2\Phi(-k/\sqrt{2})} , \quad \xi = \lambda_1 - \frac{\alpha}{k} (1 - e^{k^2/2}) . \tag{B.51}$$

B.6 DISTRIBUZIONE DI GAMMA O DI PEARSON TIPO III

La distribuzione Gamma, o Pearson tipo III, è stata largamente utilizzata nel campo idrologico, ad esempio per la descrizione di grandezze quali portate massime e minime annue, volumi idrici stagionali e annuali ed anche gli eventi estremi di precipitazione. Nel caso in esame si fa riferimento alla distribuzione Gamma con tre parametri, che produce una PDF asimmetrica che può essere limitata superiormente o inferiormente a seconda che il valore del parametro di scala sia negativo o positivo, rispettivamente.

B.6.1 Definizioni

Parametri (3): ξ (posizione), β (scala), α (forma). Il legame con i momenti ordinari μ , σ e γ è dato da $\alpha = 4/\gamma^2$, $\beta = \frac{1}{2}\sigma|\gamma|$ e $\xi = \mu - 2\sigma/\gamma$.

Se $\beta > 0$, allora il campo di esistenza di x è $\xi \le x < \infty$, mentre se $\beta < 0$ è $-\infty < x \le \xi$.

$$f(x) = \frac{1}{|\beta|\Gamma(\alpha)} \left(\frac{x-\xi}{\beta}\right)^{\alpha-1} e^{-(x-\xi)/\beta}$$
(B.52)

$$F(x) = \begin{cases} G\left(\alpha, \frac{x-\xi}{\beta}\right) / \Gamma(\alpha) & \text{per } \beta > 0\\ 1 - G\left(\alpha, \frac{x-\xi}{\beta}\right) / \Gamma(\alpha) & \text{per } \beta < 0 \end{cases}$$
 (B.53)

dove $\Gamma(.)$ indica la funzione gamma definita nell'Equazione (B.25) e

$$G(\alpha, x) = \int_0^x t^{\alpha - 1} e^{-t} dt$$
 (B.54)

è la funzione gamma incompleta.

La funzione dei quantili x(F) non può essere esplicitata analiticamente, quindi deve essere valutata numericamente.

Casi speciali: se $\alpha > 100$, cioè assume valori elevati, la distribuzione Gamma si comporta come una Normale, con parametri μ e σ .

DISTRIBUZIONI DI PROBABILITÀ

B.6.2 L-momenti

Gli L-momenti sono definiti per $0 < \alpha < \infty$.

$$\lambda_1 = \xi + \alpha \beta \tag{B.55}$$

$$\lambda_2 = \pi^{-1/2} \beta \Gamma(\alpha + 1/2) / \Gamma(\alpha) \tag{B.56}$$

$$\tau_3 = 6I_{1/3}(\alpha, 2\alpha) - 3$$
 (B.57)

dove $I_x(p,q)$ è la funzione beta incompleta

$$I_{x}(p,q) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} \int_{0}^{x} t^{p-1} (1-t)^{q-1} dt \tag{B.58}$$

Per τ_4 non esiste un'espressione semplice. Per esprimere τ_3 e τ_4 in funzione di α possono essere usate delle approssimazioni con accuratezza 10^{-6} . Se $\alpha \ge 1$

$$\tau_3 \approx \alpha^{-1/2} \frac{A_0 + A_1 \alpha^{-1} + A_2 \alpha^{-2} + A_3 \alpha^{-3}}{1 + B_1 \alpha^{-1} + B_2 \alpha^{-2}} , \tag{B.59}$$

$$\tau_4 \approx \frac{C_0 + C_1 \alpha^{-1} + C_2 \alpha^{-2} + C_3 \alpha^{-3}}{1 + D_1 \alpha^{-1} + D_2 \alpha^{-2}} , \tag{B.60}$$

se $\alpha < 1$

$$\tau_3 \approx \frac{1 + E_1 \alpha + E_2 \alpha^2 + E_3 \alpha^3}{1 + F_1 \alpha + F_2 \alpha^2 + F_3 \alpha^3} \,, \tag{B.61}$$

$$\tau_4 \approx \frac{1 + G_1 \alpha + G_2 \alpha^2 + G_3 \alpha^3}{1 + H_1 \alpha + H_2 \alpha^2 + H_3 \alpha^3} \ . \tag{B.62}$$

I coefficienti delle approssimazioni sono riportati in Tabella 13.

в.6.3 Parametri

Per stimare α occorre invertire l'Equazione (B.57). È possibile stimare il parametro α con una precisione di 5×10^{-5} . Se $0<|\tau_3|<\frac{1}{3}$, si assume che $z=3\pi\tau_3^2$ e si utilizza

$$\alpha \approx \frac{1 + 0.2906z}{z + 0.1882z^2 + 0.0442z^3} \,, \tag{B.63}$$

Tabella 13: Coefficienti di approssimazione per le Equazioni (B.59)-(B.62).

$A_0 = 3.2573501 \times 10^{-1}$	$C_0 = 1.2260172 \times 10^{-1}$
$A_1 = 1.6869150 \times 10^{-1}$	$C_1 = 5.3730130 \times 10^{-2}$
$A_2 = 7.8327243 \times 10^{-2}$	$C_2 = 4.3384378 \times 10^{-2}$
$A_3 = -2.9120539 \times 10^{-3}$	$C_3 = 1.1101277 \times 10^{-2}$
$B_1 = 4.6697102 \times 10^{-1}$	$D_1 = 1.8324466 \times 10^{-1}$
$B_2 = 2.4255406 \times 10^{-1}$	$D_2 = 2.0166036 \times 10^{-1}$
$E_1 = 2.3807576$	$G_1 = 2.1235833$
$E_2 = 1.5931792$	$G_2 = 4.1670213$
$E_3 = 1.1618371 \times 10^{-1}$	$G_3 = 3.1925299$
$F_1 = 5.1533299$	$H_1 = 9.0551443$
$F_2 = 7.1425260$	$H_2 = 2.6649995 \times 10^{-1}$
$F_3 = 1.9745056$	$H_3 = 2.6193668 \times 10^{-1}$

se $\frac{1}{3} \le |\tau_3| < 1$, si assume che z = 1 – $|\tau_3|$ e si utilizza

$$\alpha \approx \frac{0.36067z - 0.59567z^2 + 0.25361z^3}{1 - 2.78861z + 2.56096z^2 - 0.77045z^3} \,. \tag{B.64}$$

Noto il parametro α è possibile ricavare gli altri parametri come

$$\gamma = 2\alpha^{-1/2} \operatorname{sign}(\tau_3)$$
, $\sigma = \lambda_2 \pi^{1/2} \alpha^{1/2} \Gamma(\alpha) / \Gamma(\alpha + 1/2)$, $\mu = \lambda_1$. (B.65)

Se $\alpha > 100$, cioè assume valori elevati, la distribuzione Gamma si comporta come una Normale, con parametri σ e $\mu = \lambda_1$, in quanto τ_3 è circa nullo; in questi casi è possibile ricavare σ utilizzando $\sigma = \lambda_2 \pi^{1/2} \frac{1}{1 - 1/(8\alpha) + 1/(128\alpha^2)}$. Una volta noto σ si ricava il parametro β da

$$\beta = \frac{1}{2}\sigma |2\alpha^{-1/2}| \ . \tag{B.66}$$

A questo punto se il parametro β è positivo il parametro di posizione vale $\xi = \lambda_1 - \alpha \beta$, mentre se β è negativo vale $\xi = \lambda_1 + \alpha \beta$.

C | DEFINIZIONE SINTETICA DEI DESCRITTORI DI BACINO

I descrittori calcolati per i bacini idrografici sono complessivamente elencati nella tabella seguente dove, in particolare, vengono conservati i raggruppamenti in grandezze geografiche, morfologiche, climatiche, etc. I descrittori riportati nelle schede bacino che seguono sono contrassegnati con *.

	Parametri M	orfologici
altimetria/geometria		
easting*	[m]	coord. est (UTM32N WGS84)
northing*	[m]	coord. nord (UTM32N WGS84)
area_bacinokm*	[km ²]	area del bacino
quota_media*	[m s.l.m.]	quota media
quota_massima*	[m s.l.m.]	quota massima
quota_minima*	[m s.l.m.]	quota minima
$a_{(i)}$ percento*	[m s.l.m.]	con i = 2.5, 5, 10 , 25, 50, 75, 90, 95, 97.5 % curva ipsografica
delta_zeta*	[m s.l.m.]	distanza interquartile tra le quote al 25% e 75% di
1. *	ſ°1	area sovrastata
aspect_medio*		angolo di esposizione medio
lunghezza_vett_orient_km*	[km]	lunghezza vettore orientamento
orientamento	[°]	direzione rispetto al Nord
slope_medio1*	[%]	pendenza bacino
slope_medio2*	[%]	pendenza bacino quadrato equivalente
x_baricentro*	[m] [m]	est baricentro (UTM32N WGS84)
y_baricentro*	[m]	nord baricentro (UTM32N WGS84)
x_minimo	[m]	latitudine minima (UTM32N WGS84)
x_massimo		latitudine massima (UTM32N WGS84)
y_minimo	[m] [m]	longitudine minima (UTM32N WGS84)
y_massimo fattori di forma	[m]	longitudine massima (UTM32N WGS84)
F_f*	[-]	fattore di forma
R_al*	[-]	rapporto di allungamento
	[-]	
c_comp funzione di ampiezza	1-1	coefficiente di compattezza
media_fa*	[m]	modia funciona di ammiorga
varianza_fa*	[m ²]	media funzione di ampiezza varianza funzione di ampiezza
skewness fa*	[-]	1
kurtosis_fa*	[-]	varianza funzione di ampiezza
	[m]	varianza funzione di ampiezza
$fa_{(i)}$ percento	[m]	con i = 2.5, 5, 10 , 25, 50, 75, 90, 95, 97.5 % funzione
parametri di Horton		di ampiezza
R_a*	[-]	rapporto aree medie di due ordini adiacenti
R_b*	[-]	rapporto di biforcazione
R_l*	[-]	rapporto lunghezze medie di due ordini adiacenti
	[-]	rapporto pendenze medie di due ordini adiacenti

DEFINIZIONE SINTETICA DEI DESCRITTORI DI BACINO

lungh_media_aste_0 lun con i = 1,, 9 lunghezza media aste ordine i numero_aste_0 l-l con i = 1,, 9 numero aste ordine i pendenza media_aste_0 l-l con i = 1,, 9 numero aste ordine i reticolo idrografico lun-i densità di drenaggio diam_topol" lunghezza tate principale lunghezza_complessiva* lungh_media_vers* lunghezza_tate_principale_km" lunghezza tate principale lunghezza_complessiva* lungh_media_vers*	area_contr_media_aste _(i)	$[km^2]$	con $i = 1,, 9$ area contribuente media aste ordine i
numero_aste_op f- con i = 1,, 9 numero aste ordine i			
pendenza_media_astecio f-J con i = 1,, 9 pendenza media aste ordine i neticolo inforquico densita di drenaggio densità di drenaggio densità di drenaggio diam_topol* f-J diametro topologico longest_drainage_path_length_km* fsml lunghezza asta principale km] lunghezza asta principale km] lunghezza totale reticolo idrografico lunghezza media_LDP* fsml lunghezza totale reticolo idrografico lungh_endia_vers* fsml lunghezza media LDP* fsml lunghezza media LDP* fsml pendenza_media_LDP* fsml pendenza_media_LDP* fsml media affitusso totale annuo mAP* fsml media affitusso totale annuo dev. standard affitusso totale annuo fsml fsml media affitusso totale annuo fsml fsml media affitusso totale annuo fsml		[-]	
Interview integration Interview Inte			
densita_drenaggio*			, , , , , ,
diam_topol* i-j diametro topologico longest_drainage_path_length_km* long lunghezza_LDP lunghezza_Losta_principale_km* long lunghezza totale reticolo idrografico lungh_media_vers* long lunghezza media versanti pendenza_media_LDP* % pendenza media lDP Parametri Climatici Porametri Climatici Por		[km ⁻¹]	densità di drenaggio
longest_drainage_path_length_km* lkml lunghezza LDP lunghezza_caprincipale_km* lkml lunghezza totale reticolo idrografico lungh_media_vers* lkml lunghezza media versanti pendenza_media_LDP* l% pendenza media tersanti pendenza_media_LDP* l% pendenza media tersanti pendenza_media_LDP* lmm media afflusso totale annuo MAP* lmm media afflusso totale annuo MAP_std* lmm media coeff. pluviale orario CPP IDFa_std* lmm/h dev. standard coeff. pluviale orario CPP IDFa_std* lmm/h dev. standard coeff. pluviale orario CPP IDFn_std* lmm/h media esponente CPP IDFn_cv [-] coeff. variazione esponente CPP IDFn_cv [-] coeff. variazione esponente CPP c_int* [-] coeff. intensità di precipitazione		[-]	
lunghezza_asta_principale_km* [km] lunghezza tatale reticolo idrografico lungh_media_vers* [km] lunghezza media lettolo idrografico lungh_media_vers* [km] lunghezza media LDP			
Lunghezza_complessiva*		[km]	
Lungh_media_vers* [km] Lunghezza media versanti pendenza_media_LDP* Pkal pendenza_media_LDP		[km]	
Parametri Climatici		[km]	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		[%]	-
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Parametri	1 -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pioggia media annua	1 urumetri	Chinate
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, 66	[mm]	media afflusso totale annuo
$ NAP_cv [-] coeff. variazione afflusso totale annuo $$ curva possibilità pluviometrica $$ Imm/h1 media coeff. pluviale orario CPP IDFa_std* [mm/h1] dev. standard coeff. pluviale orario CPP IDFa_cv [-] coeff. variazione coeff. pluviale orario CPP IDFn_bacv [-] mm/h1 dev. standard esponente CPP IDFn_batd* [mm/h1] dev. standard esponente CPP IDFn_cv [-] coeff. variazione esponente CPP c_int* [-] coeff. intensità di precipitazione [-] con i = 1h, 3h, 6h, 12h, 24h media CV piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard CV piogge durata i con i = 1h, 3h, 6h, 12h, 24h media LCV piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6$			
$ IDFa^* Imm/h media coeff. pluviale orario CPP IDFa_std^* mm/h dev. standard coeff. pluviale orario CPP IDFa_cv [-] coeff.variazione coeff. pluviale orario CPP IDFn^* mm/h media esponente CPP IDFn_std^* mm/h dev. standard esponente CPP IDFn_std^* mm/h dev. standard esponente CPP c_int^* [-] coeff. variazione esponente CPP c_int^* [-] con i = 1h, 3h, 6h, 12h, 24h media CV piogge durata i CV_{(i)}_std [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard CV piogge durata i CV_{(i)}_cv [-] con i = 1h, 3h, 6h, 12h, 24h media LCV piogge durata i CV_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h media LCV piogge durata i CV_{(i)}_cv [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i CV_{(i)}_cv [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i CV_{(i)}_cv [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i CCA_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h media LCA piogge durata i CCA_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h media LCA piogge durata i CCA_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i CCA_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i CCA_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i CCA_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i CCA_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i CCA_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i CCA_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i CCA_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i CCA_{(i)}_std^* [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i$			The same state of the same sta
IDFa_std*		[mm/h]	media coeff. pluviale orario CPP
$ DFa_{cv} IDFa_{cv} IDFn^* Imm/h media esponente CPP IDFn_std^* Imm/h dev. standard esponente CPP IDFn_std^* Imm/h dev. standard esponente CPP IDFn_std^* Imm/h dev. standard esponente CPP Ce_int^* I-1 coeff. variazione esponente CPP coeff. intensità di precipitazione I-1 con i = 1h, 3h, 6h, 12h, 24h media CV piogge durata i CV_{(i)}_std I-1 con i = 1h, 3h, 6h, 12h, 24h dev. standard CV piogge durata i CV_{(i)}_cv I-1 con i = 1h, 3h, 6h, 12h, 24h media LCV piogge durata i LCV_{(i)}_std^* I-1 con i = 1h, 3h, 6h, 12h, 24h media LCV piogge durata i LCV_{(i)}_cstd^* I-1 con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i LCA_{(i)}_cv I-1 con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i LCA_{(i)}_std^* I-1 con i = 1h, 3h, 6h, 12h, 24h media LCA piogge durata i LCA_{(i)}_std^* I-1 con i = 1h, 3h, 6h, 12h, 24h media LCA piogge durata i LCA_{(i)}_std^* I-1 con i = 1h, 3h, 6h, 12h, 24h media LCA piogge durata i LCA_{(i)}_std^* I-1 con i = 1h, 3h, 6h, 12h, 24h media LCA piogge durata i LCA_{(i)}_std^* I-1 con i = 1h, 3h, 6h, 12h, 24h media LCA piogge durata i LCA_{(i)}_std^* I-1 con i = 1h, 3h, 6h, 12h, 24h media LCA piogge durata i LCA_{(i)}_std^* I-1 con i = 1h, 3h, 6h, 12h, 24h media LCA piogge durata i LCA_{(i)}_std^* I-1 con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i LCA_{(i)}_std^* I-1 con i = 1h, 3h, 6h, 12h, 24h dev. standard LcA piogge durata i LcA_{(i)}_std^* I-1 con i = 1h, 3h, 6h, 12h, 24h dev. standard LcA piogge durata i I-1 con i = 1h, 3h, 6h, 12h, 24h coeff. variazione LcA piogge durata i I-1 con i = 1h, 3h, 6h, 12h, 24h coeff. variazione LcA piogge durata i I-1 con i = 1h, 3h, 6h, 12h, 24h coeff. variazione LcA piogge durata i I-1 con i = 1h, 3h, 6h, 12h, 24h coeff. variazione LcA piogge durata i I-1 con i = 1h, 3h, 6h, 12h, 24h coeff. variazione LcA piogge durata i I-1 con i = 1h, 3h, 6h, 12h, 24h coeff. va$			-
$ IDFn^* IDFn_std^* Imm/h dev. standard esponente CPP IDFn_std^* Imm/h dev. standard esponente CPP IDFn_cv I-J coeff. variazione esponente CPP C_int^* I-J coeff. intensità di precipitazione Intensità di precipitazio$	-		_
IDFn_std*			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-
c_int*[-]coeff. intensità di precipitazione $massimi annuali precipitazione$ con i = 1h, 3h, 6h, 12h, 24h media CV piogge durata i $CV_{(i)}$ _std[-]con i = 1h, 3h, 6h, 12h, 24h dev. standard CV piogge durata i $CV_{(i)}$ _cv[-]con i = 1h, 3h, 6h, 12h, 24h coeff. variazione CV piogge durata i $LCV_{(i)}$ *[-]con i = 1h, 3h, 6h, 12h, 24h media LCV piogge durata i $LCV_{(i)}$ _std*[-]con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i $LCV_{(i)}$ _cv[-]con i = 1h, 3h, 6h, 12h, 24h coeff. variazione LCV piogge durata i $LCA_{(i)}$ *[-]con i = 1h, 3h, 6h, 12h, 24h media LCA piogge durata i $LCA_{(i)}$ _std*[-]con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i $LCA_{(i)}$ _cv[-]con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i $LCA_{(i)}$ _cv[-]con i = 1h, 3h, 6h, 12h, 24h dev. standard Lkur piogge durata i $Lkur_{(i)}$ [-]con i = 1h, 3h, 6h, 12h, 24h dev. standard Lkur piogge durata i $Lkur_{(i)}$ _std[-]con i = 1h, 3h, 6h, 12h, 24h dev. standard Lkur piogge durata i $Lkur_{(i)}$ _std[-]con i = 1h, 3h, 6h, 12h, 24h dev. standard Lkur piogge durata i $Lkur_{(i)}$ _cv[-]con i = 1h, 3h, 6h, 12h, 24h dev. standard Lkur piogge durata i $Lkur_{(i)}$ _std[-]con i = 1h, 3h, 6h, 12h, 24h dev. standard Lkur piogge durata i $Lkur_{(i)}$ _std[-]con i = 1h, 3h, 6h, 12h, 24h dev. standard Lkur piogge durata i			
			-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.,	com mercia ar precipianzione
CV(i)_std [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard CV piogge durata i		[-]	con i = 1h, 3h, 6h, 12h, 24h media CV piogge durata
durata i CV _(i) _cv [-] con i = 1h, 3h, 6h, 12h, 24h coeff. variazione CV piogge durata i LCV _(i) * [-] con i = 1h, 3h, 6h, 12h, 24h media LCV piogge durata i LCV _(i) _std* [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge durata i LCV _(i) _cv [-] con i = 1h, 3h, 6h, 12h, 24h coeff. variazione LCV piogge durata i LCA _(i) * [-] con i = 1h, 3h, 6h, 12h, 24h media LCA piogge durata i LCA _(i) _std* [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard LCA piogge durata i LCA _(i) _cv [-] con i = 1h, 3h, 6h, 12h, 24h coeff. variazione LCA piogge durata i Lkur _(i) [-] con i = 1h, 3h, 6h, 12h, 24h media Lkur piogge durata i Lkur _(i) _std [-] con i = 1h, 3h, 6h, 12h, 24h media Lkur piogge durata i Lkur _(i) _cv [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard Lkur piogge durata i Lkur _(i) _cv [-] con i = 1h, 3h, 6h, 12h, 24h coeff. variazione Lkur piogge durata i regime pluviometrico fourier_B1* [-] media coeff. B1 regime pluviometrico			i
$ \begin{array}{ c c c } \hline CV_{(i)}_cv & [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ coeff. \ variazione \ CV \\ piogge \ durata \ i \\ \hline LCV_{(i)}^* & [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ media \ LCV \ piogge \ durata \ i \\ \hline LCV_{(i)}_std^* & [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ dev. \ standard \ LCV \ piogge \ durata \ i \\ \hline LCV_{(i)}_cv & [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ media \ LCA \ piogge \ durata \ i \\ \hline LCA_{(i)}^* & [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ media \ LCA \ piogge \ durata \ i \\ \hline LCA_{(i)}_std^* & [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ dev. \ standard \ LCA \ piogge \ durata \ i \\ \hline Lkur_{(i)} & [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ media \ Lkur \ piogge \ durata \ i \\ \hline Lkur_{(i)}_std & [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ dev. \ standard \ Lkur \ piogge \ durata \ i \\ \hline Lkur_{(i)}_cv & [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ dev. \ standard \ Lkur \ piogge \ durata \ i \\ \hline Lkur_{(i)}_cv & [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ dev. \ standard \ Lkur \ piogge \ durata \ i \\ \hline regime \ pluviometrico \\ \hline fourier_B1^* & [-] & media \ coeff. \ B1 \ regime \ pluviometrico \\ \hline \end{array}$	$CV_{(i)}$ _std	[-]	con i = 1h, 3h, 6h, 12h, 24h dev. standard CV piogge
	$CV_{(i)}$ _cv	[-]	
	$\mathrm{LCV}_{(i)}^*$	[-]	
$ \begin{array}{ c c c } \hline LCV_{(i)}_{cv} & \hline [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ coeff. \ variazione \ LCV \\ \hline piogge \ durata \ i \\ \hline LCA_{(i)}^* & \hline [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ media \ LCA \ piogge \ durata \ i \\ \hline LCA_{(i)}_{std}^* & \hline [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ dev. \ standard \ LCA \ piogge \ durata \ i \\ \hline LCA_{(i)}_{cv} & \hline [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ media \ Lkur \ piogge \ durata \ i \\ \hline Lkur_{(i)} & \hline [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ media \ Lkur \ piogge \ durata \ i \\ \hline Lkur_{(i)}_{std} & \hline [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ dev. \ standard \ Lkur \ piogge \ durata \ i \\ \hline Lkur_{(i)}_{cv} & \hline [-] & con \ i = 1h, \ 3h, \ 6h, \ 12h, \ 24h \ coeff. \ variazione \ Lkur \ piogge \ durata \ i \\ \hline regime \ pluviometrico \\ \hline fourier_{B1}^* & \hline [-] & media \ coeff. \ B1 \ regime \ pluviometrico \\ \hline \end{array}$	$LCV_{(i)}$ _std*	[-]	con i = 1h, 3h, 6h, 12h, 24h dev. standard LCV piogge
			durata i
	LCV _(i) _cv	[-]	con i = 1h, 3h, 6h, 12h, 24h coeff. variazione LCV
			piogge durata i
	$LCA_{(i)}^*$	[-]	1.
durata i LCA _(i) _cv [-] con i = 1h, 3h, 6h, 12h, 24h coeff. variazione LCA piogge durata i Lkur _(i) [-] con i = 1h, 3h, 6h, 12h, 24h media Lkur piogge durata i Lkur _(i) _std [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard Lkur piogge durata i Lkur _(i) _cv [-] con i = 1h, 3h, 6h, 12h, 24h coeff. variazione Lkur piogge durata i regime pluviometrico fourier_B1* [-] media coeff. B1 regime pluviometrico	$LCA_{(i)}$ std*	[-]	
Diogge durata i Ckur _(i) [-] con i = 1h, 3h, 6h, 12h, 24h media Lkur piogge durata i	***		
	LCA _(i) _cv	[-]	con i = 1h, 3h, 6h, 12h, 24h coeff. variazione LCA
Lkur $_{(i)}$ _std [-] con i = 1h, 3h, 6h, 12h, 24h dev. standard Lkur piogge durata i Lkur $_{(i)}$ _cv [-] con i = 1h, 3h, 6h, 12h, 24h coeff. variazione Lkur piogge durata i regime pluviometrico fourier_B1* [-] media coeff. B1 regime pluviometrico	$\operatorname{Lkur}_{(i)}$	[-]	con i = 1h, 3h, 6h, 12h, 24h media Lkur piogge durata
Lkur _(i) _cv [-] con i = 1h, 3h, 6h, 12h, 24h coeff. variazione Lkur piogge durata i regime pluviometrico fourier_B1* [-] media coeff. B1 regime pluviometrico	$Lkur_{(i)}$ _std	[-]	
piogge durata i regime pluviometrico fourier_B1* [-] media coeff. B1 regime pluviometrico			
regime pluviometrico fourier_B1* [-] media coeff. B1 regime pluviometrico	Lkur _(i) _cv	[-]	con i = 1h, 3h, 6h, 12h, 24h coeff. variazione Lkur
fourier_B1* [-] media coeff. B1 regime pluviometrico			piogge durata i
fourier_C1* [-] media coeff. C1 regime pluviometrico			
	fourier_C1*	[-]	media coeff. C1 regime pluviometrico

DEFINIZIONE SINTETICA DEI DESCRITTORI DI BACINO

fourier_B2*	[-]	media coeff. B2 regime pluviometrico
fourier_C2*	[-]	media coeff. C2 regime pluviometrico
fourier_A1	[-]	media coeff. A1 regime pluviometrico
fourier_PHI1	[-]	media coeff. PHI1 regime pluviometrico
fourier_A2	[-]	media coeff. A2 regime pluviometrico
fourier_PHI2	[-]	media coeff. PHI2 regime pluviometrico
sd_rp*	[mm]	dev. standard del regime pluviometrico
cv_rp*	[-]	coeff. variazione del regime pluviometrico
delta_mese	[mesi]	periodo intercorso tra massimo e minimo piogge
		medie mensili
	Uso s	suolo
corine land cover		
clc _(i) *	[%]	con i= 1,, 5 corine land cover classe i
copertura vegetale		
NDVI*	[-]	media NDVI
NDVI_std*	[-]	dev. standard NDVI
NDVI_cv	[-]	coeff. variabilità NDVI
curve number		
$\mathrm{CN}_{(i)}^*$	[-]	con i= 1, 2, 3 media curve number i
$CN_{(i)}$ _std*	[-]	con i= 1, 2, 3 dev. standard curve number i
$CN_{(i)}$ _cv	[-]	con i= 1, 2, 3 coeff. variazione curve number i
indice di permeabilità VAPI		·
cf*	[-]	media indice di permeabilità VAPI
cf_std*	[-]	dev. standard indice di permeabilità VAPI
cf_cv	[-]	coeff. variabilità indice di permeabilità VAPI

D DETERMINAZIONE DEI DESCRITTORI DI BACINO

Per determinare le caratteristiche fisiche dei bacini imbriferi è necessario associare in modo univoco la linea di spartiacque del bacino alla coordinata corrispondente alla sua sezione di chiusura. Se la procedura viene effettuata sulla base di un modello digitale del terreno (DEM), come in questo caso, è essenziale che le modalità di riconoscimento dello spartiacque siano robuste ed esattamente riproducibili, in modo che l'oggetto geografico associato alla sezione di chiusura sia univocamente determinato. Dal momento che l'accuratezza con cui viene ricostruito il perimetro del bacino dipende dalla risoluzione del modello digitale del terreno, le informazioni essenziali per garantire la riproducibilità della procedura sono relative allo specifico DTM ed al pacchetto software di calcolo automatico utilizzati.

Il modello digitale del terreno adoperato è il DEM allestito dal Politecnico di Milano a partire dai dati NASA SRTM (Shuttle Radar Topography Mission) elaborato dalla NASA nel 2000 (Farr et al., 2007). Tale matrice di quote ha risoluzione pari a 3 archi di secondo, che corrispondono circa a 90 metri.

Dal modello digitale del terreno viene innanzitutto determinata la mappa delle direzioni di drenaggio, che indica in ogni cella la direzione verso la quale la cella stessa trasferisce il deflusso superficiale. Elaborando la mappa delle direzioni di drenaggio si ricostruisce la matrice dell'area drenata cumulata (TCA, Total Cumulated Area): questa matrice riporta per ogni cella il numero di celle che complessivamente contribuiscono al deflusso che si raccoglie nella cella considerata. Da questa matrice viene quindi determinata l'area che contribuisce al deflusso di ogni specifica cella del bacino.

La TCA permette di individuare facilmente il reticolo idrografico in corrispondenza di quelle celle che hanno un'area drenata particolarmente elevata rispetto alle celle contigue (che rappresentano invece i versanti e che hanno un'area drenata inferiore). Identificando la sezione di chiusura di un bacino sul reticolo estratto, e sulla base delle informazioni sulle direzioni di drenaggio, è possibile delimitare automaticamente lo spartiacque. La definizione della soglia di area drenata che implica il formarsi di una rete di drenaggio (detta 'soglia di canalizzazione') è frutto di un bilancio tra il vantaggio di tenere versanti grandi e reticolo poco esteso e lo svantaggio di rischiare una rappresentazione poco accurata. Considerando le raccomandazioni reperibili in letteratura, è stato stabilito di usare una soglia di canalizzazione pari a 100 pixel che, con un dtm avente risoluzione 100 m porta ad avere aree non canalizzate di dimensione pari ad 1 km².

Con riferimento alla porzione di territorio interna allo spartiacque (area del bacino) è quindi possibile definire le proprietà di numerose grandezze che sono rappresentabili in quella porzione di spazio, siano esse attributi topografici o geografici o mappe climatiche. Valori sintetici associati a queste grandezze (ad esempio le medie spaziali) vengono chiamati descrittori di bacino. Questi possono essere facilmente costruiti utilizzando procedure di calcolo automatico basate sul software GRASS (Viglione, 2003b).

D.1 ANALISI PRELIMINARI AL CALCOLO DEI DESCRITTORI

D.1.1 Riposizionamento delle sezioni di chiusura

Talvolta il reticolo determinato automaticamente dal DEM non corrisponde perfettamente al reticolo reale e quindi le sezioni di chiusura del bacino (di coordinate note sul reticolo reale) non necessariamente vi appartengono. La soluzione è il riposizionamento manuale delle sezioni di misura che non cadono sul reticolo determinato dal DEM. Laddove ci siano dubbi sulla posizione, ci si basa su informazioni di riferimento fornite da ARPA Piemonte assieme ai dati delle stazioni di misura. Come si osserva in figura 17, gli spostamenti delle sezioni di chiusura sono solitamente moderati, dell'ordine delle centinaia di metri. Il controllo delle posizioni permette

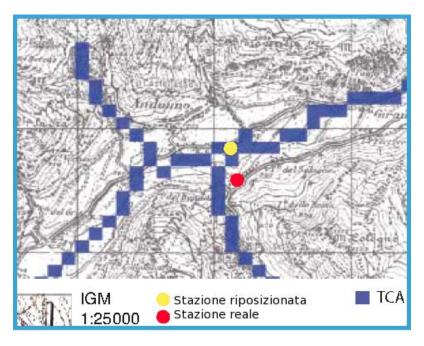


Figura 17: Esempio di riposizionamento di una generica stazione sul reticolo idrografico determinato automaticamente sulla base del modello digitale del terreno.

di individuare eventuali errori macroscopici nel posizionamento delle sezioni di chiusura.

La procedura di estrazione del reticolo, e quindi di delimitazione del bacino, è in genere molto affidabile quando i dislivelli sono piuttosto marcati (come in ambiente montano o collinare) e anche DEM a risoluzione non troppo elevata permettono di individuare correttamente le direzioni di drenaggio reali. In questi casi, l'unica manipolazione manuale che può essere necessaria è il riposizionamento della sezione di chiusura sopra il reticolo di drenaggio derivato dal DEM. Tuttavia, in aree pianeggianti la procedura non è sempre in grado di distinguere in modo esatto la direzione di drenaggio reale ed occorre, pertanto, intervenire manualmente forzando il reticolo DEM in modo da correggere la TCA. La non conformità tra il reticolo reale ed il reticolo ricavato dal DEM ha portato alla eliminazione dei dati relativi alla stazione del Grana a Levaldigi. Tale operazione è fortemente dipendente dall'area in cui si opera e dalla risoluzione del DEM, ed in genere deve essere valutata di caso in caso.

Per facilitare la comprensione del problema il reticolo è stato sovrapposto ad una cartografia esistente che permette di identificare il reale andamento del corso d'acqua. Si può vedere come occorra, nel punto A, unire il reticolo dal punto 1 al punto 2 e nel punto B unire i tratti 3 a 4, seguendo le frecce rosse. Questa forzatura può essere fatta, per esempio, inserendo un rilievo fittizio al DEM lungo le linee verdi, in modo tale che le direzioni di drenaggio identificate dal software vengano convogliate lungo le linee rosse.

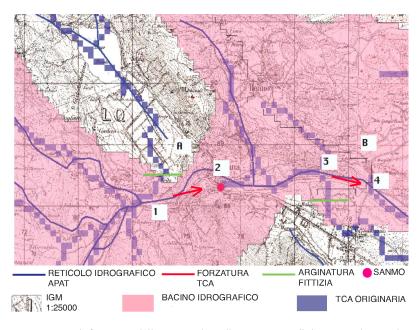


Figura 18: Esempio di forzatura della TCA volta a "ricongiungere" due tratti di reticolo separati.

D.2 DETERMINAZIONE DEI DESCRITTORI DI BACINO

In questa sezione vengono presentati tutti i descrittori di bacino utilizzati: parametri morfologici, climatici e indici di uso del suolo. Tutte queste informazioni sono state raccolte sistematicamente in schede-bacino riportate sull'*Atlante Cartografico dei Bacini Piemontesi* di cui la figura 5 ne riporta un estratto a titolo di esempio.

Parametri morfologici

I parametri morfologici calcolati sono:

Altimetria e geometria

- · Coordinate della Sezione di Chiusura, (easting, northing) [m], coordinate della sezione di chiusura definite nel sistema di riferimento UTM-WGS84.
- · Area del Bacino (area_bacinokm) [km²], area del bacino calcolata moltiplicando l'area di ogni cella per il numero di celle ricadenti nel bacino.

- **Quota Media** (*quota_media*) [ms.l.m.], fornisce la ripartizione delle superfici comprese in fasce altimetriche di ampiezza costante. La disponibilità della quota di ogni pixel consente di effettuare un calcolo senza interpolazione, in quanto è possibile risolvere la curva in ogni pixel usando il concetto della cumulata delle aree superiori ad ogni data quota. La curva ha quindi come ordinata un valore di quota e come ascissa la percentuale di superficie del bacino posta al di sopra della quota considerata. Le ordinate sono date dal vettore, ordinato in senso decrescente, delle quote dei pixel. Le ascisse sono date dalla posizione del pixel nella sequenza ordinata, proporzionale all'area sovrastante la data quota, diviso il numero totale di celle. La curva è rappresentata tramite le quote corrispondenti a percentuali di area sovrastata pari a (2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 97.5%).
- · Interquantile della Curva Ipsografica (delta_zeta) [ms.l.m.], distanza interquantile tra le quote corrispondenti al 25 e 75% di area sovrastata.
- · **Aspect del Bacino** (aspect_medio) [°], rappresenta l'angolo di esposizione di una cella sul piano orizzontale, espresso in gradi. Il valore calcolato è la media dei valori di aspect associati ad ogni pixel. Per questo parametro si è adottata la convenzione che il nord sia uguale a 0° e l'orientamento sia in senso orario.
- · Lunghezza del Vettore Orientamento (lunghezza_vett_orient_km) [km], rappresenta la lunghezza del segmento che unisce il baricentro del bacino alla sezione di chiusura.
- · **Orientamento** (*orientamento*) [°], direzione rispetto al Nord del vettore orientamento.
- · Quota Massima (quota_massima) [ms.l.m.], quota massima del bacino.
- · Quota Minima (quota_minima) [ms.l.m.], quota minima del bacino.
- · **Pendenza Media del Bacino 1** (*slope_medio1*) [%], media dei valori di pendenza associati ad ogni pixel.
- · Pendenza Media del Bacino 2 (slope_medio2) [%], angolo alla base del triangolo rettangolo che ha per base la radice quadrata dell'area del bacino e per altezza il doppio dell'altitudine mediana (relativa alla sezione di chiusura) del bacino. In sostanza tale pendenza è calcolata rispetto ad un bacino di forma quadrata equivalente a quello reale e non tiene conto della sua effettiva forma, che può essere più o meno allungata.
- · Coordinate del Baricentro (*x_baricentro* ,*y_baricentro*) [m], coordinate del pixel più vicino al baricentro del bacino.
- · Rettangolo Contenente il Bacino (*x_minimo*, *y_minimo* e *x_massimo*, *y_massimo*) [m], latitudine e longitudine minima e massima, cioè vertici del rettangolo che descrive l'area del bacino.

Fattori di forma e funzione di ampiezza

· Coefficiente di Compatezza (*c_comp*) [–], coefficiente di compattezza. E' rapporto tra il perimetro del bacino ed il diametro del cerchio avente la stessa area del bacino.

- · **Fattore di Forma** (F_{f}) [-], è il rapporto tra l'area del bacino e il quadrato della lunghezza dell'asta principale.
- · **Rapporto di Allungamento** (*R_al*) [–], è il rapporto tra il diametro del cerchio di eguale area del bacino e LLDP.
- · Caratteristiche della funzione di ampiezza (media_fa, varianza_fa, skewness_fa, kurtosis_fa, fa_percento), La funzione di ampiezza è definita contando il numero di pixel aventi uguale distanza metrica dalla sezione di chiusura, distanza misurata seguendo le direzioni di drenaggio. Di questa funzione si sono calcolati i primi 4 momenti statistici (media, varianza, skewness, kurtosi) e il vettore percentili, ovvero le distanze dalla sezione di chiusura entro le quali sono contenute percentuali di pixel pari a: (5%, 15%, 30%, 40%, 50%, 60%, 70%, 85%, 95%).

Parametri di Horton

- · **Rapporto delle Aree** (R_a) [-], è il rapporto tra le aree medie drenate dai segmenti di ordine u + 1 e i segmenti di ordine u, seguendo la numerazione di Horton.
- · **Rapporto di Biforcazione** (R_b) [-], è il rapporto tra le aste di ordine u e il numero di quelle di ordine u + 1, avendo numerato le aste seguendo il criterio di Horton.
- · **Rapporto delle Lunghezze** (R_l) [-], è il rapporto tra le lunghezze medie di due ordini adiacenti u e u + 1, avendo numerato le aste seguendo il criterio di Horton.
- · **Rapporto delle Pendenze** (R_s) [-], è il rapporto tra le pendenze medie di due ordini adiacenti u e u + 1, con le aste numerate secondo il criterio di Horton.
- · Numeri di Horton Strahler, matrice di 10 righe, ognuna corrispondente ad un ordine di Horton, avente per colonne: il numero di aste (numero_aste), la lunghezza media delle aste di un dato ordine,(lung_media_aste), l'area contribuente media per ogni ordine (area_contr_media_aste) e la pendenza media delle aste di ciascun ordine (pendenza_media_aste) (ogni pendenza è calcolata come rapporto tra il dislivello fra gli estremi e la lunghezza del segmento), con i = 1,10.

Reticolo Idrografico

- **Densità di Drenaggio** (*densita_drenaggio*) [km⁻¹], è il rapporto tra la lunghezza complessiva del reticolo e l'area del bacino. Presenta generalmente valori molto alti nelle aree interessate dalla presenza di terreni impermeabili e diminuisce all'aumentare della permeabilità o del grado di copertura vegetale del bacino idrografico.
- · **Diametro Topologico** (*diam_topol*) [—], numero di segmenti (link) che formano l'asta principale. Indica il numero delle confluenze rilevate sull'asta principale.
- · Lunghezza LDP (longest_drainage_path_length_km) [km], è il percorso tra la sezione di chiusura ed il punto più lontano da essa, sul bordo del bacino, seguendo le direzioni di drenaggio. Esso coincide per la maggior parte del suo percorso con l'asta principale fino a quando si arriva ai limiti superiori del bacino. L'asta principale, infatti, ha sorgente più a valle e

all'interno del bacino, mentre il LDP comincia su un punto appartenente al contorno dello stesso.

- · Lunghezza dell'Asta Principale (lunghezza_asta_principale_km) [km], intesa come la più lunga asta del reticolo, ovvero la successione più lunga di segmenti che congiungono una sorgente alla sezione di chiusura del bacino. Con sorgenti si indicano quei punti della rete idrografica posti alle estremità di monte da cui il reticolo stesso ha origine.
- · Lunghezza Complessiva (lunghezza_complessiva) [km], è la lunghezza totale del reticolo idrografico.
- · Lunghezza Media dei Versanti (lungh_media_vers) [km], media delle distanze, misurate seguendo le direzioni di drenaggio, di tutti i pixel non appartenenti al reticolo, a partire dal primo pixel del reticolo in cui drenano.
- · Pendenza Media dell'asta principale LDP (pendenza_media_LDP) [%], calcolata come rapporto tra la differenza tra le quote massime e minime dei pixel del DEM e la LLDP.

Parametri climatici

Sono stati esaminati diversi parametri climatici connessi alle precipitazioni intense e ai regimi pluviometrici relativi al territorio considerato. Sono innanzitutto disponibili informazioni relative a:

- · IDF_a (IDF_a) [mm/h] , coefficiente pluviale orario della curva di possibilità pluviometrica nella forma $h = ad^n$.
- · IDF_n (IDF_n) [mm/h], esponente di invarianza di scala della curva di possibilità pluviometrica nella forma $h = ad^n$.
- · MAP [mm] (MAP) [mm], afflusso totale medio annuo.
- · CV_{1h} , CV_{3h} , ..., LCV_{3h} , ..., LCA_{6h} , ..., $Lkur_{12h}$, ... [-] della precipitazione massima annuale per durata pari a 1, 3, 6, 12 e 24 ore

Per ognuna di queste grandezze il valore utilizzato corrisponde al valore medio a scala di bacino. E' anche possibile calcolare altre statistiche spaziali delle grandezze sopra descritte, come la deviazione standard (suffisso $_std$) e il coefficiente di variazione (suffisso $_cv$). Pertanto, può essere utilizzata come descrittore la deviazione standard del coefficiente di variazione CV_{3h} , grandezza che assumerebbe il nome-variabile di CV_{3h} -std. E' stato anche calcolato un **coefficiente di intensità** (c_int) di precipitazione definito come il rapporto tra il coeficiente pluviale orario e la precipitazione media annua:

$$c_{int} = \frac{IDF_a}{MAP} \tag{D.1}$$

La stima puntuale di questi parametri è stata sviluppata in (Bartolini et al., 2011a) attraverso una procedura per la caratterizzazione statistica della distribuzione spaziale delle precipitazioni sul territorio piemontese. In particolare sono stati analizzati gli eventi estremi di precipitazione

(massimi annuali di pioggia per durate pari a 1, 3, 6, 12 e 24 ore), è stata ricostruita la curva di probabilità pluviometrica e sono stati calcolati gli indici necessari alla caratterizzazione probabilistica delle precipitazioni sull'intero territorio piemontese su una griglia a maglia regolare di 250 metri di lato. I diversi descrittori climatici vengono associati ad ogni bacino applicando una media del parametro sul numero di celle che costituisce il bacino. Ad esempio, per il coefficiente pluviale orario si ottiene

$$a_{\text{BACINO}} = \frac{1}{N} \sum_{i=1}^{N} a_i \tag{D.2}$$

con N numero di pixel del bacino. In figura 4 si ha un esempio della mappa a scala di bacino dell'afflusso totale medio annuosul territorio in esame.

Per descrivere i regimi idrologici è stata utilizzata una rappresentazione mediante serie di Fourier, che consente di descrivere la forma del regime con un numero di parametri inferiore ai 12 valori medi mensili da cui questo viene costituito. Per il teorema di Fourier, infatti, un'onda armonica di periodo τ e pulsazione $\omega=2\pi/\tau$ e di forma qualunque, sotto opportune ipotesi può essere espressa come

$$f(t) = A_0 + \sum_{i=1}^{N} A_i \cos(i\omega t + \phi_i), \tag{D.3}$$

dove t indica il tempo, A_0 è la media di f(t) sul periodo t, N è il numero di armoniche, A_i la loro ampiezza e ϕ_i la fase. Nel caso di due armoniche la serie può essere scritta come:

$$f(t) = A_0 + A_1 \cos\left(\frac{2\pi}{\tau} + \phi_1\right) + A_2 \cos\left(\frac{4\pi}{\tau} + \phi_2\right),\tag{D.4}$$

da cui si ottiene:

$$\begin{split} f(t) &= A_0 + A_1 \cos \left(\frac{2\pi}{\tau} t\right) \cdot \cos(\phi_1) - A_1 \sin \left(\frac{2\pi}{\tau} t\right) \cdot \sin(\phi_1) \\ &\quad + A_2 \cos \left(\frac{4\pi}{\tau} t\right) \cdot \cos(\phi_2) - A_2 \sin \left(\frac{4\pi}{\tau} t\right) \cdot \sin(\phi_2). \end{split}$$

Separando le grandezze che non dipendono da t:

$$B_1 = A_1 \cos(\phi_1)$$
 $B_2 = A_2 \cos(\phi_2)$ $C_1 = -A_1 \sin(\phi_1)$ $C_2 = -A_2 \sin(\phi_2)$

da quelle che ne dipendono:

$$\begin{split} X_1(t) &= \cos\left(\frac{2\pi}{\tau}t\right) \qquad X_2(t) = \cos\left(\frac{4\pi}{\tau}t\right) \\ Y_1(t) &= \sin\left(\frac{2\pi}{\tau}t\right) \qquad Y_2(t) = \sin\left(\frac{4\pi}{\tau}t\right) \end{split}$$

si può riscrivere la (D.4) come:

$$f(t) = A_0 + B_1 \cdot X_1(t) + C_1 \cdot Y_1(t) + B_2 \cdot X_2(t) + C_2 \cdot Y_2(t). \tag{D.5}$$

Questa notazione è molto utile perché permette di adattare l'armonica ad una funzione conosciuta f(t) stimando i coefficienti A₀ (media), B₁, B₂, C₁ e C₂ con il metodo dei minimi quadrati. L'ampiezza e la fase dell'armonica si ottengono secondo le relazioni

$$A_1 = \sqrt{B_1^2 + C_1^2} \qquad \phi_1 = \text{sign}\left(-\frac{C_1}{A_1}\right) \cdot \arccos\left(\frac{B_1}{A_1}\right) \tag{D.6}$$

 A_2 e ϕ_2 si ottengono in modo analogo come

$$A_2 = \sqrt{B_2^2 + C_2^2} \qquad \phi_2 = \text{sign}\left(-\frac{C_2}{A_2}\right) \cdot \arccos\left(\frac{B_2}{A_2}\right) \tag{D.7}$$

Lo notazione (D.5) può essere ulteriormente semplificata considerando, come nel caso in esame, nulla la media A_0 e risolvendo per un periodo $\tau = 2\pi$.

Nel caso in esame sono state calcolate, con riferimento al regime pluviometrico, le mappe dei coefficienti B_1 , B_2 , C_1 e C_2 su Piemonte, Liguria e Valle d'Aosta. Con procedura automatica sono stati ricavati:

- · \overline{B}_1 , \overline{B}_2 , \overline{C}_1 , \overline{C}_2 (fourier_B1, fourier_B2, fourier_C1, fourier_C2) [-], valori medi dei coefficienti della rappresentazione in serie di Fourier dei regimi pluviometrici.
- $\cdot \overline{A}_1, \overline{A}_2, \overline{PHI}_1, \overline{PHI}_2$ (fourier_A1, fourier_A2, fourier_PHI1, fourier_PHI2) [-], valori medi di ampiezza e fase delle due armoniche ricavati tramite le relazioni (D.7).
- · **Deviazione Standard del Regime Pluviometrico** (*st_rp*) [mm], deviazione standard del regime pluviometrico medio sul bacino, considerando i 12 valori medi mensili.
- · Coefficiente di Variazione del Regime Pluviometrico (cv_rp) [-], coefficiente di variazione del regime pluviometrico medio sul bacino, considerando i 12 valori medi mensili.
- Periodo Intercorso tra Massimo e Minimo delle Piogge Medie Mensili (delta_mese)
 [mesi], numero di mesi intercorsi tra l'occorrenza del massimo annuale di precipitazione e il minimo successivo.

Indici di permeabilità ed uso del suolo

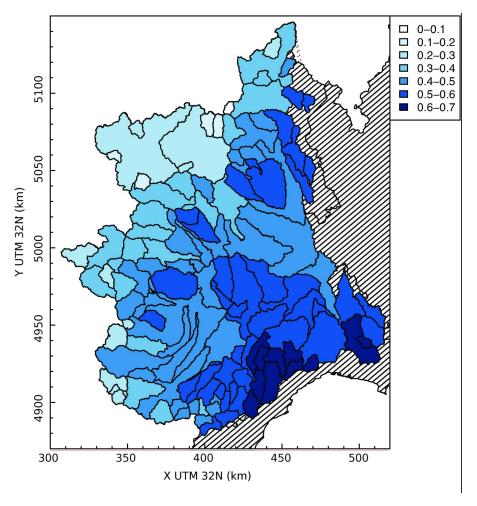
Sono stati utilizzati cinque indici di uso del suolo, definiti raggruppando classi simili tra quelle definite nel progetto CORINE Land Cover, terzo livello, (COoRdination of INformation on Environment, (Agency)) e un indice l'NDVI, Normalized Difference Vegetation Index, definito da misurazioni della Nasa (Nasa), rese disponibili tramite il database gestito dal USGS, United States Geological Survey. In particolare le classi di copertura del suolo sono:

· Corine Land Cover₁ (*clc*₁) [%], percentuale, sull'area del bacino, di zone urbanizzate con tessuto continuo e di aree urbanizzate discontinue (classi CORINE 111, 112);

- · Corine Land Cover₂ (clc₂) [%], percentuale, sull'area del bacino, di boschi (311, 312, 313), vegetazione arborea, vegetazione arbustiva, cespugliati (324, 323, 321, 322);
- · Corine Land Cover₃ (*clc*₃) [%], percentuale, sull'area del bacino, di zone con vegetazione erbacea, prato-pascolo, colture speciali, oliveti, vigneti, seminativi (231, 222, 223, 221, 211, 241, 243, 242, 142);
- · Corine Land Cover₄ (clc_4) [%], percentuale, sull'area del bacino, di zone non vegetate (331, 333, 332, 334), zone estrattive, discariche e cantieri (131, 133), zone industriali, commerciali e reti di comunicazione (121, 122, 123, 124);
- · Corine Land Cover₅ (*clc*₅) [%], percentuale, sull'area del bacino, di zone umide (411, 512, 521).

I codici in parentesi si riferiscono alla legenda del progetto CORINE Land Cover, riportata in tabella (15).

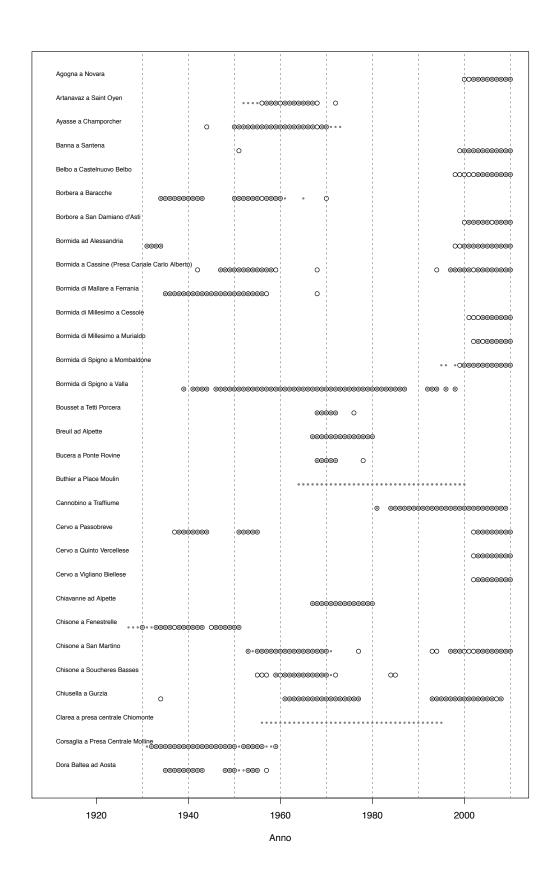
· **NDVI** (*NDVI*) E' un indice di vegetazione misurato da satellite, compreso tra o ed 1. Il valore utilizzato corrisponde alla sua media spaziale a scala di bacino. Sono state anche calcolate la deviazione standard (*NDVI_std*) e il coefficiente di variazione (*NDVI_cv*).

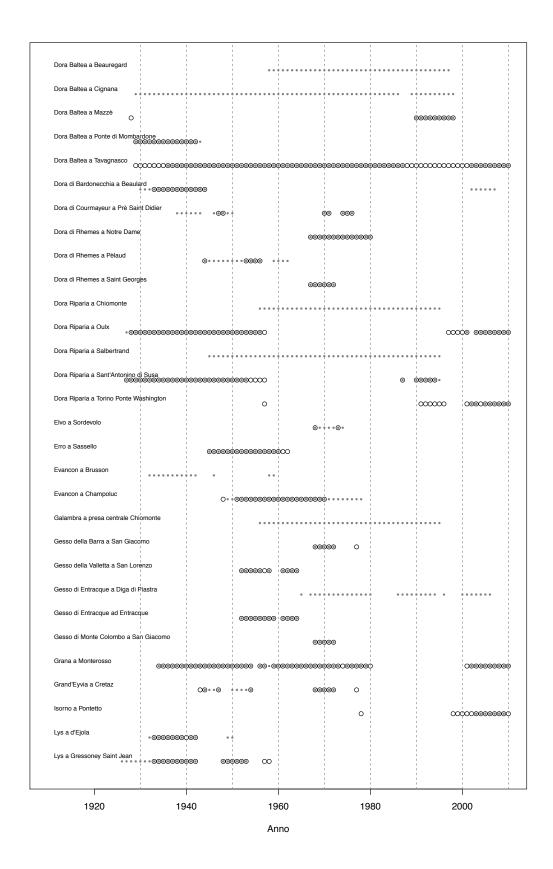

Gli indici di permeabilità del suolo disponibili per questo lavoro sono:

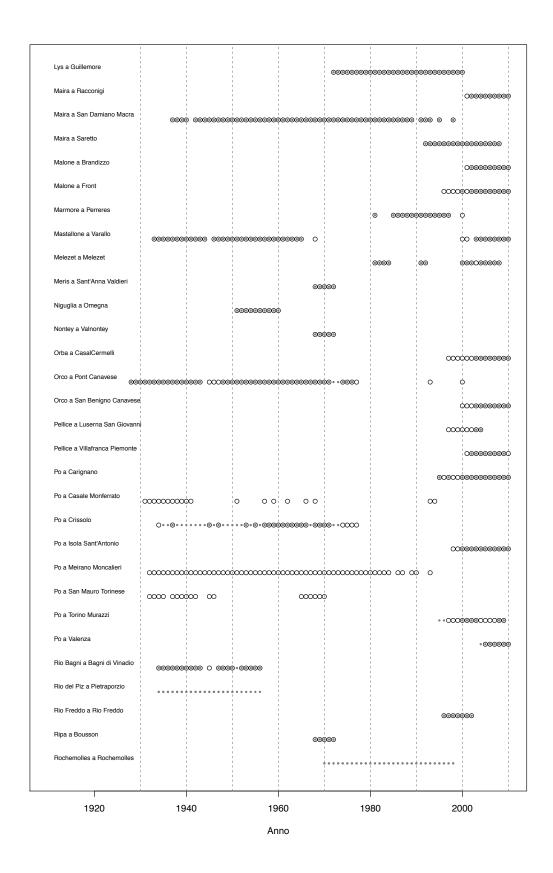
- Curve Number (CN1, CN2, CN3) [-], è un parametro empirico utilizzato in idrologia per definire la parte di pioggia che si infiltra nel terreno (Group, 2004). Sono a disposizione tre tipi di curve number che variano a seconda del contenuto di umidità nel suolo. Il contenuto di umidità nel suolo varia tra due estremi, saturazione nulla del terreno e saturazione totale cioè terreno secco e terreno umido. Il curve number relativo al terreno secco è il CN1, quello relativo al terreno umido è il CN3. Viene poi utilizzato il CN2 per descrivere il curve number di un terreno con contenuto medio di umidità del suolo. I valori utilizzati in questo studio sono stati ricavati da una cartografia a scala nazionale prodotta da (Carriero, 2004)
- · Coefficiente di Permeabilità $C_f(c_f)[-]$, è un indice di permeabilità utilizzato nel progetto Vapi (Villani, 2003b). Tale coefficiente è stato ottenuto mediante classificazione ed assegnazione di valore di permeabilità in condizioni di piena mediante bilanciamento della formula razionale.

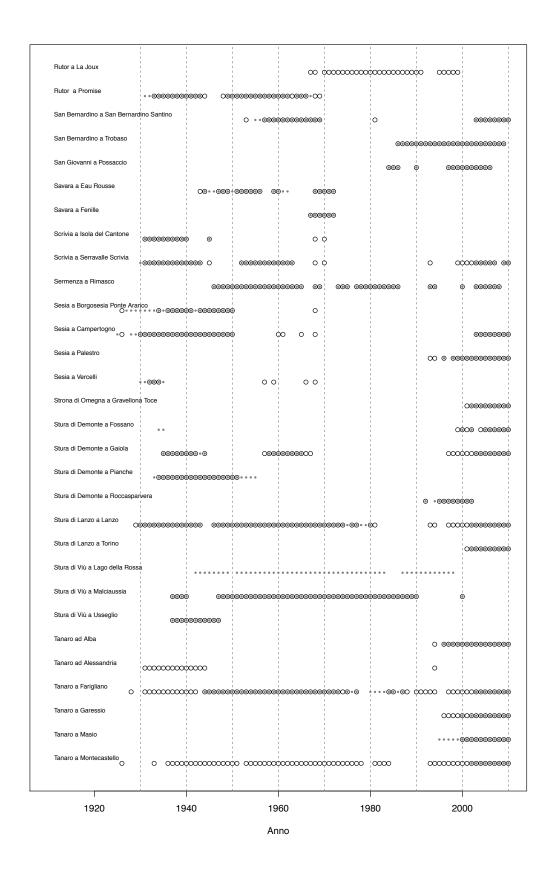
Anche per gli indici CN e C_f il valore utilizzato corrisponde al valore medio a scala di bacino. Sono state anche calcolate la deviazione standard (suffisso $_std$) e il coefficiente di variazione (suffisso $_cv$), pari al rapporto tra deviazione standard e media (sempre a scala di bacino).

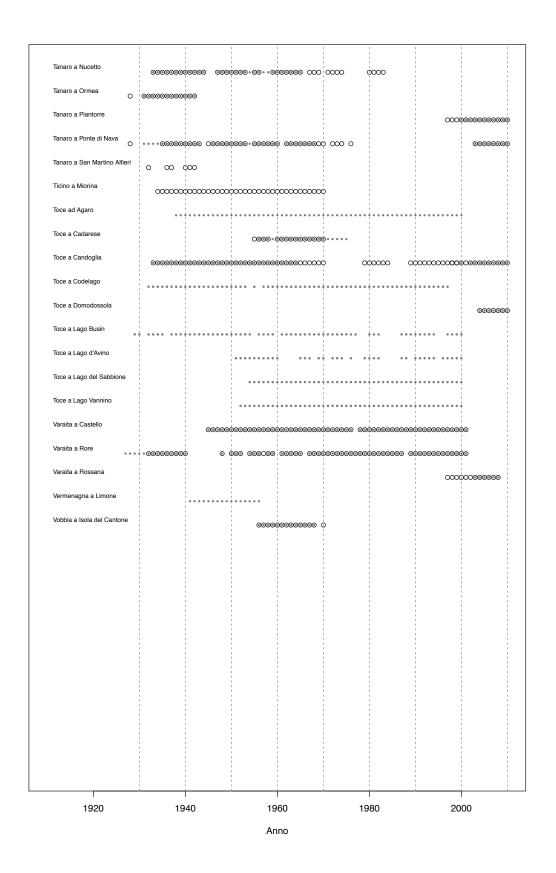
Tabella 15: Legenda CORINE Land Cover e definizione delle percentuali stimate di tipologia di copertura alla scala di ogni codice

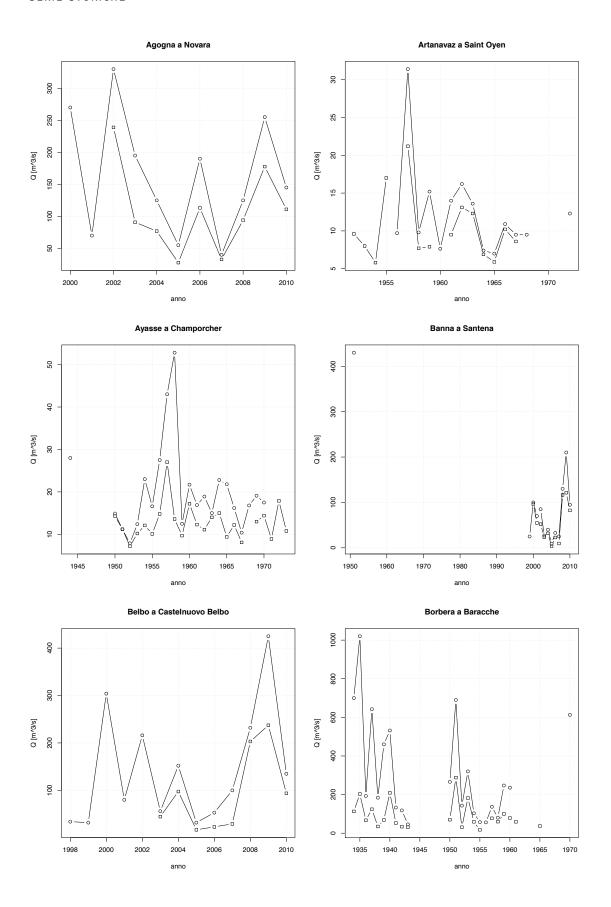

Codice	Descrizione	Alberi [%]	Prati [%]	Suolo nudo [%]	Impermeabile [%]
111	continuous urban fabric	О	5	5	90
112	discontinuous urban fa- bric	5	10	5	80
121	industrial or commer- cial units	0	10	5	85
122	road and rail networks and associated land	5	20	5	70
123	port areas	О	О	10	90
124	Airports	О	20	5	75
131	mineral extraction sites	O	5	10	85
132	dump sites	O	0	30	70
133	construction sites	О	5	30	65
141	green urban areas	20	40	10	30
142	sport and leisure facili- ties	10	30	5	55
211	non-irrigated arable land	0	80	20	О
212	permanently irrigated land	O	80	20	О
213	rice fields	О	5	20	75
221	Vineyards	20	5	75	0
222	fruit trees and berry plantations	50	20	30	0
223	olive groves	60	20	20	0
231	Pastures	5	90	5	0
241	annual crops associated with permanent crops	5	80	15	О
242	complex cultivation pat- terns	15	65	20	О
243	mix agriculture and na- tural vegetation	20	60	20	0
244	agro-forestry areas	70	25	5	0
311	broad leaved forest	85	10	5	0
312	coniferous forest	85	10	5	0
313	mixed forest	85	10	5	0
321	natural grassland	15	80	5	0
322	moors and heathland	O	90	5	5
323	sclerophyllous vegetation	О	85	10	5
324	transitional woodland- scrub	40	50	5	5
331	beaches, dunes, sands	5	20	75	0
332	bare rocks	5	5	10	80
333	sparsely vegetated areas	10	10	70	10
334	burnt areas	5	5	60	30
335	glaciers and perpetual snow	О	О	20	80
411	inland marshes	5	50	5	40
412	peat bogs	5	50	5	40
421	salt marshes	o	o	10	90
422	Salines	О	0	10	90
423	intertidal flats	О	0	30	70
511	water courses	5	15	20	50
512	water bodies	0	0	20	80
521	coastal lagoons	5	10	10	75
522	Estuaries	5	5	10	80
523	sea and ocean	O	О	0	100

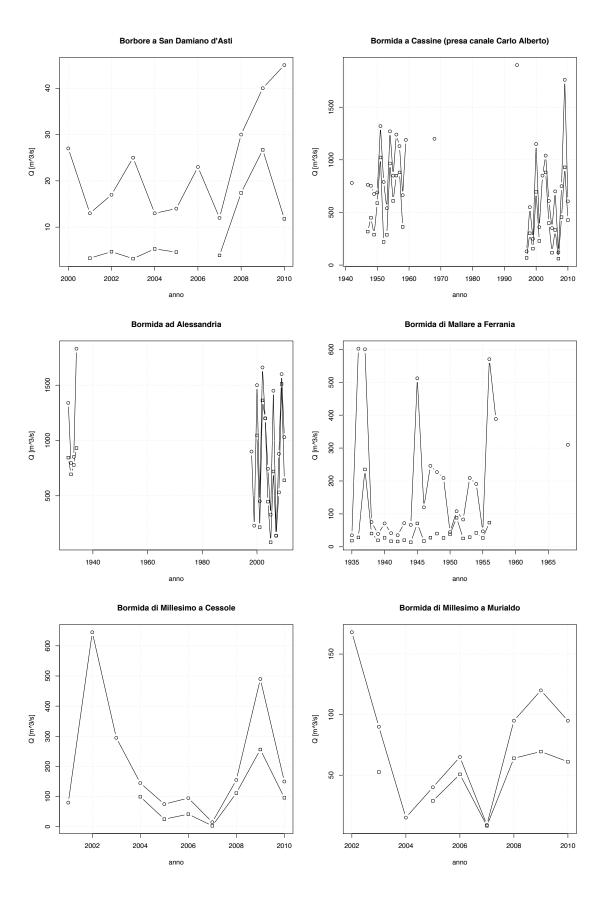


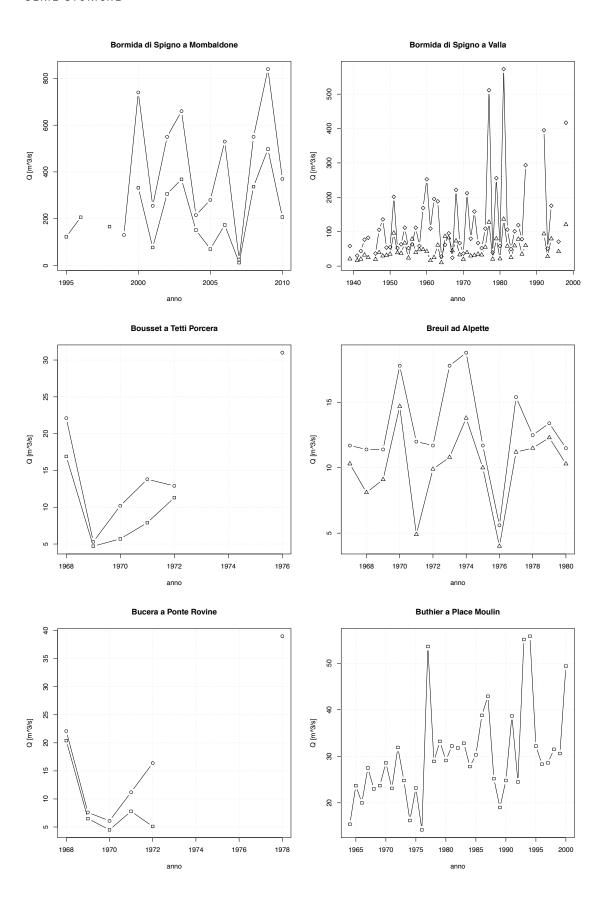

Figura 19: Esempio di mappa rappresentante la copertura vegetale da satellite (indice NDVI) a scala di bacino per i bacini utilizzati nell'analisi. Per bacini innestati, la colorazione relativa al bacino più piccolo si sovrappone a quella del bacino idrografico principale.

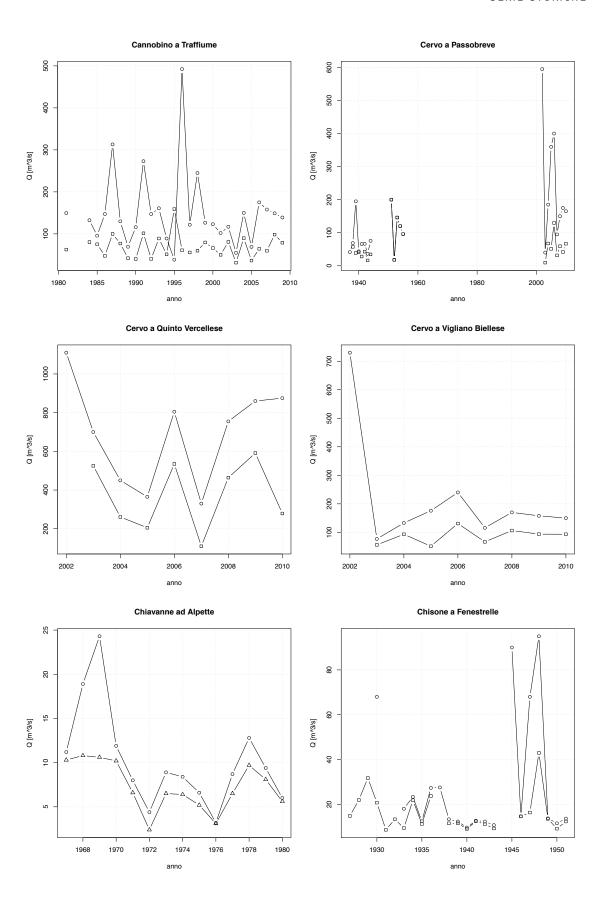

E | CONSISTENZA DATI

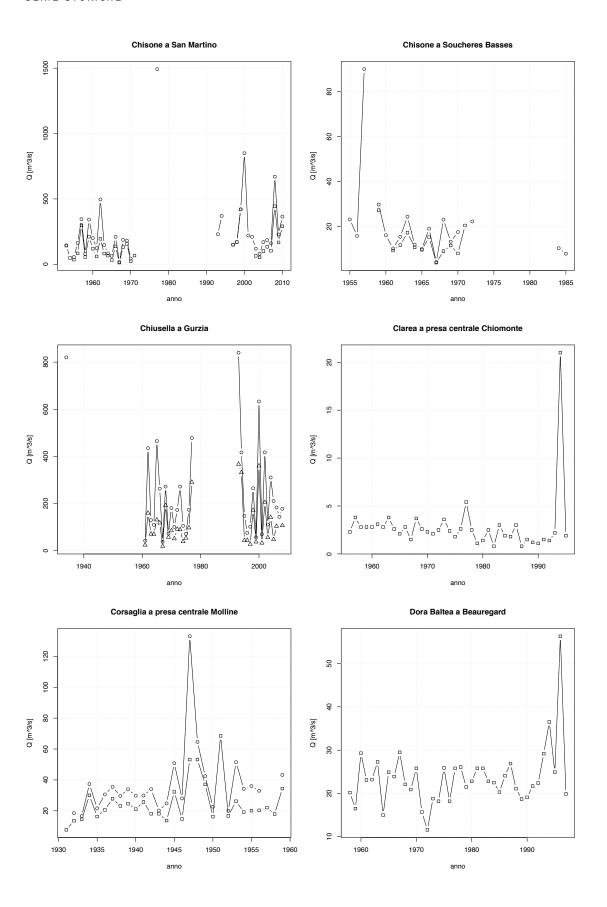

Si riportano le consistenze dei dati di piena disponibili per le 140 stazioni contenute nel catalogo delle piene. La consistenza e la tipologia dei dati varia da stazione a stazione. In particolare, i dati corrispondenti ai valori massimi annui al colmo di piena e massimi annui orari sono stati rappresentati con un simbolo circolare; i dati corrispondenti ai valori massimi annui giornalieri e massimi annui su 24 ore sono stati rappresentati con pallini grigi. In alcuni anni-stazione sono presenti diverse tipologie di dato. Per dettagli su ogni singolo anno-stazione consultare l'appendice F.

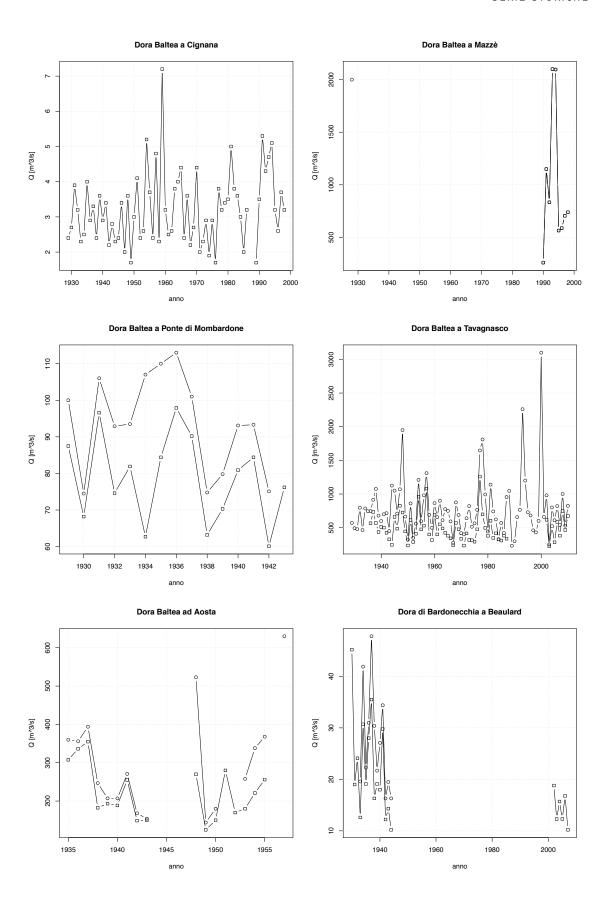


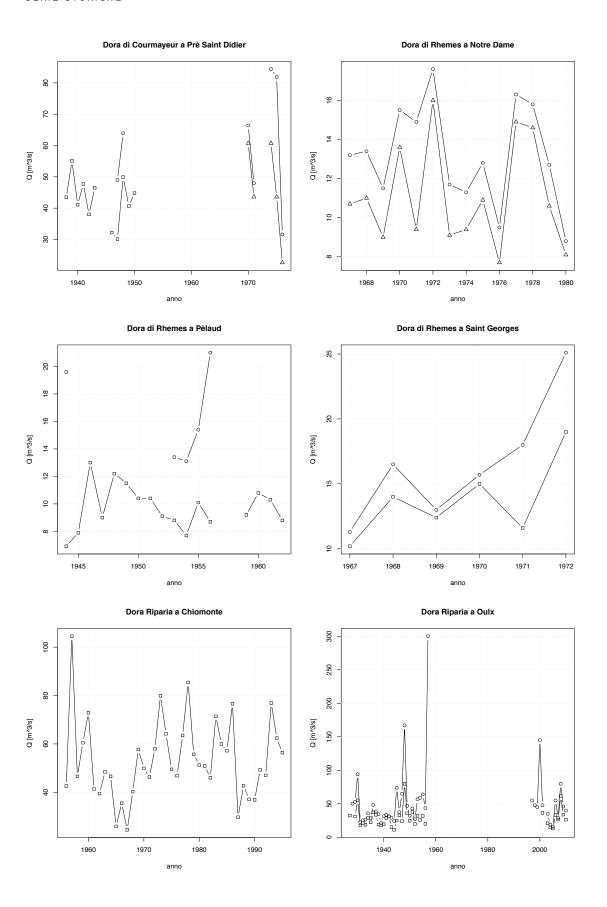


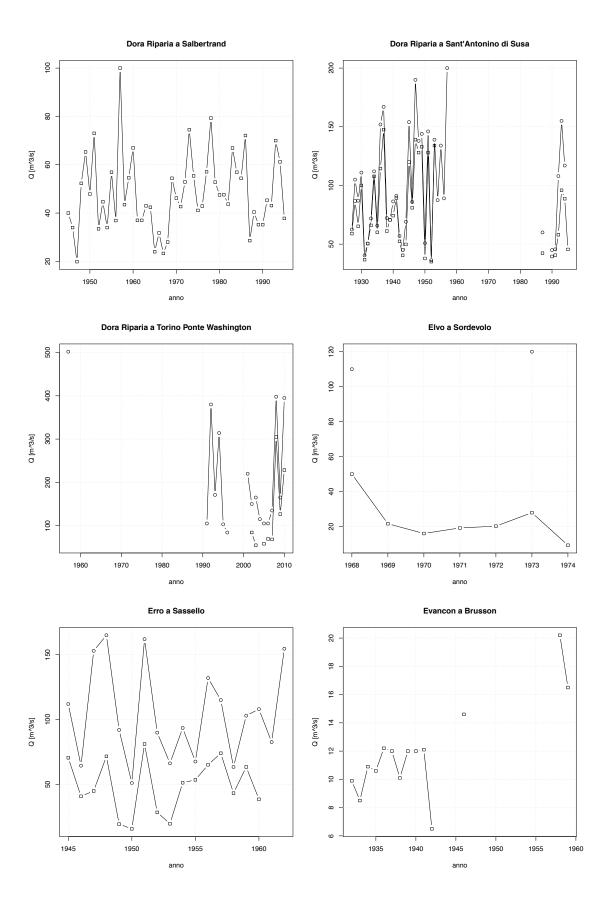

F SERIE STORICHE

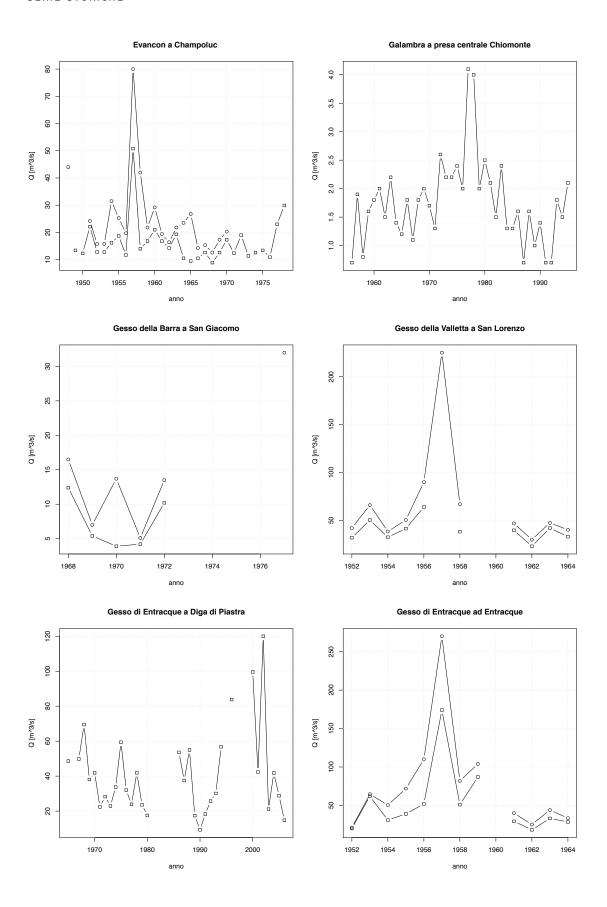

Si riportano le serie storiche relative ai dati contenuti nel catalogo delle piene per le 140 stazioni disponibili. La consistenza e la tipologia dei dati varia da stazione a stazione. In particolare, le diverse tipologie di dato sono identificate con i seguenti simboli:

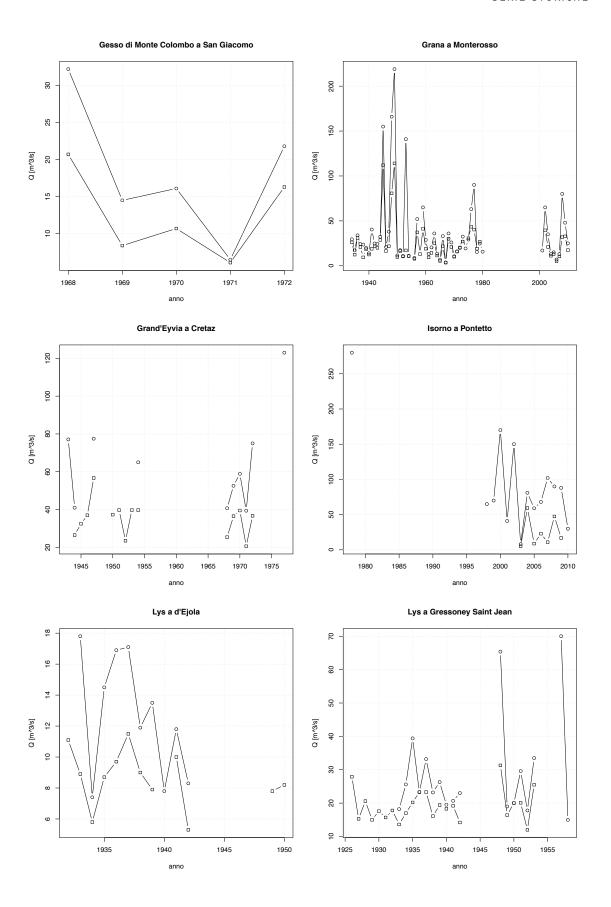

\bigcirc	valore massimo i annuo al colmo di piena
	valore massimo annuo giornaliero;
\Diamond	valore massimo annuo orario;
Δ	valore massimo annuo su 24 ore.

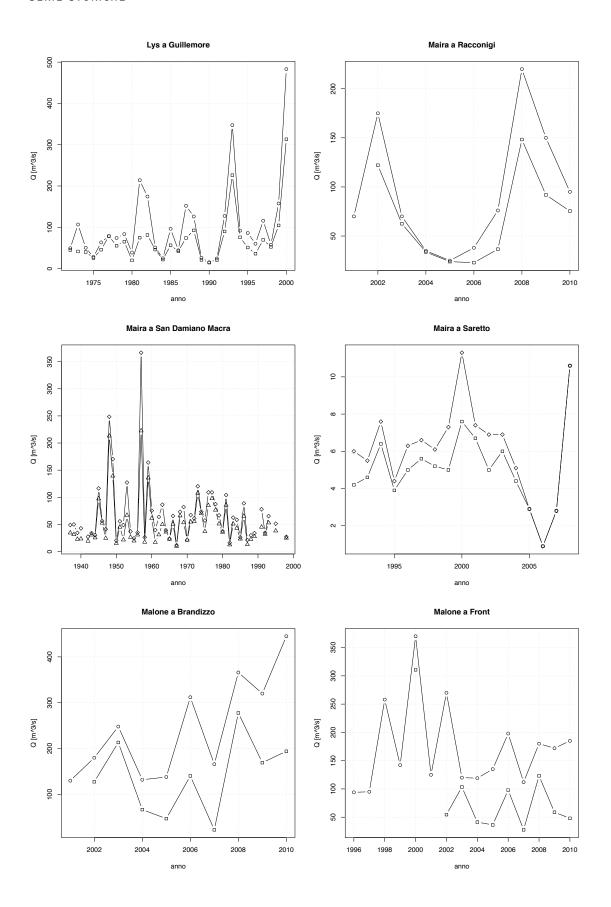


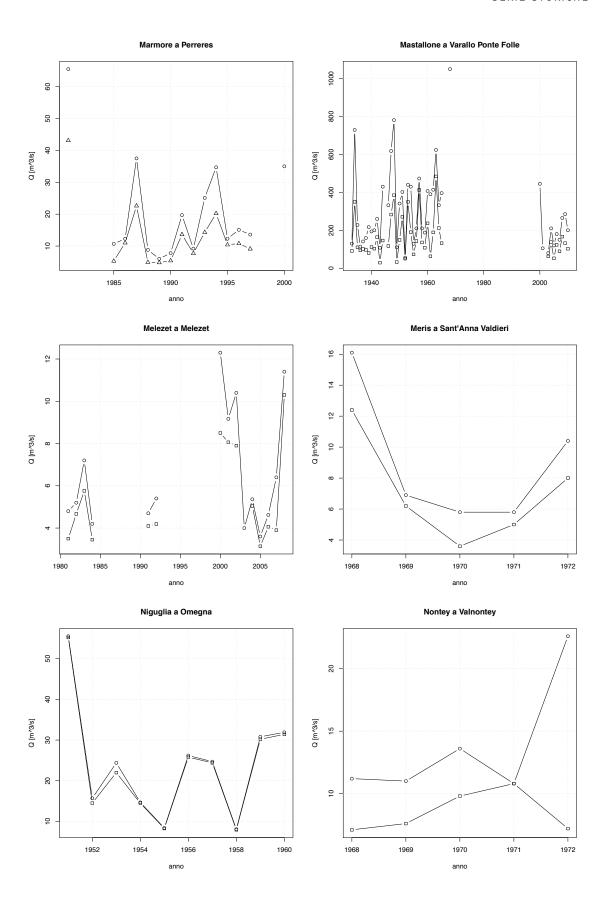


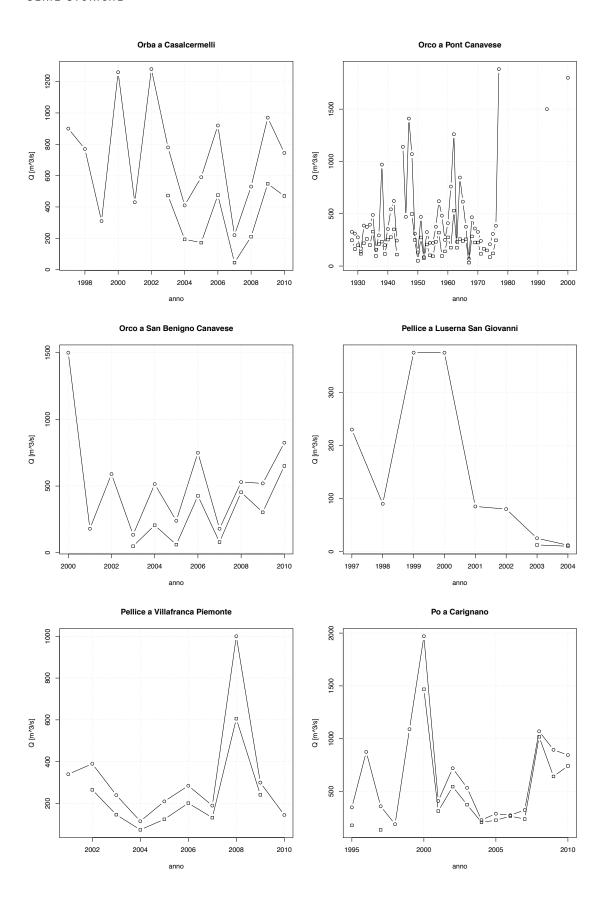


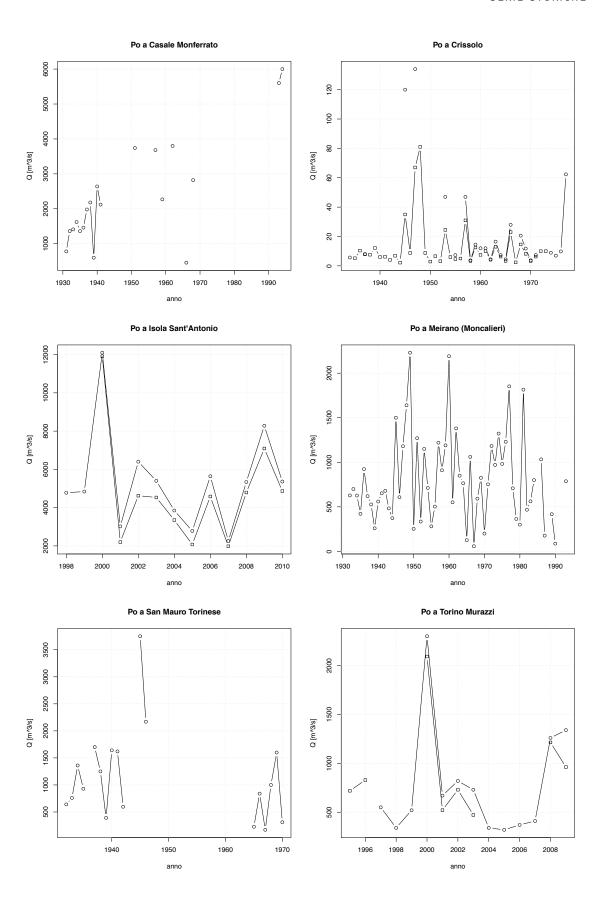


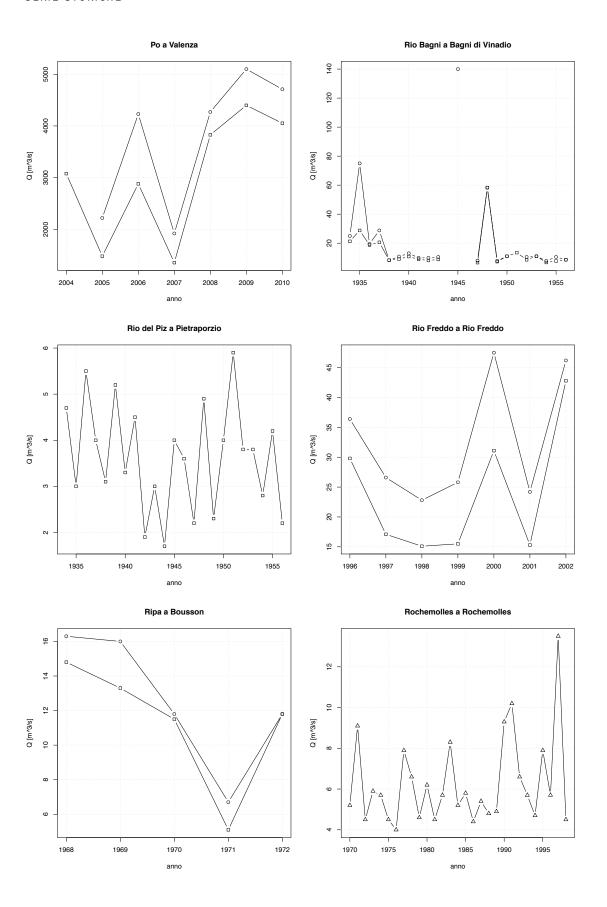


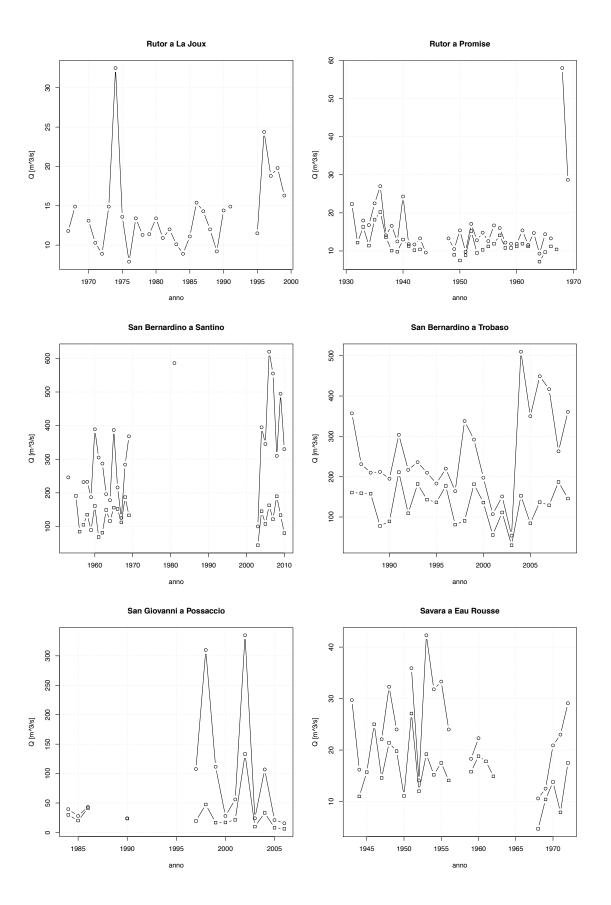


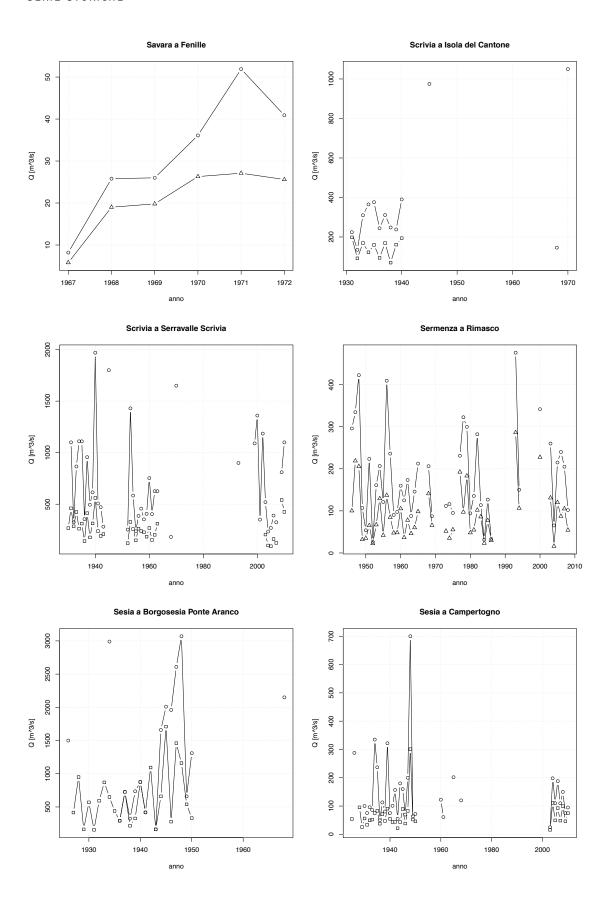


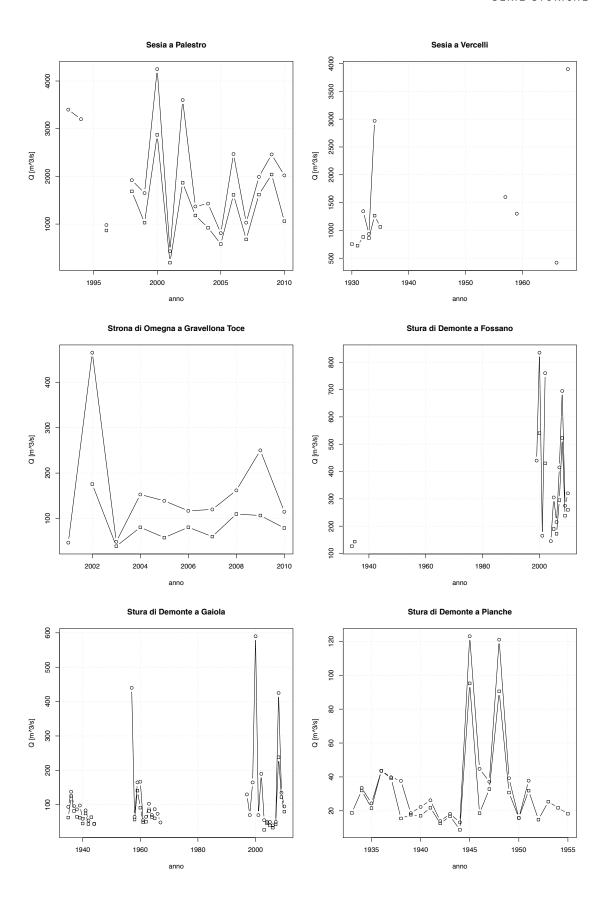


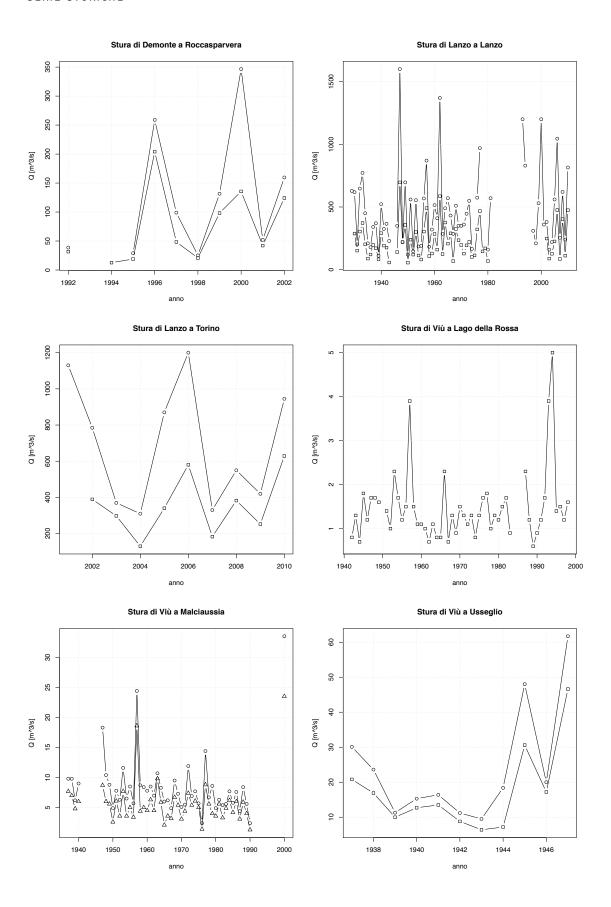


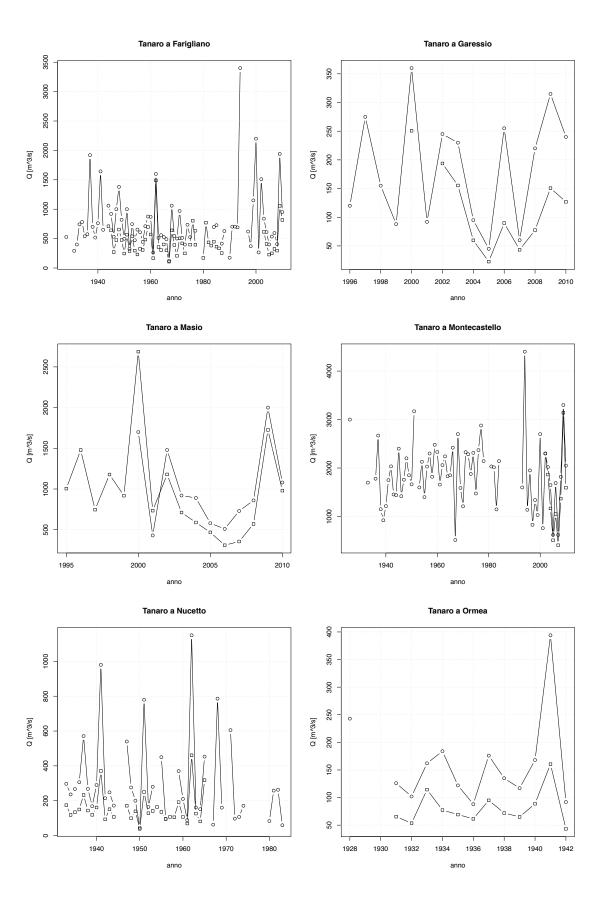


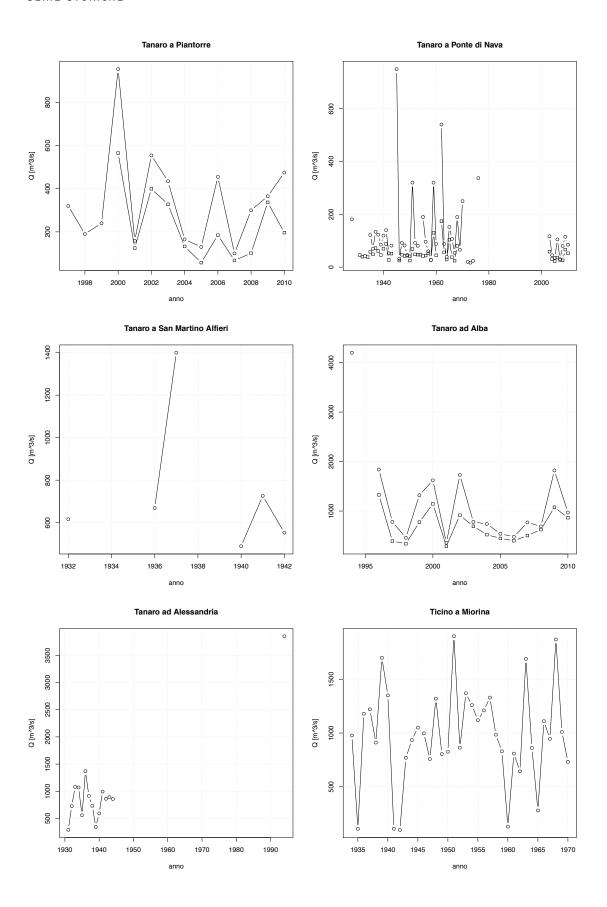


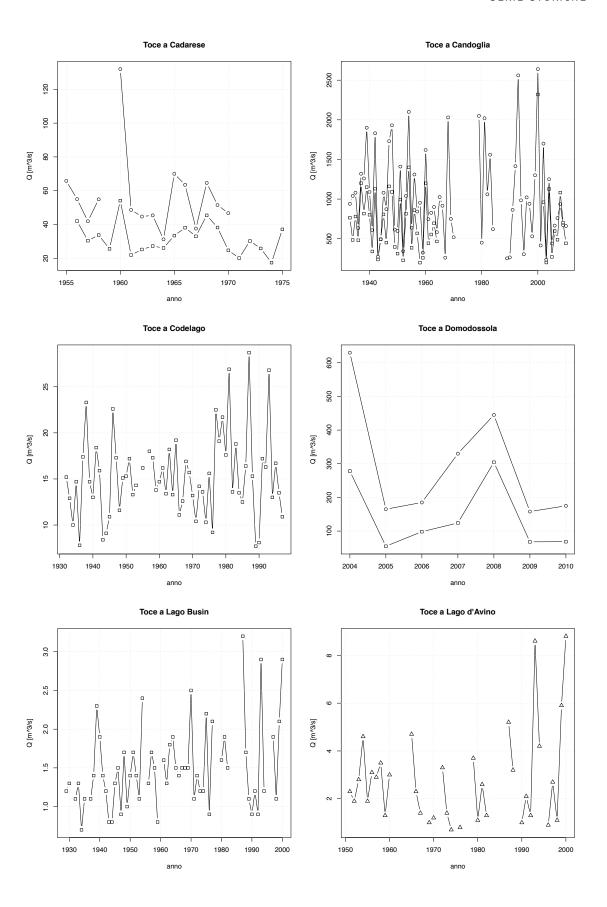


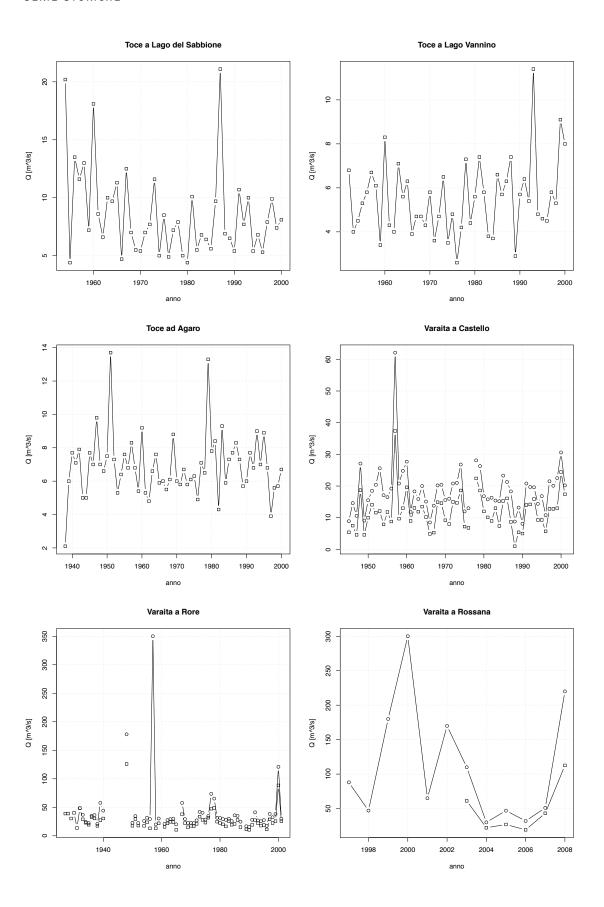


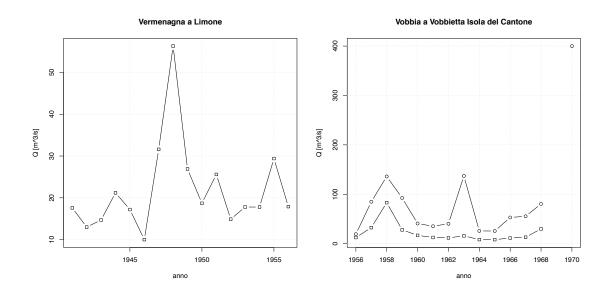





SERIE STORICHE







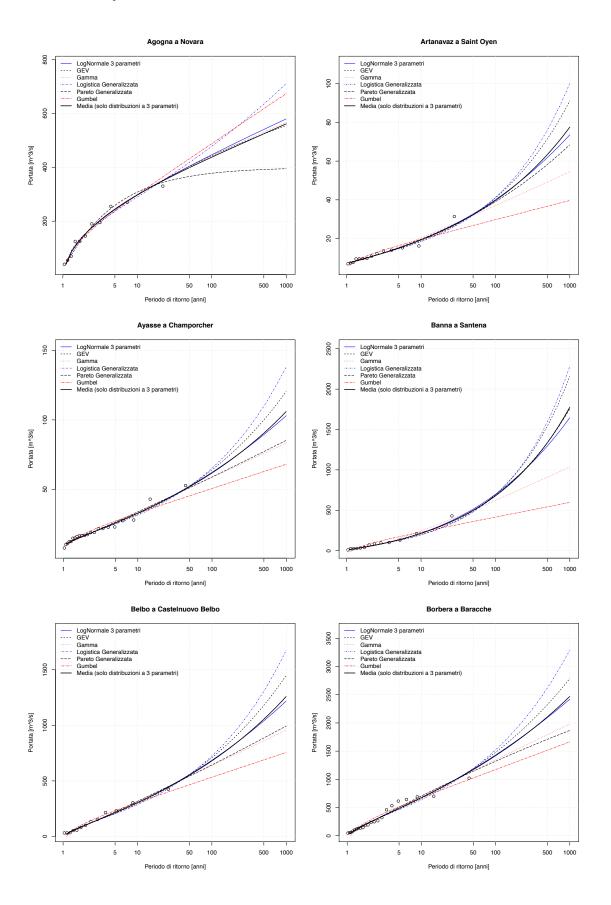
G | CARATTERISTICHE DEI BACINI

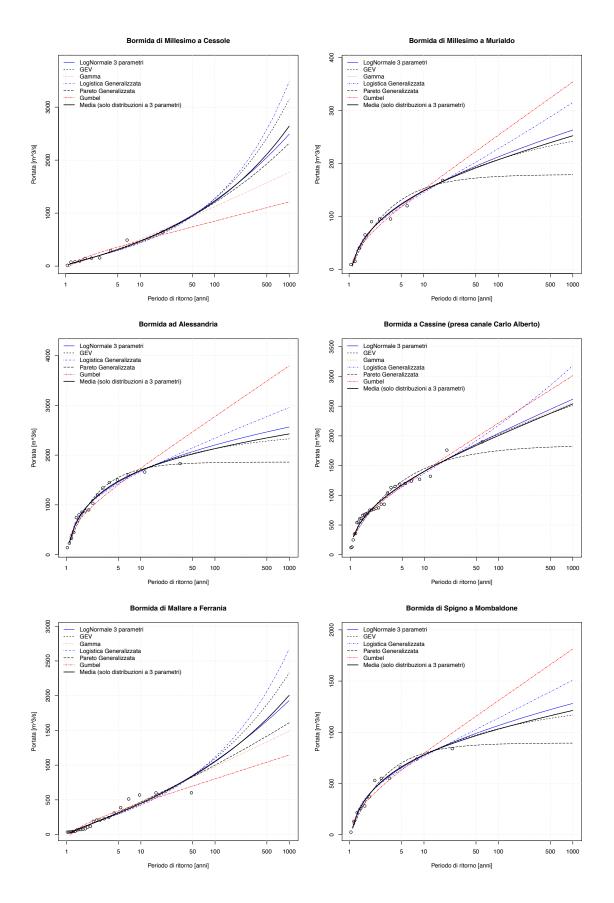
La analisi effettuate in questo studio si sono basate su una serie di caratteristiche geomorfologiche e climatiche descritte nel dettaglio nell'appendice D. La grande mole di informazioni è stata raccolta in un catalogo dei descrittori, organizzato per schede bacino, in cui sono contenute le grandezze a scala di bacino più utili, e una cartografia che identifica la posizione e la forma del bacino stesso.

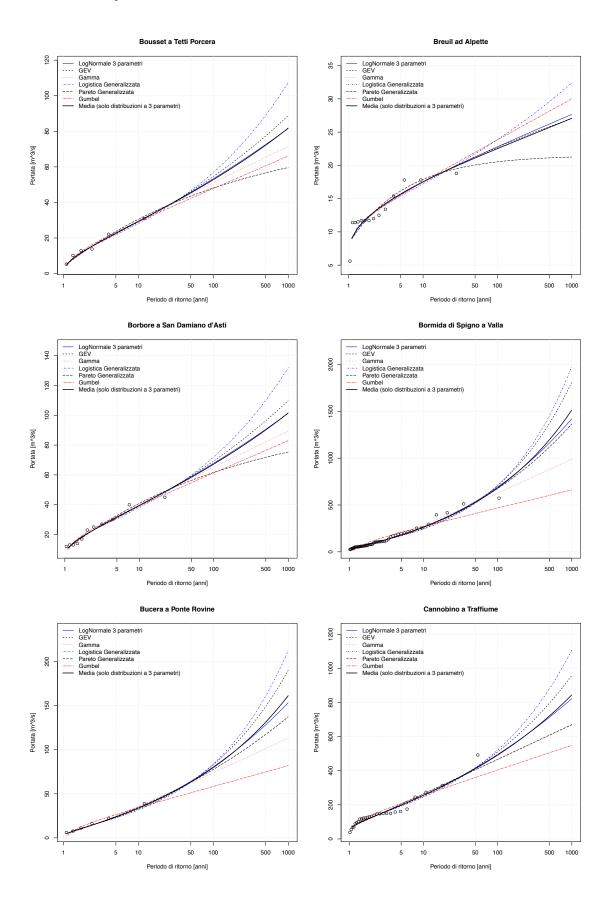
Tali informazioni di dettaglio sono pubblicate in un documento separato allegato, mentre si riporta nel seguito un elenco sintetico con il codice breve, le coordinate delle sezioni di chiusura, l'area a la quota media di ogni bacino.

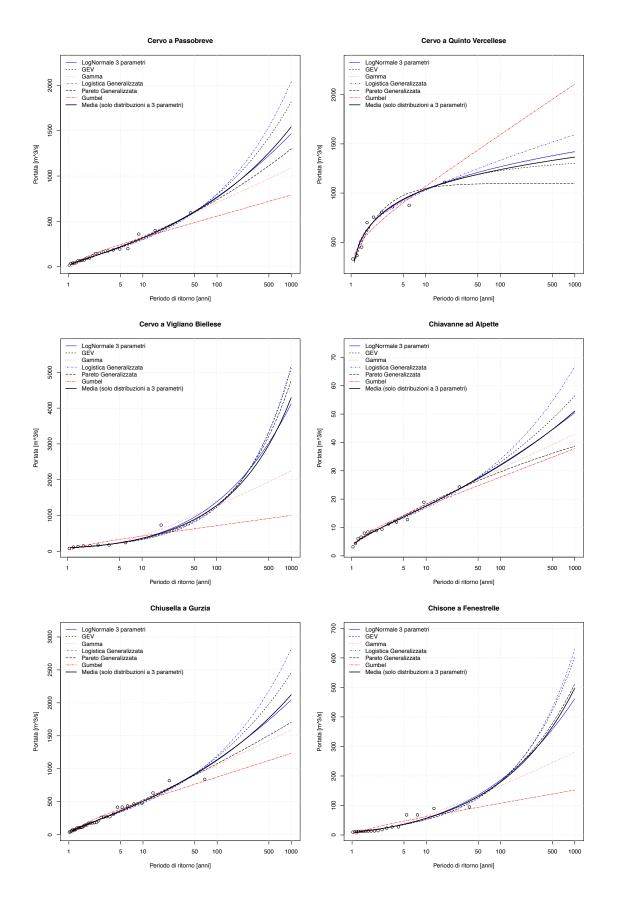
Agogna a Novara AGONO 467981 5030915 382.37 332 Artanavaz a Saint Oyen ARTISO 360765.1495 5075765.415 69.13 2239 Ayasse a Champorcher AYACH 392219.8761 5052945.74 42.72 2368 Banna a Santena BANSA 403910 4977515 349.56 287 Belbo a Castelmuovo Belbo BELCA 454039 4960718 420.75 372 Borbera a Baracche BOBBA 500787.7221 495181.223 202.42 862 Borbore a San Damiano d'Asti BRRSD 427419 4966805 85.31 244 Bormida a Cassine (presa canale Carlo Alberto) BORCA 46786 4955433 1516.25 493 Bormida ad Nessandria BORME 446080,4855 4912508.37 50-4 60 Bormida di Millesimo a Cessole BOME 446080,4855 4912508.37 50-4 60 Bormida di Sipigno a Walla BOME 440472 4944272 495.82 647 Bormida di Sipigno a Valla <th>Denominazione</th> <th>Codice</th> <th>est (UTM32 WGS84)</th> <th>nord (UTM32 WGS84)</th> <th>Area</th> <th>Quota media</th>	Denominazione	Codice	est (UTM32 WGS84)	nord (UTM32 WGS84)	Area	Quota media
Ayasse a Champorcher AYACH 392219,8761 5052945,74 42,72 2968 Banna a Santena BANSA 403910 4977515 349,56 287 Belbo a Castelnuovo Belbo BELCA 454039 4960718 420,75 372 Borbera a Baracche BOBBA 500787,7221 4951811,223 202,42 862 Borbore a San Damiano d'Asti BRRSD 427419 4965805 85,31 244 Bormida a Cassine (presa canale Carlo Alberto) BORAL 472015 4972514 2593.82 440 Bormida da Mallare a Ferrania BORME 446089,4855 4912508,37 50.4 604 Bormida di Millesimo a Cessole BOMCE 440472 4941272 495.82 647 Bormida di Spigno a Munrialdo BOMMU 432975.91 49972514 259.88 647 Bormida di Spigno a Mombaldone BOSMB 44726 4943280 391.36 491 Bormida di Spigno a Mombaldone BOSMB 447274,858 4932026.029 68.46 468	Agogna a Novara	AGONO	467981	5030915	382.37	332
Banna a Santena BANSA 403910 4977515 349.56 287 Belbo a Castelnuovo Belbo BELCA 454039 4960718 420.75 372 Borbera a Baracche BOBBA 500787.7221 4951811.223 202.42 862 Borbore a San Damiano d'Asti BRRSD 427419 4965805 85.31 244 Bormida a Cassine (presa canale Carlo Alberto) BORCA 463786 4955433 1516.25 493 Bormida di Mallare a Ferrania BORMF 446689.4855 4912508.37 50.4 604 Bormida di Millesimo a Cessole BOMCE 440472 4944272 495.82 647 Bormida di Spigno a Mombaldone BOSMB 447206 4935280 391.36 491 Bormida di Spigno a Valla BSPVA 447474.858 4932026.029 68.46 468 Bousset a Tetti Porcera BOUTP 375046 4896152 37.14 1991 Breuil ad Alpette BREAL 336956 5064247 27.64 2459 Bucrea a Ponte Rovine	Artanavaz a Saint Oyen	ARTSO	360765.1405	5075765.415	69.13	2239
Belbo a Castelnuovo Belbo BELCA 454039 4960718 420.75 372 Borbera a Baracche BOBBA 500787.7221 4951811.223 202.42 862 Borbore a San Damiano d'Asti BRRSD 427419 4968695 85.31 244 Bormida a Cassine (presa canale Carlo Alberto) BORCA 463786 4955433 1516.25 493 Bormida da Alessandria BORAL 472015 4972514 2593.82 440 Bormida di Mallare a Ferrania BORMF 446089.4855 4912508.37 50.4 604 Bormida di Millesimo a Cessole BOMCE 440472 4944272 495.82 647 Bormida di Millesimo a Murialdo BOMMU 432975.91 4907027.85 127.11 888 Bormida di Spigno a Mombaldone BOSMB 447206 4935280 391.36 491 Bormida di Spigno a Valla BSPVA 447474.858 4932026.029 68.46 468 Boussea a Tetti Porcera BOUTP 375046 4896152 37.14 1991	Ayasse a Champorcher	AYACH	392219.8761	5052945.74	42.72	2368
Borbera a Baracche BOBBA 500787,7221 4951811.223 202.42 862 Borbore a San Damiano d'Asti BRRSD 427419 4965805 85.31 244 Bormida a Cassine (presa canale Carlo Alberto) BORCA 463786 4957433 1516.25 493 Bormida ad Alessandria BORAL 476080,4855 4972514 2593.82 440 Bormida di Mallare a Ferrania BORMF 446080,4855 4912508.37 50.4 604 Bormida di Millesimo a Cessole BOMCE 440472 4944272 495.82 647 Bormida di Millesimo a Murialdo BOMMU 432975.91 4907027.85 127.11 888 Bormida di Spigno a Mombaldone BOSMB 447206 4932206.029 68.46 468 Bousset a Tetti Porcera BOUTP 375046 4896152 37.14 1991 Breuch a Ponte Rovine BUCPR 370554.93 4896052 27.94 2152 Buthier a Place Moulin BUTPM 383131.1337 5083798.084 74.45 2800	Banna a Santena	BANSA	403910	4977515	349.56	287
Borbore a San Damiano d'Asti BRRSD 427419 4965805 85.31 244 Bormida a Cassine (presa canale Carlo Alberto) BORCA 463786 4955433 1516.25 493 Bormida ad Alessandria BORAL 472015 4972514 2593.82 440 Bormida di Mallare a Ferrania BORMF 446089.4855 4912508.37 50.4 604 Bormida di Millesimo a Cessole BOMCE 440472 4944272 495.82 647 Bormida di Millesimo a Murialdo BOMMU 432975-91 4907027.85 127.11 888 Bormida di Spigno a Mombaldone BOSMB 447206 4935280 391.36 491 Bormida di Spigno a Valla BSPVA 447474.858 4932026.029 68.46 468 Bousset a Tetti Porcera BOUTP 375046 4896152 37.14 1991 Breuil ad Alpette BREAL 336956 5064247 27.64 2459 Bucera a Ponte Rovine BUCPR 370554-93 4896059.627 27.94 2152	Belbo a Castelnuovo Belbo	BELCA	454039	4960718	420.75	372
Bormida a Cassine (presa canale Carlo Alberto) BORCA 463786 4955433 1516.25 493 Bormida ad Alessandria BORAL 472015 4972514 2593.82 440 Bormida di Mallare a Ferrania BORMF 446089.4855 4912508.37 50.4 604 Bormida di Millesimo a Cessole BOMCE 440472 4944272 495.82 647 Bormida di Millesimo a Murialdo BOMMU 432975.91 4907027.85 127.11 888 Bormida di Spigno a Mombaldone BOSMB 447206 4933280 391.36 491 Bormida di Spigno a Valla BSPVA 447474.858 4932026.029 68.46 468 Bousset a Tetti Porcera BOUTP 375046 4896152 37.14 1991 Breura a Ponte Rovine BUCPR 370554.93 4896059.627 27.94 2152 Buchier a Place Moulin BUTPM 383131.3337 5083798.084 74.45 2800 Cannobino a Traffiume CANTR 475222.39 5100469.63 106.85 1107 <t< td=""><td>Borbera a Baracche</td><td>BOBBA</td><td>500787.7221</td><td>4951811.223</td><td>202.42</td><td>862</td></t<>	Borbera a Baracche	BOBBA	500787.7221	4951811.223	202.42	862
Bormida ad Alessandria BORAL 472015 4972514 2593.82 440	Borbore a San Damiano d'Asti	BRRSD	427419	4965805	85.31	244
Bormida di Mallare a Ferrania BORMF 446089,4855 4912508.37 50.4 664 Bormida di Millesimo a Cessole BOMCE 440472 4944272 495.82 647 Bormida di Millesimo a Murialdo BOMMU 432975.91 4907027.85 127.11 888 Bormida di Spigno a Mombaldone BOSMB 447206 4935280 391.36 491 Bormida di Spigno a Valla BSPVA 447474.858 4932026.029 68.46 468 Bousset a Tetti Porcera BOUTP 375046 4896152 37.14 1991 Breuil ad Alpette BREAL 336956 5064247 27.64 2459 Bucera a Ponte Rovine BUCPR 370554.93 4896059.627 27.94 2152 Buthier a Place Moulin BUTPM 383131.1337 5083798.084 74.45 2800 Cannobino a Traffiume CANTR 475222.39 5100469.63 106.85 1107 Cervo a Passobreve CEVPA 425027 5053441 75.44 1505 Cervo a Vigliano Bie	Bormida a Cassine (presa canale Carlo Alberto)	BORCA	463786	4955433	1516.25	493
Bormida di Millesimo a Cessole BOMCE 440472 4944272 495.82 647 Bormida di Millesimo a Murialdo BOMMU 432975.91 4907027.85 127.11 888 Bormida di Spigno a Mombaldone BOSMB 447206 4935280 391.36 491 Bornida di Spigno a Valla BSPVA 447474.858 4932026.029 68.46 468 Bousset a Tetti Porcera BOUTP 375046 4896152 37.14 1991 Breuil ad Alpette BREAL 336956 5064247 27.64 2459 Bucera a Ponte Rovine BUCPR 370554.93 4896059.627 27.94 2152 Buthier a Place Moulin BUTPM 383131.1337 5083798.084 74.45 2800 Cannobino a Traffiume CANTR 475222.39 5100469.63 106.85 1107 Cervo a Passobreve CEVPA 425027 5053441 75.44 1505 Cervo a Vigliano Biellese CEVU 451013 5025503 1001.85 504 Cervo a Vigliano Biellese	Bormida ad Alessandria	BORAL	472015	4972514	2593.82	440
Bormida di Millesimo a Murialdo BOMMU 432975.91 4907027.85 127.11 888 Bormida di Spigno a Mombaldone BOSMB 447206 4935280 391.36 491 Bormida di Spigno a Valla BSPVA 447474.858 4932026.029 68.46 468 Bousset a Tetti Porcera BOUTP 375046 4896152 37.14 1991 Breuil ad Alpette BREAL 336956 5064247 27.64 2459 Bucera a Ponte Rovine BUCPR 370554.93 4896059.627 27.94 2152 Buthier a Place Moulin BUTPM 383131.1337 5083798.084 74.45 2800 Cannobino a Traffiume CANTR 475222.39 5100469.63 106.85 1107 Cervo a Passobreve CEVPA 425027 5053441 75.44 1505 Cervo a Quinto Vercellese CEVQU 451013 5025503 1001.85 504 Cervo a Vigliano Biellese CEVVI 430621 5044910 132.53 1257 Chiavanne ad Alpette	Bormida di Mallare a Ferrania	BORMF	446089.4855	4912508.37	50.4	604
Bormida di Spigno a Mombaldone BOSMB 447206 4935280 391.36 491 Bormida di Spigno a Valla BSPVA 447474.858 4932026.029 68.46 468 Bousset a Tetti Porcera BOUTP 375046 4896152 37.14 1991 Breuil ad Alpette BREAL 336956 5064247 27.64 2459 Bucera a Ponte Rovine BUCPR 370554.93 4896059.627 27.94 2152 Buthier a Place Moulin BUTPM 383131.1337 5083798.084 74.45 2800 Cannobino a Traffiume CANTR 475222.39 5100469.63 106.85 1107 Cervo a Passobreve CEVPA 425027 5053441 75.44 1505 Cervo a Passobreve CEVQU 451013 5025503 1001.85 504 Cervo a Vigliano Biellese CEVVI 430621 5044910 132.53 1257 Chiavanne ad Alpette CHIAL 336855 5064354 21.96 2485 Chisone a Fenestrelle CHSFE	Bormida di Millesimo a Cessole	BOMCE	440472	4944272	495.82	647
Bormida di Spigno a Valla BSPVA 447474.858 4932026.029 68.46 468 Bousset a Tetti Porcera BOUTP 375046 4896152 37.14 1991 Breuil ad Alpette BREAL 336956 5064247 27.64 2459 Bucera a Ponte Rovine BUCPR 370554.93 4896059.627 27.94 2152 Buthier a Place Moulin BUTPM 383131.1337 5083798.084 74.45 2800 Cannobino a Traffiume CANTR 475222.39 5100469.63 106.85 1107 Cervo a Passobreve CEVPA 425027 5053441 75.44 1505 Cervo a Quinto Vercellese CEVQU 451013 5025503 1001.85 504 Cervo a Vigliano Biellese CEVVU 430621 5044910 132.53 1257 Chisone a Fenestrelle CHIAL 336855 5064354 21.96 2485 Chisone a Fenestrelle CHSFE 346005.8825 4988947.309 154.21 2154 Chisone a Soucheres Basses CHSS	Bormida di Millesimo a Murialdo	BOMMU	432975.91	4907027.85	127.11	888
Bousset a Tetti Porcera BOUTP 375046 4896152 37.14 1991 Breuil ad Alpette BREAL 336956 5064247 27.64 2459 Bucera a Ponte Rovine BUCPR 370554.93 4896059.627 27.94 2152 Buthier a Place Moulin BUTPM 383131.1337 5083798.084 74.45 2800 Cannobino a Traffiume CANTR 475222.39 5100469.63 106.85 1107 Cervo a Passobreve CEVPA 425027 5053441 75.44 1505 Cervo a Quinto Vercellese CEVQU 451013 5025503 1001.85 504 Cervo a Vigliano Biellese CEVVI 430621 5044910 132.53 1257 Chiavanne ad Alpette CHIAL 336855 5064354 21.96 2485 Chisone a Fenestrelle CHSFE 346005.8825 4988947.309 154.21 2154 Chisone a San Martino CHSSB 339319 4988330 93.26 2221 Chisone a Soucheres Basses CHSG	Bormida di Spigno a Mombaldone	BOSMB	447206	4935280	391.36	491
Breuil ad Alpette BREAL 336956 5064247 27.64 2459 Bucera a Ponte Rovine BUCPR 370554.93 4896059.627 27.94 2152 Buthier a Place Moulin BUTPM 383131.1337 5083798.084 74.45 2800 Cannobino a Traffiume CANTR 475222.39 5100469.63 106.85 1107 Cervo a Passobreve CEVPA 425027 5053441 75.44 1505 Cervo a Quinto Vercellese CEVQU 451013 5025503 1001.85 504 Cervo a Vigliano Biellese CEVVI 430621 5044910 132.53 1257 Chiavanne ad Alpette CHIAL 336855 5064354 21.96 2485 Chisone a Fenestrelle CHSFE 346005.8825 4988947.309 154.21 2154 Chisone a San Martino CHSSM 364406 4971647 580.53 1739 Chisone a Soucheres Basses CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte	Bormida di Spigno a Valla	BSPVA	447474.858	4932026.029	68.46	468
Bucera a Ponte Rovine BUCPR 370554.93 4896059.627 27.94 2152 Buthier a Place Moulin BUTPM 383131.1337 5083798.084 74.45 2800 Cannobino a Traffiume CANTR 475222.39 5100469.63 106.85 1107 Cervo a Passobreve CEVPA 425027 5053441 75.44 1505 Cervo a Quinto Vercellese CEVQU 451013 5025503 1001.85 504 Cervo a Vigliano Biellese CEVVI 430621 5044910 132.53 1257 Chiavanne ad Alpette CHIAL 336855 5064354 21.96 2485 Chisone a Fenestrelle CHSFE 346005.8825 4988947.309 154.21 2154 Chisone a San Martino CHSSM 364406 4971647 580.53 1739 Chisone a Soucheres Basses CHSSB 339319 4988330 93.26 2221 Chiusella a Gurzia CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte	Bousset a Tetti Porcera	BOUTP	375046	4896152	37.14	1991
Buthier a Place Moulin BUTPM 383131.1337 5083798.084 74.45 2800 Cannobino a Traffiume CANTR 475222.39 5100469.63 106.85 1107 Cervo a Passobreve CEVPA 425027 5053441 75.44 1505 Cervo a Quinto Vercellese CEVQU 451013 5025503 1001.85 504 Cervo a Vigliano Biellese CEVVI 430621 5044910 132.53 1257 Chiavanne ad Alpette CHIAL 336855 5064354 21.96 2485 Chisone a Fenestrelle CHSFE 346005.8825 4988947.309 154.21 2154 Chisone a San Martino CHSSM 364406 4971647 580.53 1739 Chisone a Soucheres Basses CHSGB 339319 4988330 93.26 2221 Chiusella a Gurzia CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte CLAPR 340471 5000302 28.01 2298 Corsaglia a presa centrale Molline	Breuil ad Alpette	BREAL	336956	5064247	27.64	2459
Cannobino a Traffiume CANTR 475222.39 5100469.63 106.85 1107 Cervo a Passobreve CEVPA 425027 5053441 75.44 1505 Cervo a Quinto Vercellese CEVQU 451013 5025503 1001.85 504 Cervo a Vigliano Biellese CEVVI 430621 5044910 132.53 1257 Chiavanne ad Alpette CHIAL 336855 5064354 21.96 2485 Chisone a Fenestrelle CHSFE 346005.8825 4988947.309 154.21 2154 Chisone a San Martino CHSSM 364406 4971647 580.53 1739 Chisone a Soucheres Basses CHSSB 339319 4988330 93.26 2221 Chiusella a Gurzia CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte CLAPR 340471 5000302 28.01 2298 Corsaglia a presa centrale Molline CORPM 407095.8339 4904935.524 89.31 1525 Dora Baltea a Cignana	Bucera a Ponte Rovine	BUCPR	370554.93	4896059.627	27.94	2152
Cervo a Passobreve CEVPA 425027 5053441 75.44 1505 Cervo a Quinto Vercellese CEVQU 451013 5025503 1001.85 504 Cervo a Vigliano Biellese CEVVI 430621 5044910 132.53 1257 Chiavanne ad Alpette CHIAL 336855 5064354 21.96 2485 Chisone a Fenestrelle CHSFE 346005.8825 4988947.309 154.21 2154 Chisone a San Martino CHSSM 364406 4971647 580.53 1739 Chisone a Soucheres Basses CHSSB 339319 4988330 93.26 2221 Chiusella a Gurzia CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte CLAPR 340471 5000302 28.01 2298 Corsaglia a presa centrale Molline CORPM 407095.8339 4904935.524 89.31 1525 Dora Baltea a Beauregard DBABE 348670.1653 5053499.187 92.18 2607 Dora Baltea a Mazzè	Buthier a Place Moulin	BUTPM	383131.1337	5083798.084	74.45	2800
Cervo a Quinto Vercellese CEVQU 451013 5025503 1001.85 504 Cervo a Vigliano Biellese CEVVI 430621 5044910 132.53 1257 Chiavanne ad Alpette CHIAL 336855 5064354 21.96 2485 Chisone a Fenestrelle CHSFE 346005.8825 4988947.309 154.21 2154 Chisone a San Martino CHSSM 364406 4971647 580.53 1739 Chisone a Soucheres Basses CHSSB 339319 4988330 93.26 2221 Chiusella a Gurzia CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte CLAPR 340471 5000302 28.01 2298 Corsaglia a presa centrale Molline CORPM 407095.8339 4904935.524 89.31 1525 Dora Baltea a Beauregard DBABE 348670.1653 5053499.187 92.18 2607 Dora Baltea a Cignana DBACI 390989.5669 5081621.866 12.69 2725 Dora Baltea	Cannobino a Traffiume	CANTR	475222.39	5100469.63	106.85	1107
Cervo a Vigliano Biellese CEVVI 430621 5044910 132.53 1257 Chiavanne ad Alpette CHIAL 336855 5064354 21.96 2485 Chisone a Fenestrelle CHSFE 346005.8825 4988947.309 154.21 2154 Chisone a San Martino CHSSM 364406 4971647 580.53 1739 Chisone a Soucheres Basses CHSSB 339319 4988330 93.26 2221 Chiusella a Gurzia CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte CLAPR 340471 5000302 28.01 2298 Corsaglia a presa centrale Molline CORPM 407095.8339 4904935.524 89.31 1525 Dora Baltea a Beauregard DBABE 348670.1653 5053499.187 92.18 2607 Dora Baltea a Cignana DBACI 390989.5669 5081621.866 12.69 2725 Dora Baltea a Mazzè DBAMA 417900.397 5017084.701 3854.39 1883	Cervo a Passobreve	CEVPA	425027	5053441	75.44	1505
Chiavanne ad Alpette CHIAL 336855 5064354 21.96 2485 Chisone a Fenestrelle CHSFE 346005.8825 4988947.309 154.21 2154 Chisone a San Martino CHSSM 364406 4971647 580.53 1739 Chisone a Soucheres Basses CHSSB 339319 4988330 93.26 2221 Chiusella a Gurzia CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte CLAPR 340471 5000302 28.01 2298 Corsaglia a presa centrale Molline CORPM 407095.8339 4904935.524 89.31 1525 Dora Baltea a Beauregard DBABE 348670.1653 5053499.187 92.18 2607 Dora Baltea a Cignana DBACI 390989.5669 5081621.866 12.69 2725 Dora Baltea a Mazzè DBAMA 417900.397 5017084.701 3854.39 1883	Cervo a Quinto Vercellese	CEVQU	451013	5025503	1001.85	504
Chisone a Fenestrelle CHSFE 346005.8825 4988947.309 154.21 2154 Chisone a San Martino CHSSM 364406 4971647 580.53 1739 Chisone a Soucheres Basses CHSSB 339319 4988330 93.26 2221 Chiusella a Gurzia CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte CLAPR 340471 5000302 28.01 2298 Corsaglia a presa centrale Molline CORPM 407095.8339 4904935.524 89.31 1525 Dora Baltea a Beauregard DBABE 348670.1653 5053499.187 92.18 2607 Dora Baltea a Cignana DBACI 390989.5669 5081621.866 12.69 2725 Dora Baltea a Mazzè DBAMA 417900.397 5017084.701 3854.39 1883	Cervo a Vigliano Biellese	CEVVI	430621	5044910	132.53	1257
Chisone a San Martino CHSSM 364406 4971647 580.53 1739 Chisone a Soucheres Basses CHSSB 339319 4988330 93.26 2221 Chiusella a Gurzia CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte CLAPR 340471 5000302 28.01 2298 Corsaglia a presa centrale Molline CORPM 407095.8339 4904935.524 89.31 1525 Dora Baltea a Beauregard DBABE 348670.1653 5053499.187 92.18 2607 Dora Baltea a Cignana DBACI 390989.5669 5081621.866 12.69 2725 Dora Baltea a Mazzè DBAMA 417900.397 5017084.701 3854.39 1883	Chiavanne ad Alpette	CHIAL	336855	5064354	21.96	2485
Chisone a Soucheres Basses CHSSB 339319 4988330 93.26 2221 Chiusella a Gurzia CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte CLAPR 340471 5000302 28.01 2298 Corsaglia a presa centrale Molline CORPM 407095.8339 4904935.524 89.31 1525 Dora Baltea a Beauregard DBABE 348670.1653 5053499.187 92.18 2607 Dora Baltea a Cignana DBACI 390989.5669 5081621.866 12.69 2725 Dora Baltea a Mazzè DBAMA 417900.397 5017084.701 3854.39 1883	Chisone a Fenestrelle	CHSFE	346005.8825	4988947.309	154.21	2154
Chiusella a Gurzia CHIGU 402638.405 5030791.939 141.99 1374 Clarea a presa centrale Chiomonte CLAPR 340471 5000302 28.01 2298 Corsaglia a presa centrale Molline CORPM 407095.8339 4904935.524 89.31 1525 Dora Baltea a Beauregard DBABE 348670.1653 5053499.187 92.18 2607 Dora Baltea a Cignana DBACI 390989.5669 5081621.866 12.69 2725 Dora Baltea a Mazzè DBAMA 417900.397 5017084.701 3854.39 1883	Chisone a San Martino	CHSSM	364406	4971647	580.53	1739
Clarea a presa centrale Chiomonte CLAPR 340471 5000302 28.01 2298 Corsaglia a presa centrale Molline CORPM 407095.8339 4904935.524 89.31 1525 Dora Baltea a Beauregard DBABE 348670.1653 5053499.187 92.18 2607 Dora Baltea a Cignana DBACI 390989.5669 5081621.866 12.69 2725 Dora Baltea a Mazzè DBAMA 417900.397 5017084.701 3854.39 1883	Chisone a Soucheres Basses	CHSSB	339319	4988330	93.26	2221
Corsaglia a presa centrale Molline CORPM 407095.8339 4904935.524 89.31 1525 Dora Baltea a Beauregard DBABE 348670.1653 5053499.187 92.18 2607 Dora Baltea a Cignana DBACI 390989.5669 5081621.866 12.69 2725 Dora Baltea a Mazzè DBAMA 417900.397 5017084.701 3854.39 1883	Chiusella a Gurzia	CHIGU	402638.405	5030791.939	141.99	1374
Dora Baltea a Beauregard DBABE 348670.1653 5053499.187 92.18 2607 Dora Baltea a Cignana DBACI 390989.5669 5081621.866 12.69 2725 Dora Baltea a Mazzè DBAMA 417900.397 5017084.701 3854.39 1883	Clarea a presa centrale Chiomonte	CLAPR	340471	5000302	28.01	2298
Dora Baltea a Cignana DBACI 390989.5669 5081621.866 12.69 2725 Dora Baltea a Mazzè DBAMA 417900.397 5017084.701 3854.39 1883	Corsaglia a presa centrale Molline	CORPM	407095.8339	4904935.524	89.31	1525
Dora Baltea a Mazzè DBAMA 417900.397 5017084.701 3854.39 1883	Dora Baltea a Beauregard	DBABE	348670.1653	5053499.187	92.18	2607
1-1/2-3/1 3-3/3/3 3-3/3/	Dora Baltea a Cignana	DBACI	390989.5669	5081621.866	12.69	2725
Dora Baltea a Ponte di Mombardone DBAPM 344192.9201 5069807.498 372.06 2412	Dora Baltea a Mazzè	DBAMA	417900.397	5017084.701	3854.39	1883
	Dora Baltea a Ponte di Mombardone	DBAPM	344192.9201	5069807.498	372.06	2412

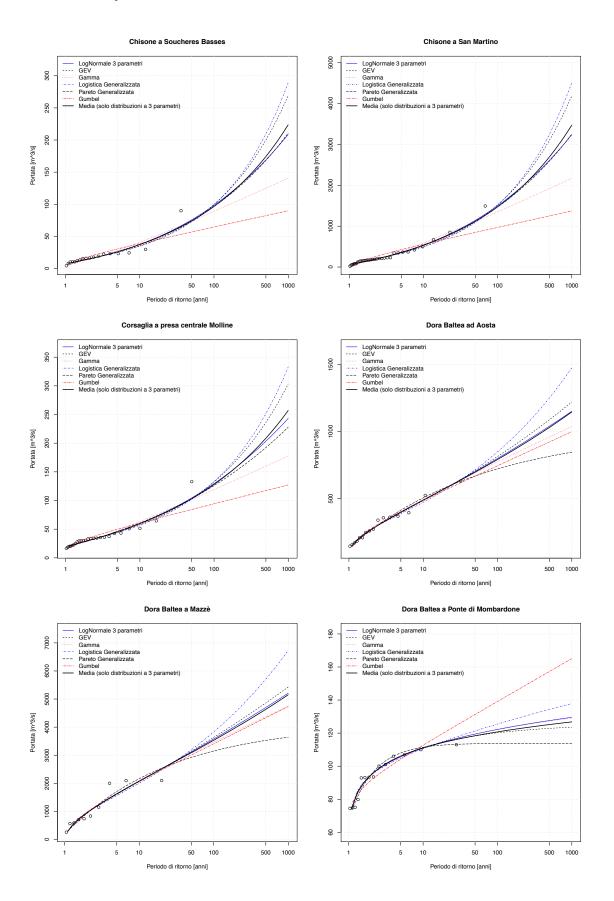
Denominazione	Codice	est (UTM32 WGS84)	nord (UTM32 WGS84)	Area	Quota media
Dora Baltea a Tavagnasco	DBATA	408421	5044504	3320.85	2087
Dora Baltea ad Aosta	DBAAO	374918.9615	5066247.611	1845.65	2265
Dora di Bardonecchia a Beaulard	DBRBE	323449.313	4990581.931	207.28	2193
Dora di Courmayeur a Prè Saint Didier	DCPSD	343253.2099	5070107.521	222.44	2472
Dora di Rhemes a Notre Dame	DRHND	353389.3763	5048222.388	69.23	2664
Dora di Rhemes a Pèlaud	DRHPE	352494.9361	5046587.257	56.54	2710
Dora di Rhemes a Saint Georges	DRHSG	356155	5057480	119.12	2485
Dora Riparia a Chiomonte	DRICH	340659	4998256	623.21	2083
Dora Riparia a Oulx	DRIOU	329337	4988965	260.04	2164
Dora Riparia a Salbertrand	DRISL	334481	4993854	547.88	2120
Dora Riparia a Sant'Antonino di Susa	DRISA	362770.653	4996936.062	1040.73	1899
Dora Riparia a Torino Ponte Washington	DRITO	399094	4992175	1321.54	1655
Elvo a Sordevolo	ELVSO	419328.197	5047278.175	33.97	1533
Erro a Sassello	ERRSA	457432.23	4926268.29	91.3	595
Evancon a Brusson	EVABR	398844.9297	5070593.679	133.63	2491
Evancon a Champoluc	EVACH	400645.4641	5075837.412	102.36	2634
Galambra a presa centrale Chiomonte	GALPR	336552	4995777	14.71	2410
Gesso della Barra a San Giacomo	GBASG	371050	4892659	19.62	2103
Gesso della Valletta a San Lorenzo	GVASL	371071.2277	4901659.835	110.79	2095
Gesso di Entracque a Diga di Piastra	GENPI	371532	4898058	87.44	2047
Gesso di Entracque ad Entracque	GESEN	368093.5988	4901309.269	159.89	1880
Gesso di Monte Colombo a San Giacomo	GCOSG	371308.618	4892550.443	25.18	2160
Grana a Monterosso	GRAMO	366585	4918708	109.77	1542
Grand'Eyvia a Cretaz	GEYCR	370093.1187	5053193.622	179.68	2582
Isorno a Pontetto	ISOPO	448127	5111126	70.3	1617
Lys a d'Ejola	LYSEJ	407796.2068	5078893.264	29.61	3136
Lys a Gressoney Saint Jean	LYSGR	408689.2736	5071087.351	90.72	2645
Lys a Guillemore	LYSGU	411124.4716	5058000.251	201.47	2260
Maira a Racconigi	MAIRC	394538	4957991	976.25	1326
Maira a San Damiano Macra	MAISD	361438.629	4927198.534	452.18	1899
Maira a Saretto	MAISA	335576.042	4927181.319	55.55	2411
Malone a Brandizzo	MALBR	409801	5003811	333-37	439
Malone a Front	MALFR	395360	5015295	131.2	675

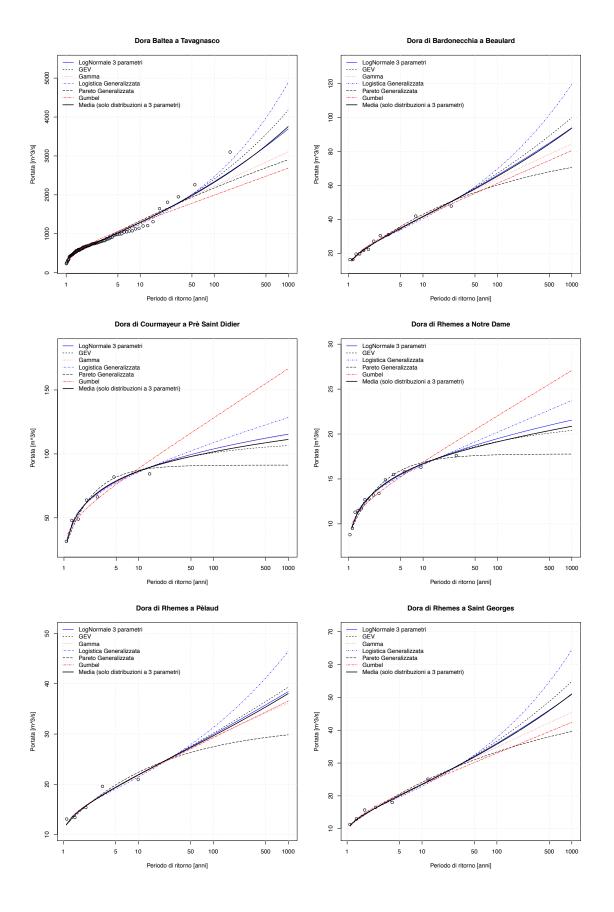

Denominazione	Codice	est (UTM32 WGS84)	nord (UTM32 WGS84)	Area	Quota media
Marmore a Perreres	MARPE	392605.0193	5084497.005	54.47	2739
Mastallone a Varallo Ponte Folle	MASPF	442190	5075482	146.55	1335
Melezet a Melezet	MELME	315867	4991349	43.2	2389
Meris a Sant'Anna Valdieri	MESAV	365656	4900453	23.13	2110
Niguglia a Omegna	NIGOM	454127.2945	5080361.983	125.08	655
Nontey a Valnontey	NONVA	370540.1182	5049494.493	53.11	2781
Orba a Casalcermelli	ORBCA	470871	4964452	800.9	438
Orco a Pont Canavese	ORCPC	391505.7569	5030005.441	613.9	1938
Orco a San Benigno Canavese	ORCSB	406313	5011059	838.01	1567
Pellice a Luserna San Giovanni	PELLU	361138	4963467	216.02	1634
Pellice a Villafranca Piemonte	PELVI	381346	4963166	952.89	1542
Po a Carignano	POCA	396682	4973652	3955.59	1101
Po a Casale Monferrato	POCM	456575.447	4998852.259	13732.09	1257
Po a Crissolo	POCS	354451	4950954	37.59	2251
Po a Isola Sant'Antonio	POIS	485975	4986981	25639.61	959
Po a Meirano (Moncalieri)	POMOM	395653.648	4983806.607	5309.75	919
Po a San Mauro Torinese	POSMT	404376.1801	4998217.214	7682.15	1083
Po a Torino Murazzi	POTO	397499	4990961	5355.47	914
Po a Valenza	POVA	470988	4988677	17290.61	1117
Rio Bagni a Bagni di Vinadio	RBABV	347298.551	4905907.591	61.44	2142
Rio del Piz a Pietraporzio	RPIPPZ	343090.3355	4911605.349	21.68	2182
Rio Freddo a Rio Freddo	RFRRF	354141.365	4904743.616	36.58	2123
Ripa a Bousson	RIPBO	327796.729	4977949.485	147.04	2330
Rochemolles a Rochemolles	ROCRO	324207.423	4999926.691	24.07	2641
Rutor a La Joux	RUTLJ	341333.5512	5061404.758	41.71	2570
Rutor a Promise	RUTPR	340965.8408	5063081.921	45.76	2525
San Bernardino a Santino	SBESA	463224	5089336	121.5	1259
San Bernardino a Trobaso	SBETR	464983.38	5088294.11	129.24	1211
San Giovanni a Possaccio	SGIPO	465265.91	5089297.16	53.6	1002
Savara a Eau Rousse	SAVER	360293.8259	5047741.903	82.39	2682
Savara a Fenille	SAVFE	359590.6562	5055032.086	131.34	2594
Scrivia a Isola del Cantone	SCRIC	496640.44	4943532.72	215.8	668
Scrivia a Serravalle Scrivia	SCRSE	488989	4952417	614.12	682

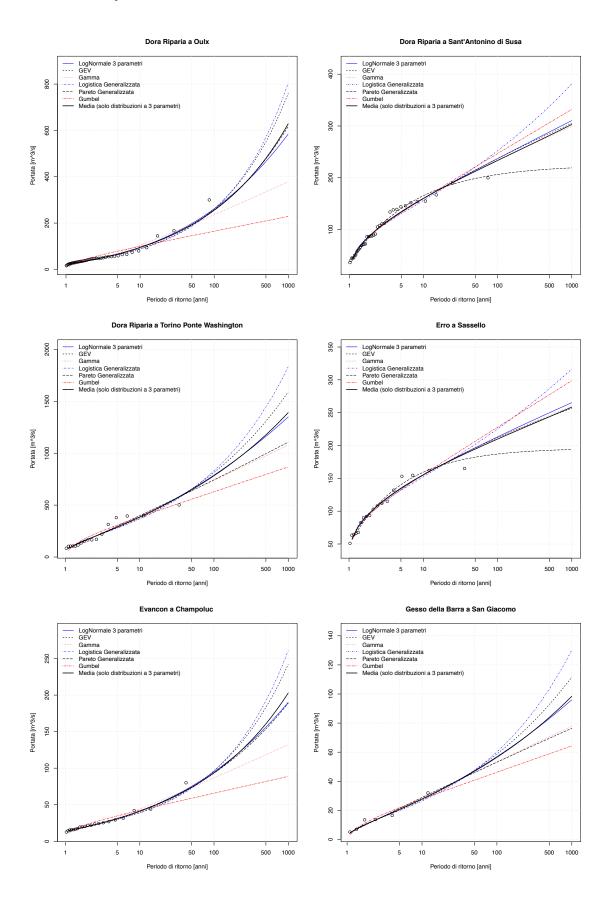

Denominazione	Codice	est (UTM32 WGS84)	nord (UTM32 WGS84)	Area	Quota media
Sermenza a Rimasco	SERRI	427373.5	5078429	82.33	1855
Sesia a Borgosesia Ponte Aranco	SESBO	443803.054	5062352.389	702.89	1504
Sesia a Campertogno	SESCA	424762	5072125	170.56	2127
Sesia a Palestro	SESPA	463769	5014565	2464.01	768
Sesia a Vercelli	SESVC	455957.0193	5019293.044	2213.99	837
Strona di Omegna a Gravellona Toce	STGGR	456135	5086079	234.83	877
Stura di Demonte a Fossano	SDEFO	398628	4930850	1326.78	1518
Stura di Demonte a Gaiola	SDEGA	373755	4909963	560.4	1819
Stura di Demonte a Pianche	SDEPI	349597.3956	4907221.413	180.01	2077
Stura di Demonte a Roccasparvera	SDERO	375650	4910905	584.17	1785
Stura di Lanzo a Lanzo	SLALA	380982	5013879	578.31	1780
Stura di Lanzo a Torino	SLATO	398253	4996117	879.97	1368
Stura di Viù a Lago della Rossa	SVILR	354794-923	5014525.685	3.71	2962
Stura di Viù a Malciaussia	SVIMA	354203.515	5007535.323	25.85	2622
Stura di Viù a Usseglio	SVIUS	360062.7285	5010115.645	75.86	2393
Tanaro a Farigliano	TANFA	412709	4929894	1502.15	945
Tanaro a Garessio	TANGA	421310	4894772	249.04	1435
Tanaro a Masio	TANMA	453443	4968849	4535.12	855
Tanaro a Montecastello	TANMO	475104	4977074	7956.23	657
Tanaro a Nucetto	TANNU	425190.5826	4910271.335	374.77	1232
Tanaro a Ormea	TANOR	413230.8722	4888845.337	175.52	1524
Tanaro a Piantorre	TANPI	418169	4918794	500.35	1067
Tanaro a Ponte di Nava	TANPN	409392	4885563	148.81	1580
Tanaro a San Martino Alfieri	TANSM	431007.3904	4960570.665	3541.95	1036
Tanaro ad Alba	TANAB	422966	4950663	3384.97	1072
Tanaro ad Alessandria	TANAL	470234.5654	4976004.104	5322.85	767
Ticino a Miorina	TICMI	474277.6446	5058224.577	6654.86	1290
Toce a Cadarese	TOCCD	450176.978	5125409.263	186.54	2150
Toce a Candoglia	TOCCA	455210	5091406	1539.41	1677
Toce a Codelago	TOCCO	444732.094	5131430.437	25.98	2322
Toce a Domodossola	TOCDO	446394	5106791	919.44	1826
Toce a Lago Busin	TOCLB	451099.309	5133474.906	2.51	2524
Toce a Lago d'Avino	TOCLA	433176.879	5122225.605	5.54	2550

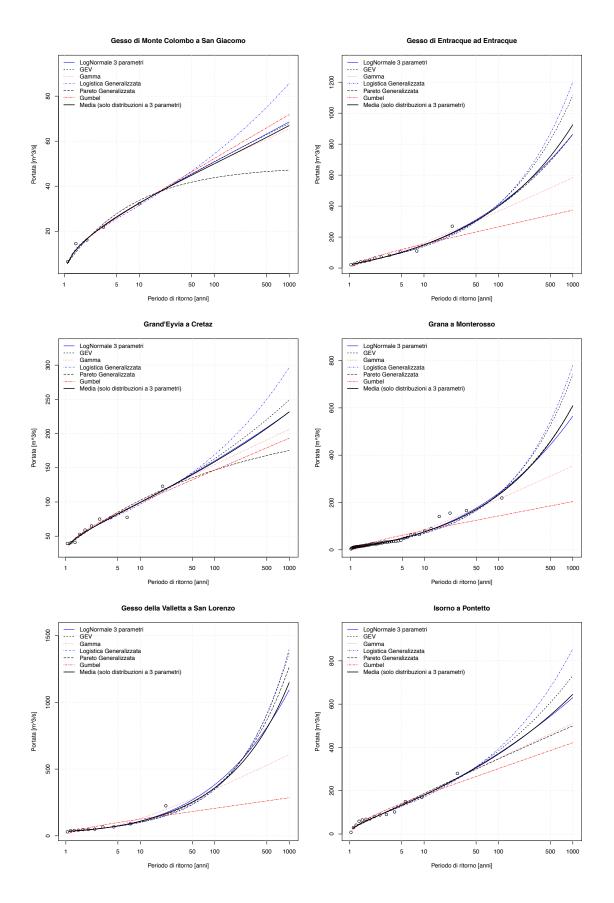

Denominazione	Codice	est (UTM32 WGS84)	nord (UTM32 WGS84)	Area	Quota media
Toce a Lago del Sabbione	TOCLS	449883.183	5141238.337	14.2	2765
Toce a Lago Vannino	TOCLV	451160.638	5136936.653	11.58	2527
Toce ad Agaro	TOCAG	446314.08	5126747.184	11.17	2110
Varaita a Castello	VARCA	345173.957	4941766.136	67.8	2406
Varaita a Rore	VARRR	358665.7681	4937361.057	278.28	2118
Varaita a Rossana	VARRO	376220	4934616	402.1	1797
Vermenagna a Limone	VERLI	385933.6725	4896191.3	57.4	1675
Vobbia a Vobbietta Isola del Cantone	VOBIC	497957.42	4942898.02	50.53	72 3

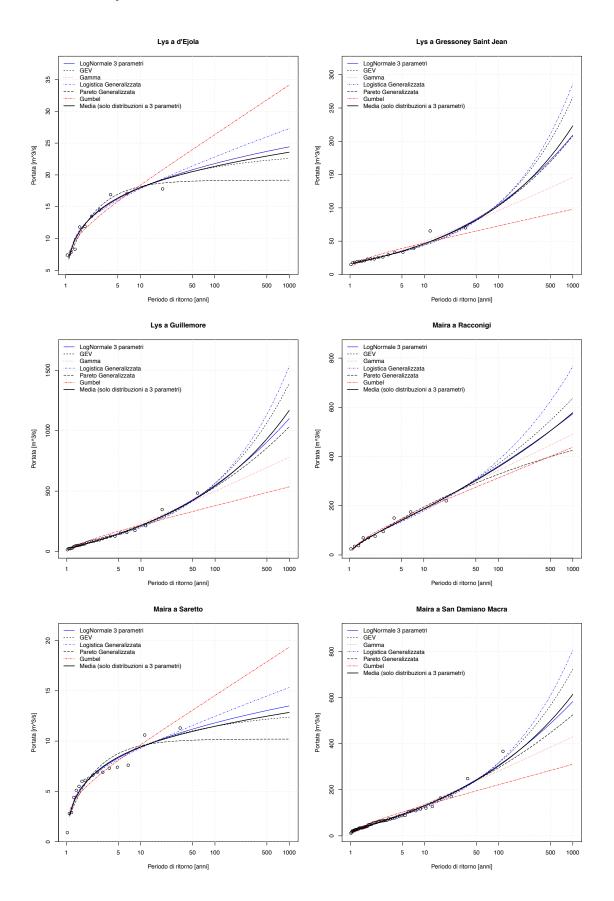

Vengono confrontate, per ciascuna sezione considerata, le curve di frequenza definite secondo le diverse distribuzioni descritte nel capitolo 5. I dati osservati vengono inseriti nel grafico seguendo la plotting position di Hazen.

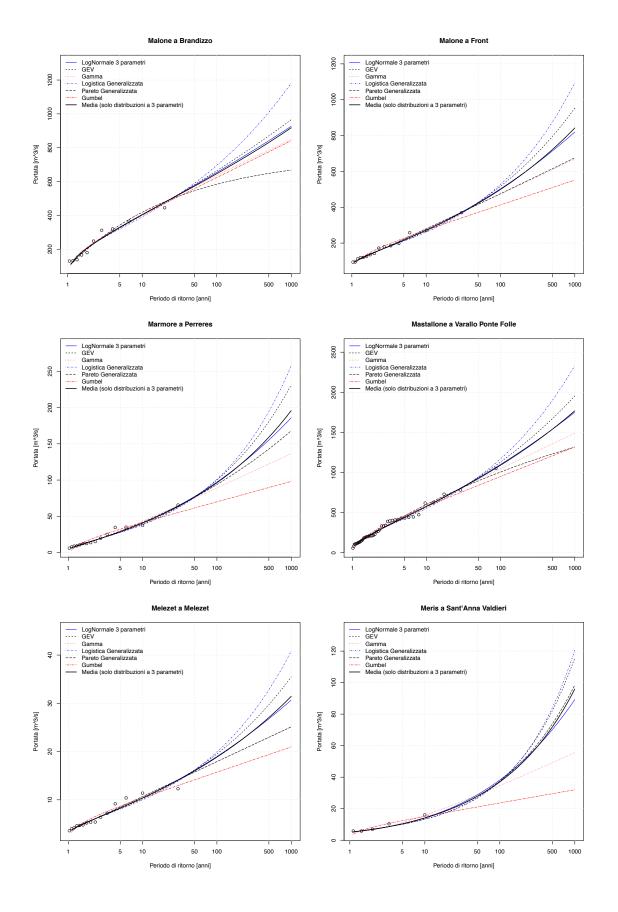

I parametri di ciascuna distribuzione sono ottenuti mediante il metodo degli L-momenti.

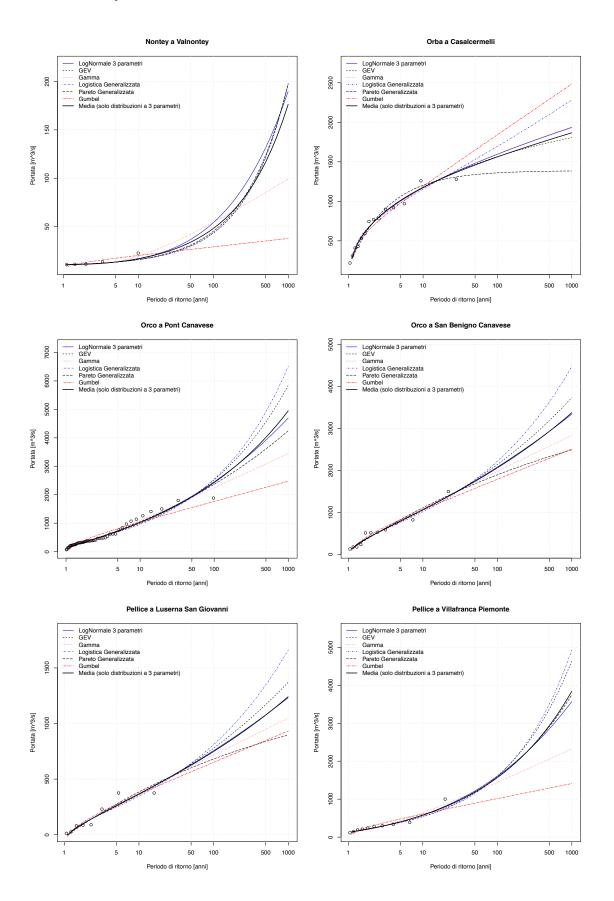


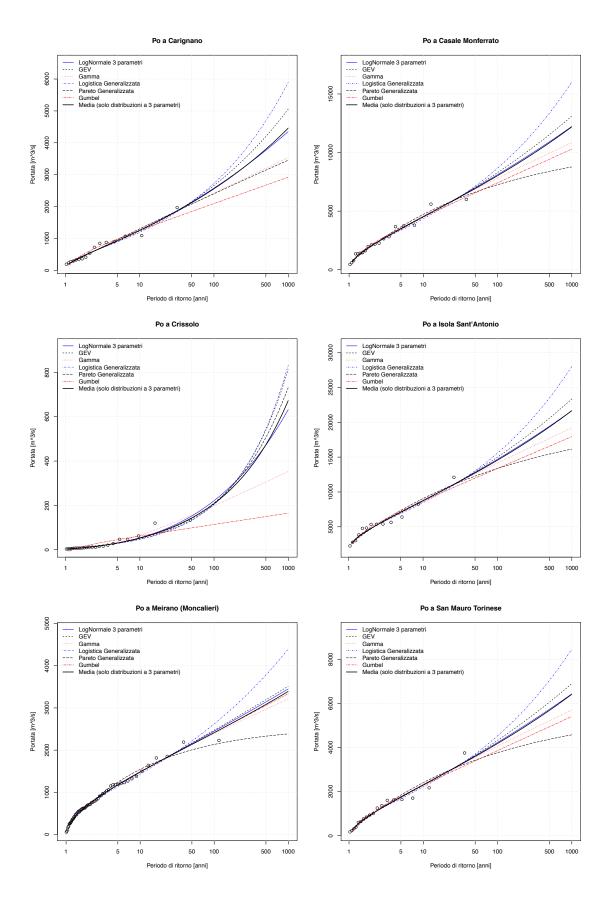


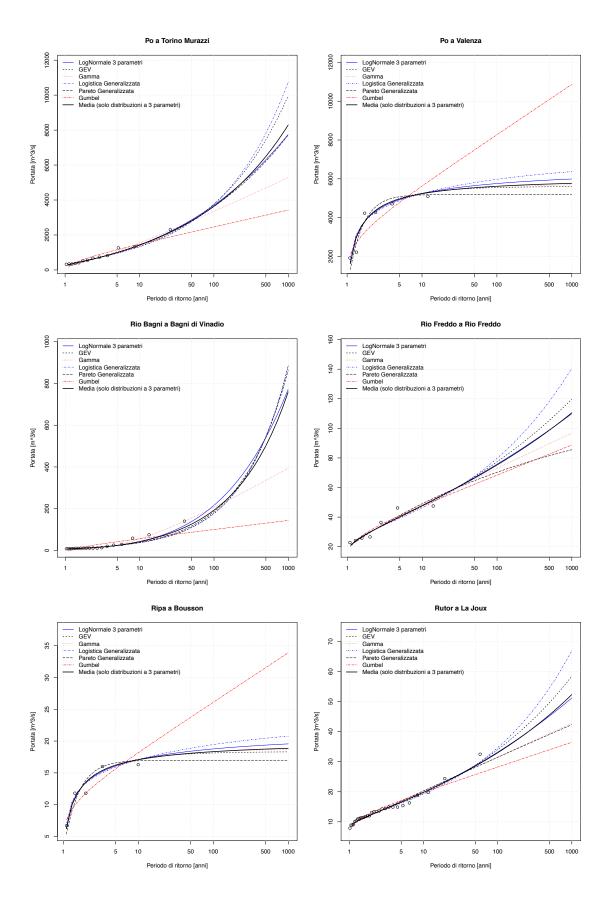


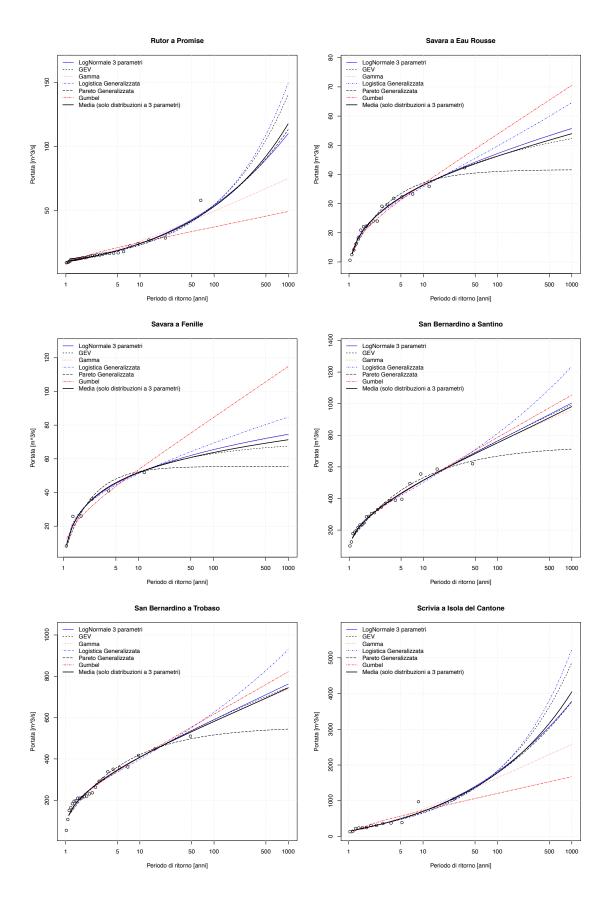


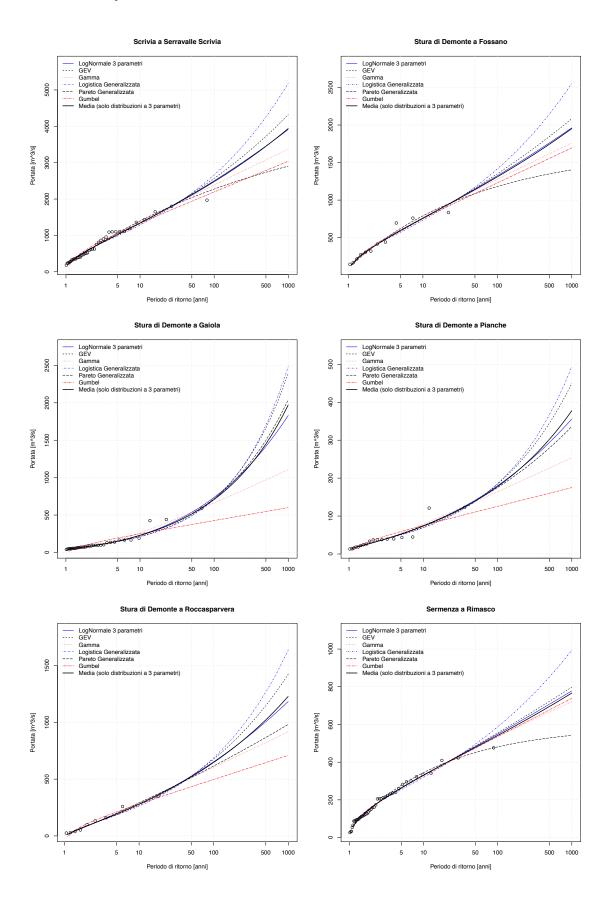


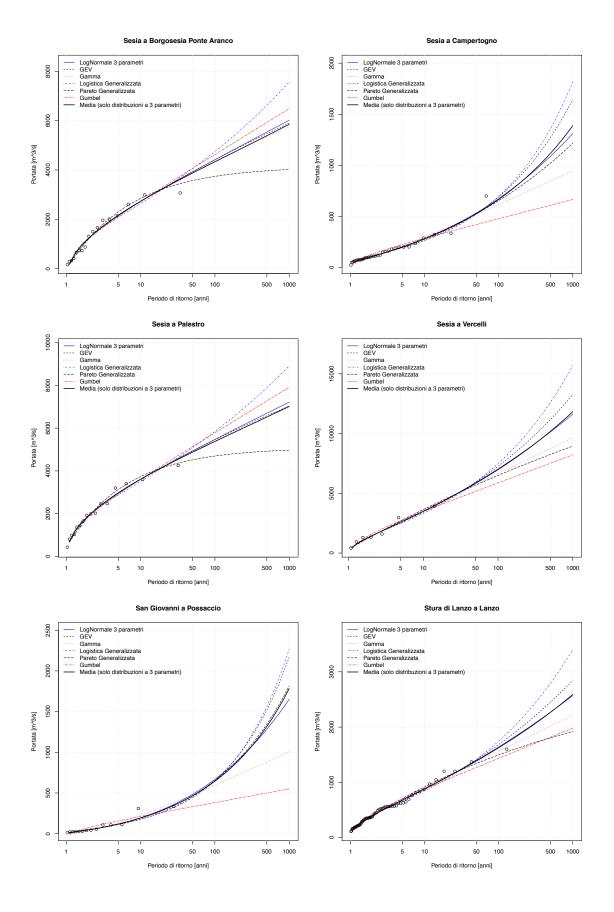


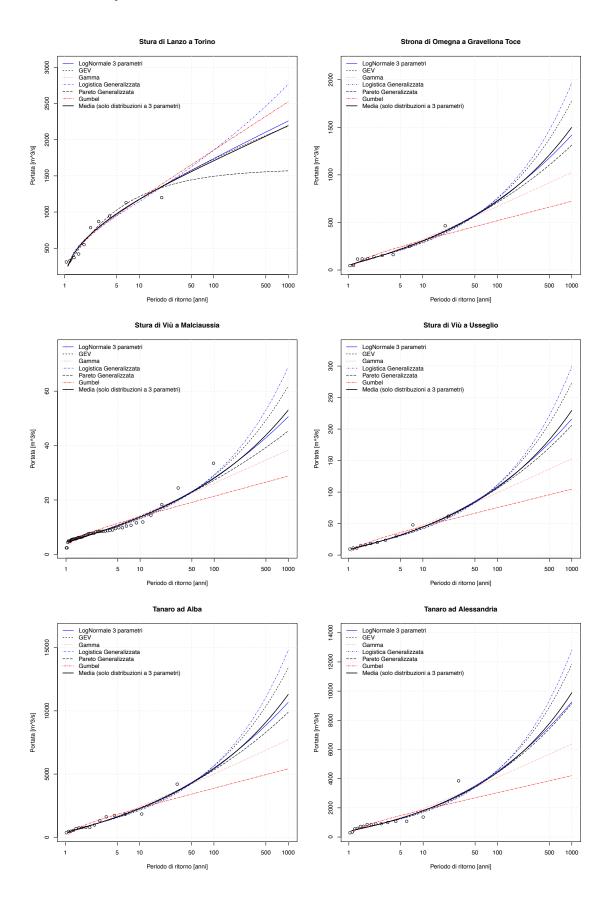


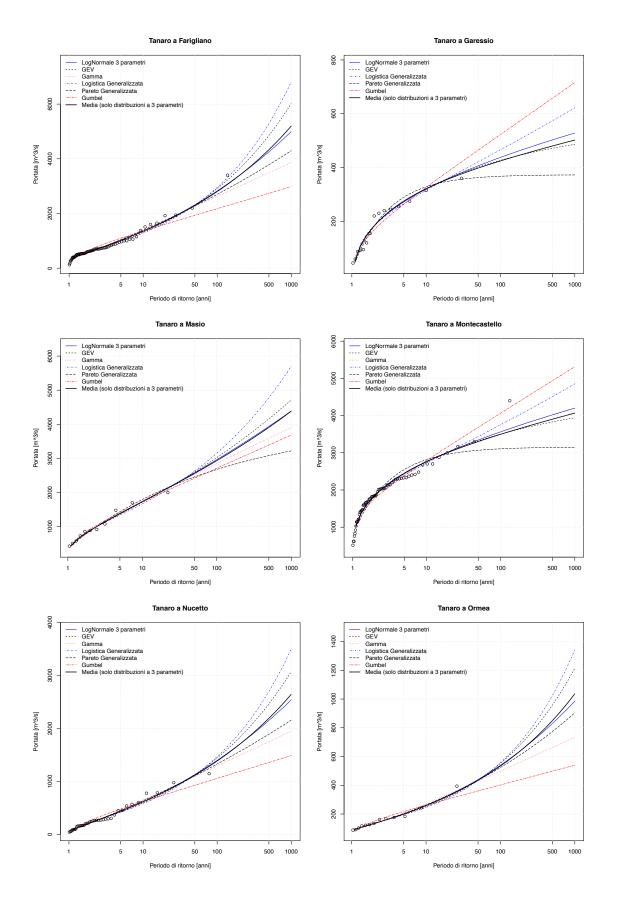


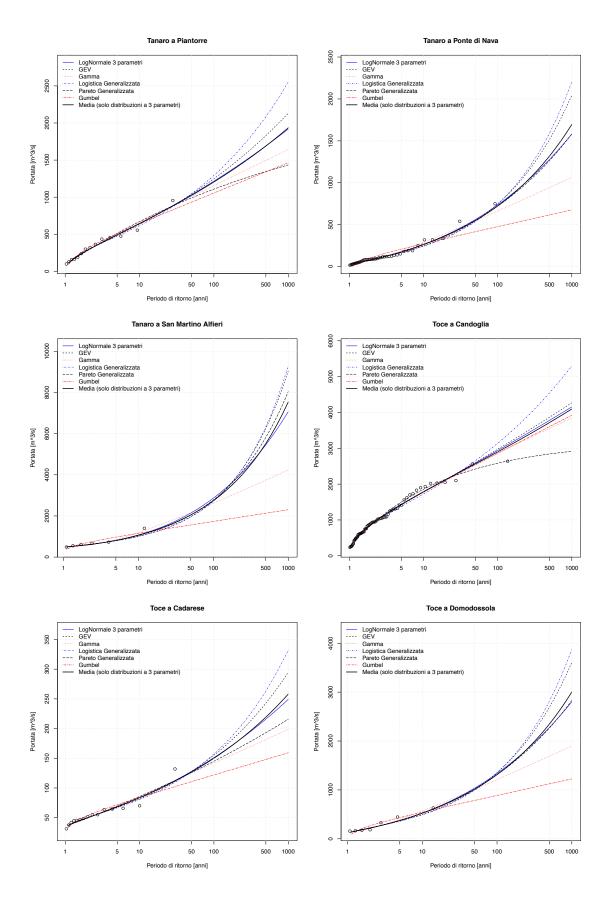


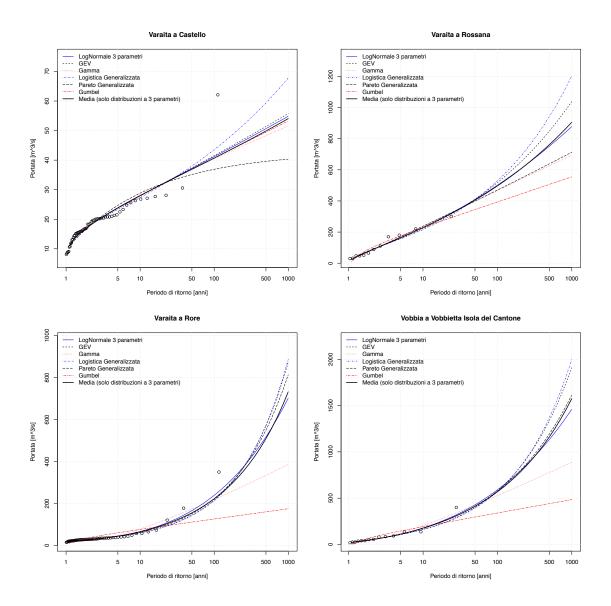


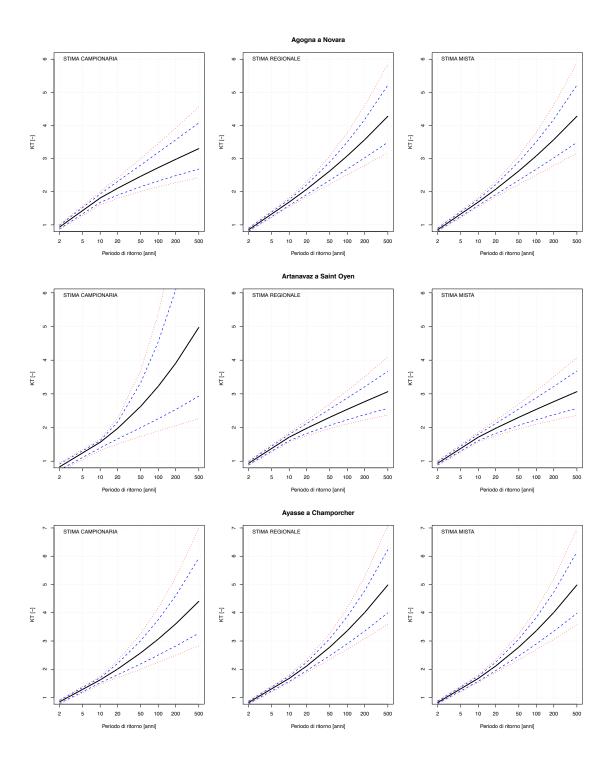


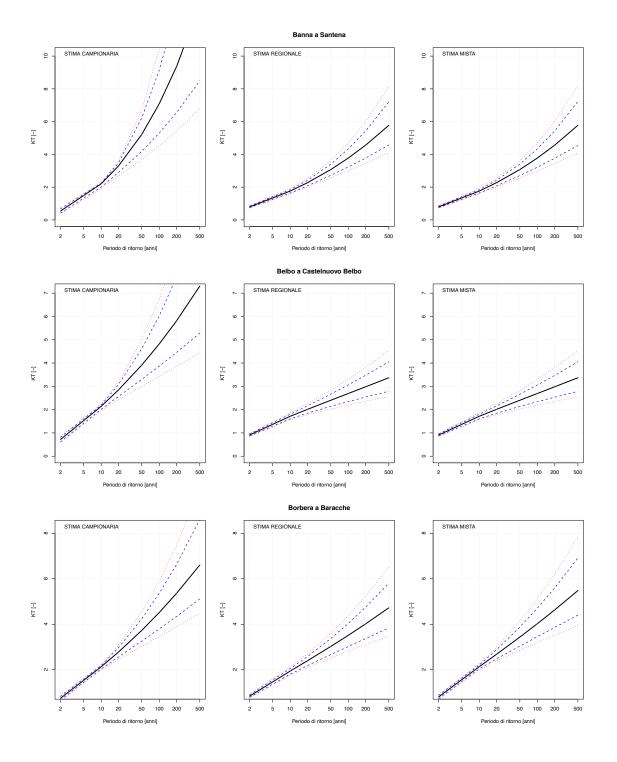


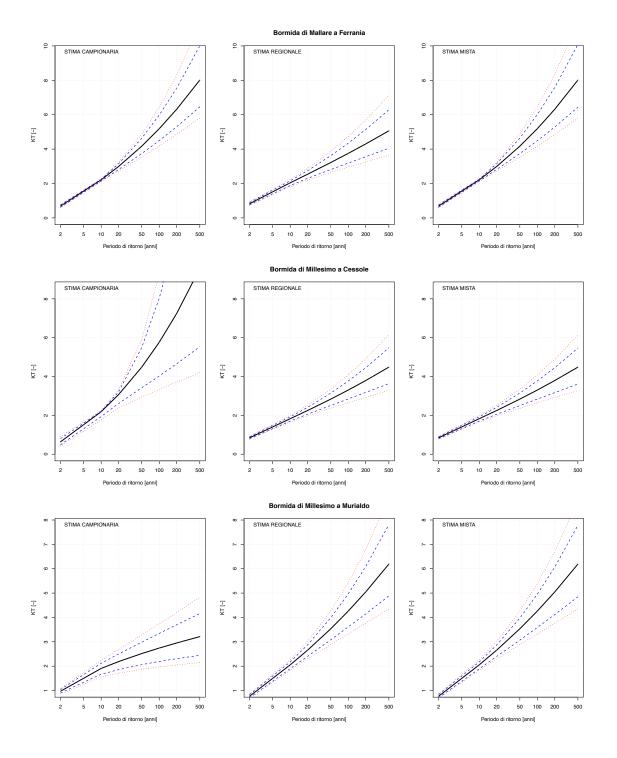


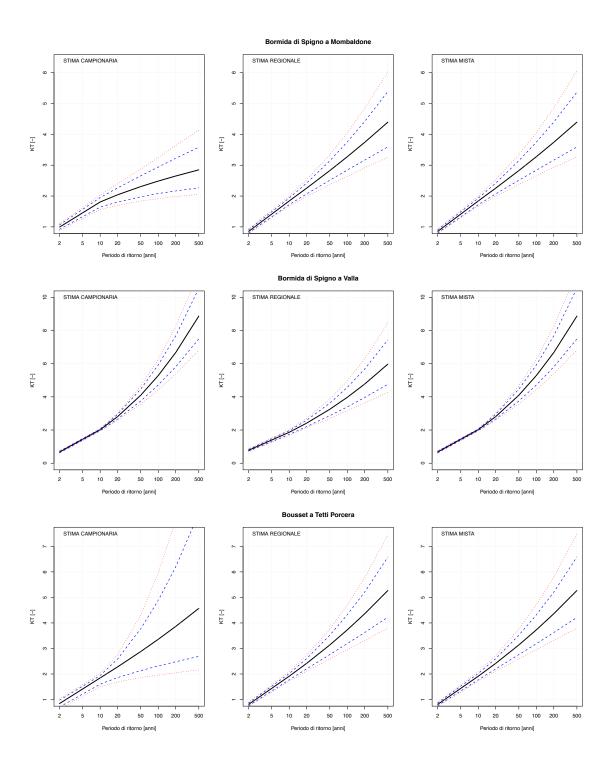


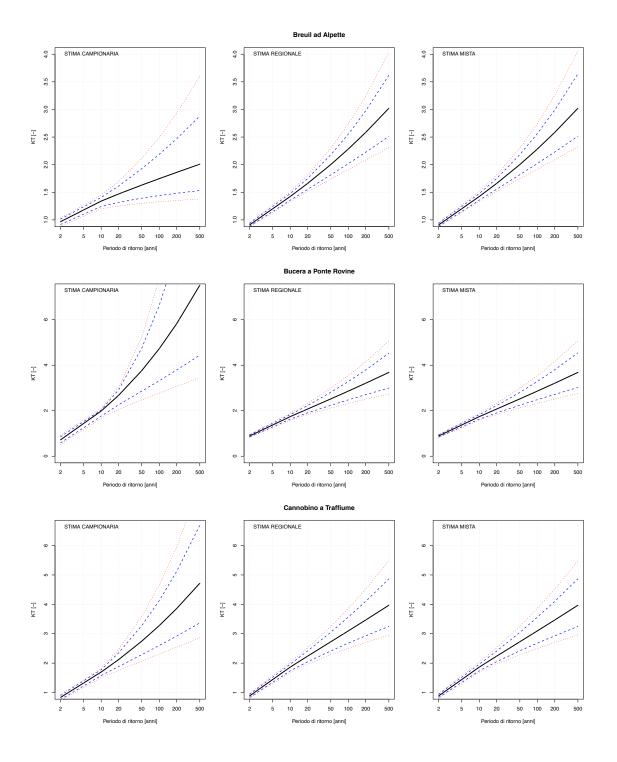


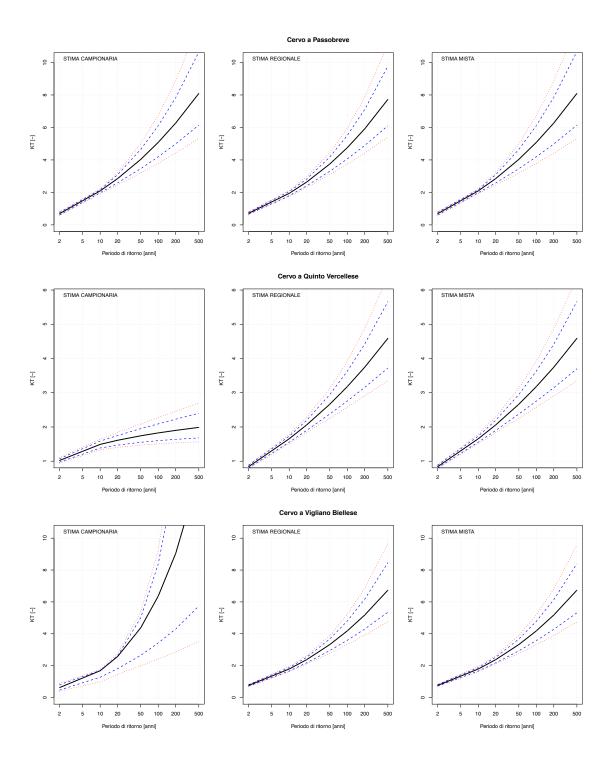


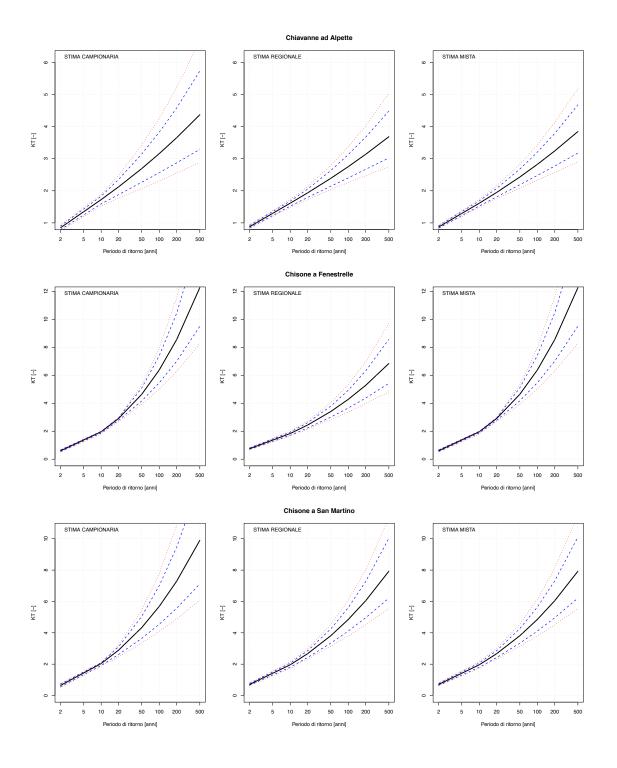



I | CURVE DI CRESCITA CON FASCE DI CONFIDENZA

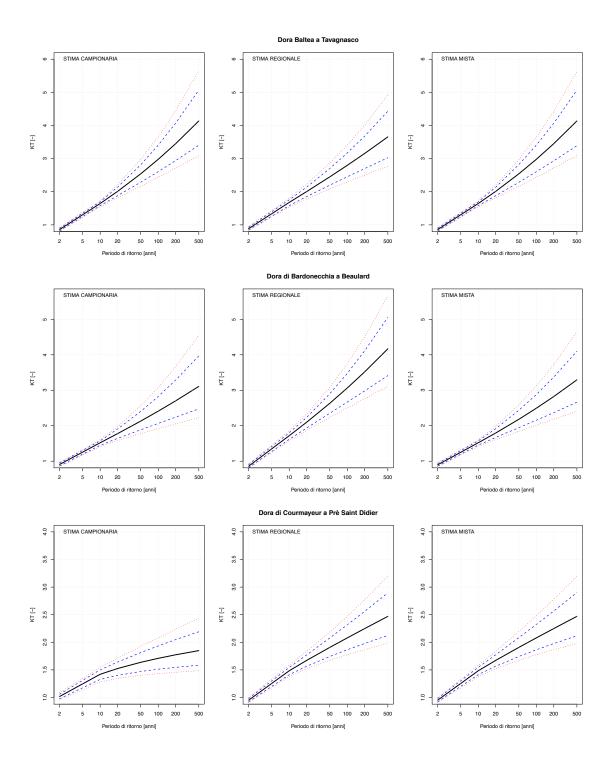

Vengono riportate le curve di crescita adimensionali corredate delle rispettive fasce di confidenza al 10%, 20% e 80%, 90% determinate mediante simulazioni Monte Carlo. Per ogni stazione, la figura di sinistra rappresenta le curve ottenute sulla base degli L-momenti campionari; la figura centrale rappresenta le curve ottenute sulla base degli L-momenti regionali in cross-validazione (i valori derivano dalla ricalibrazione in cross-validazione dell'equazione (4.12) per L_{CV} e dell'equazione (4.17) per L_{CA}); la figura di destra riporta la "stima mista", ovvero quella ottenuta utilizzando gli L-momenti campionari o regionali sulla base della loro varianza di stima. La scelta degli L-momenti nel caso di stima mista viene fatta considerando le rispettive varianze di stima riportate nelle tabella 10.

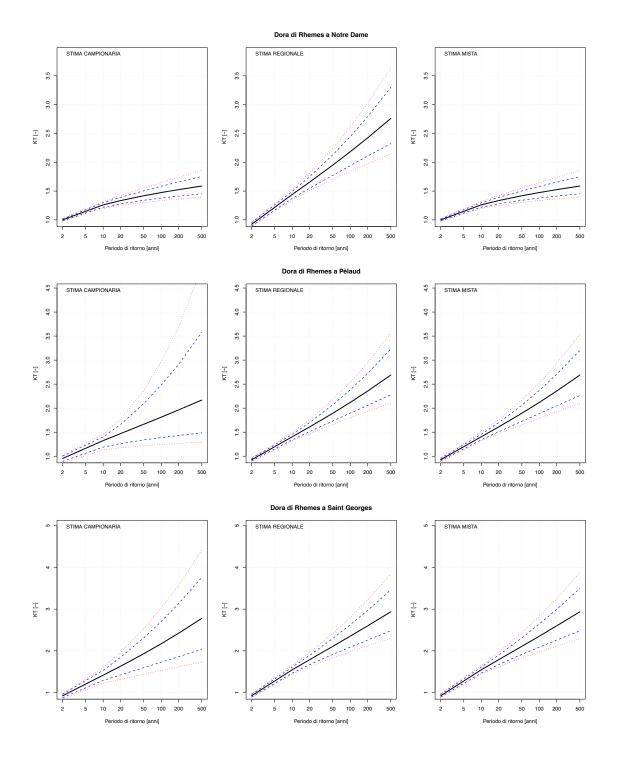


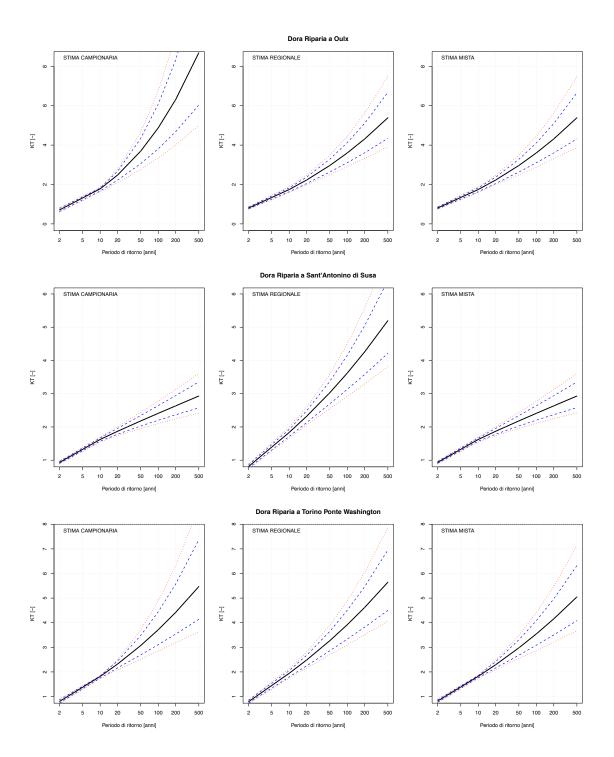


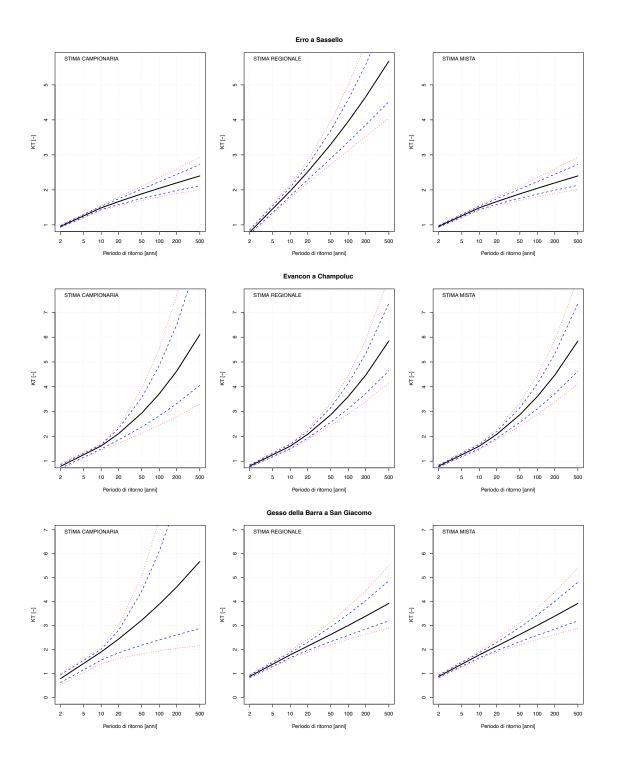


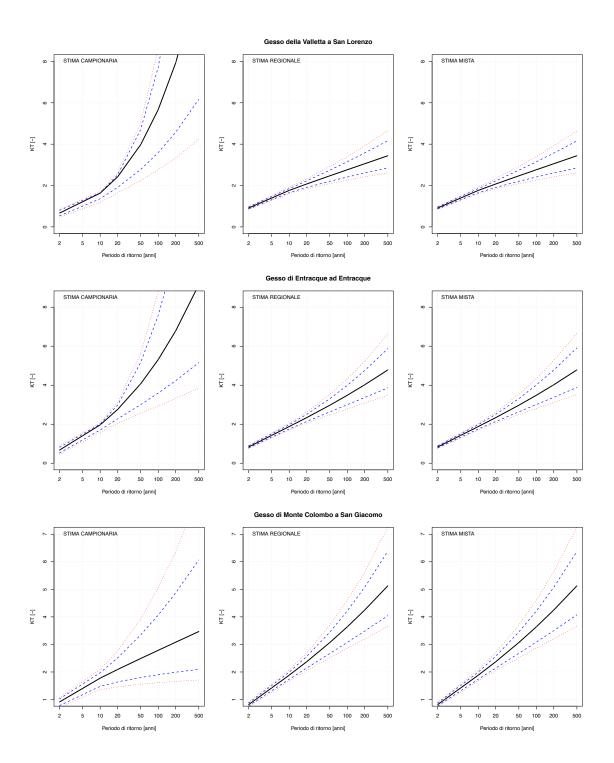


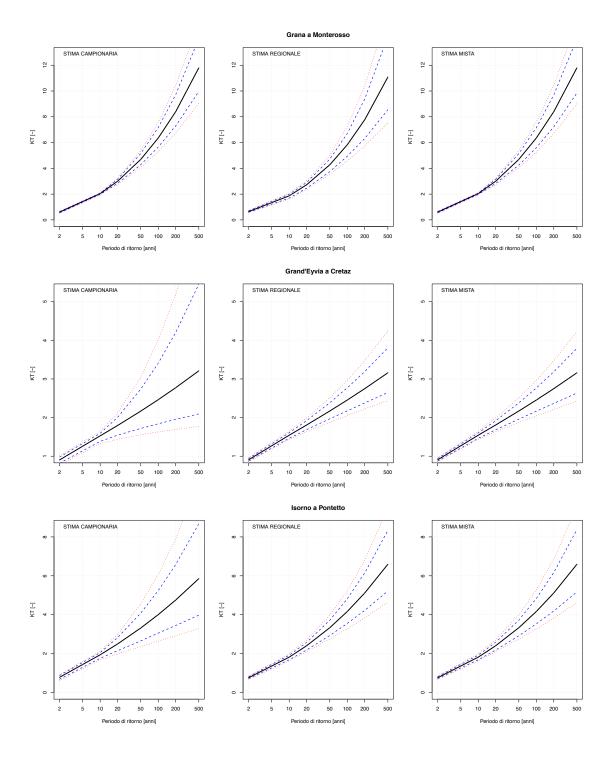


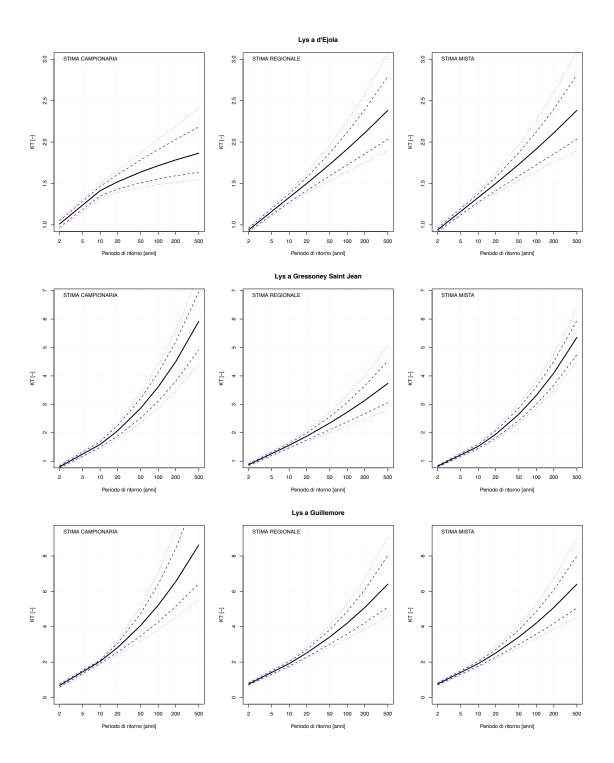


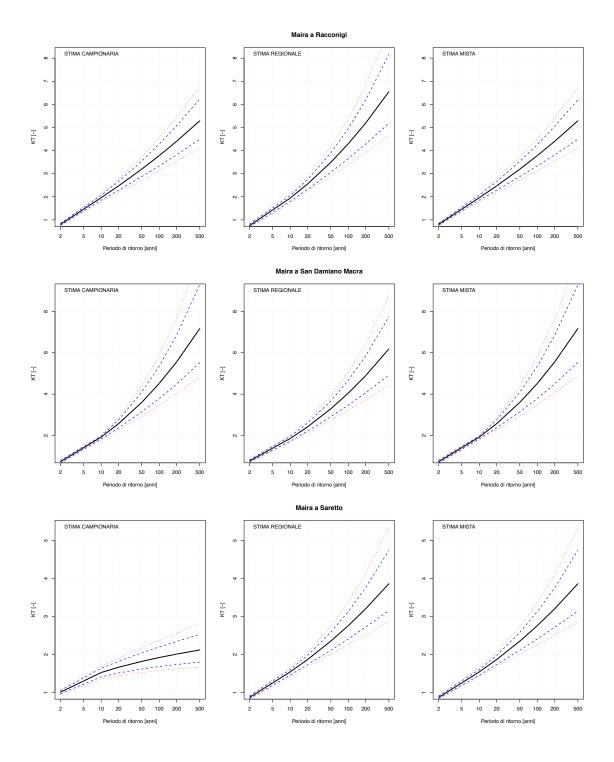


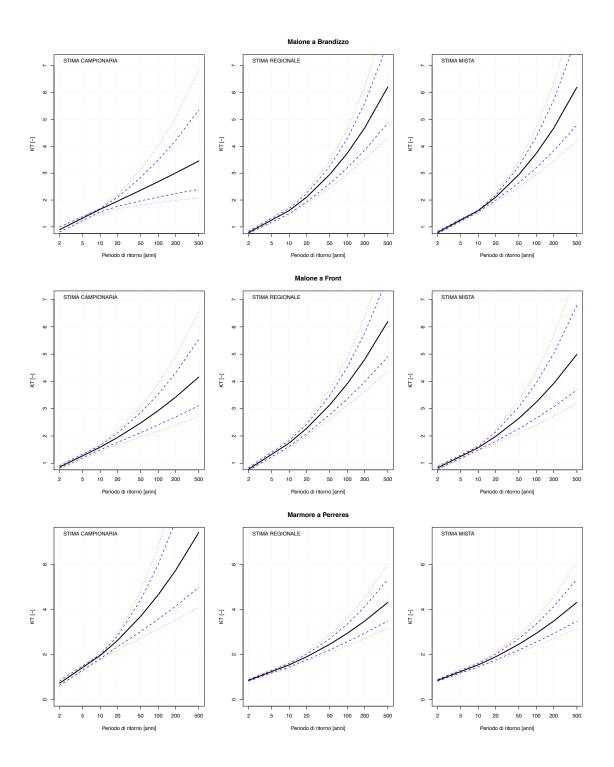


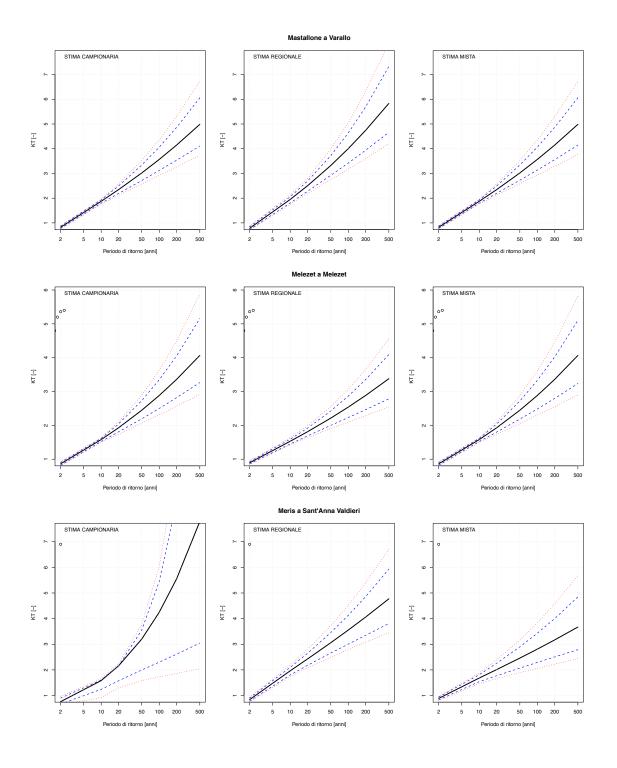


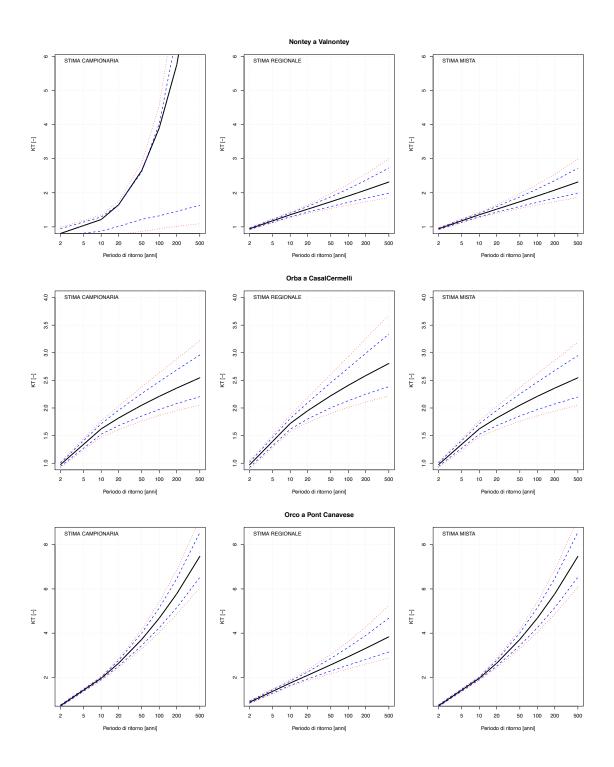


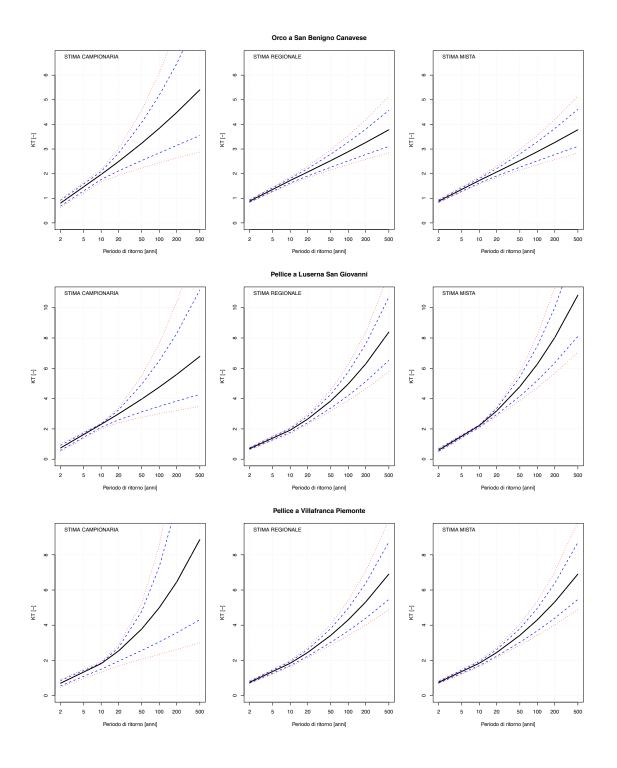


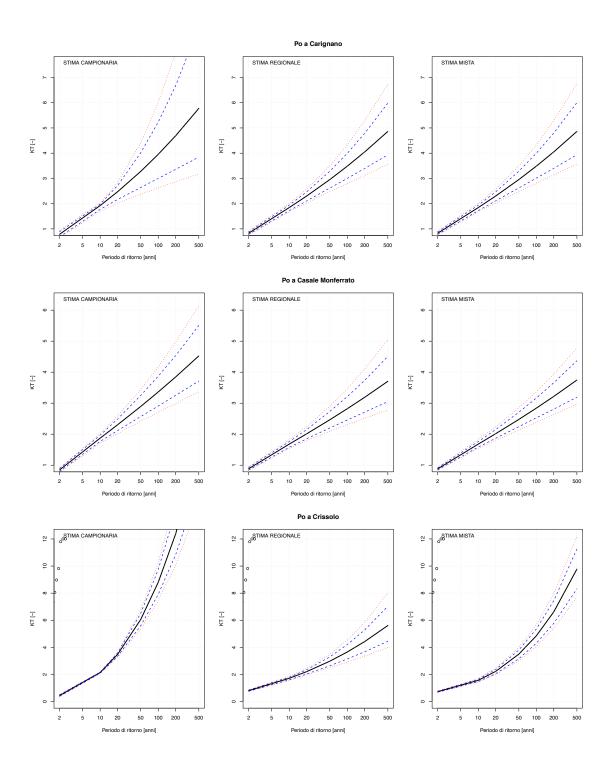


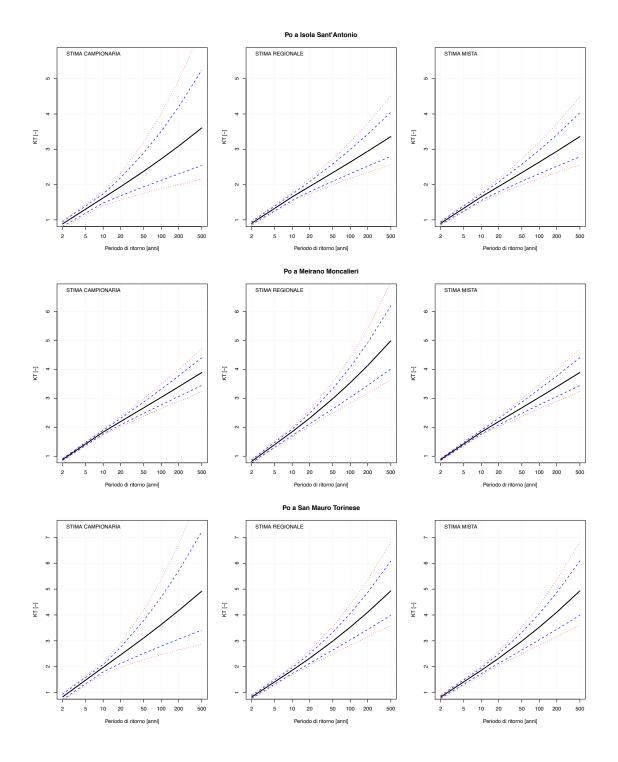


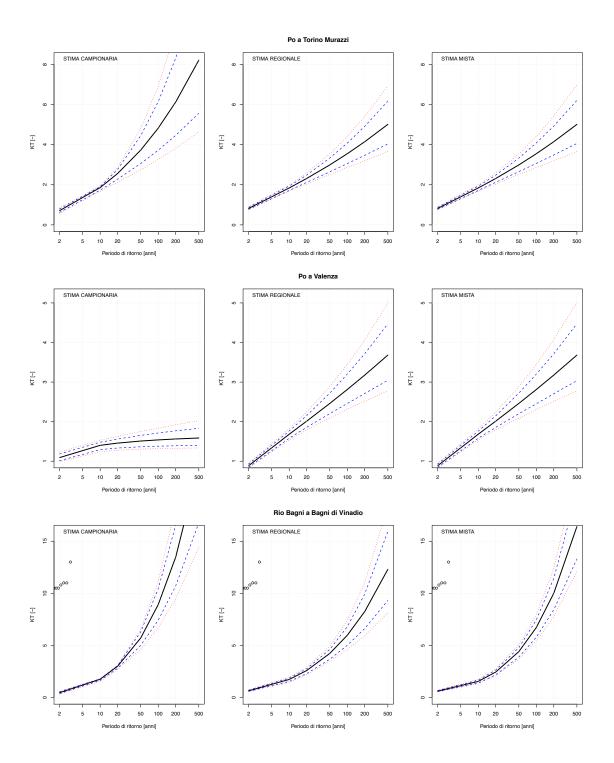


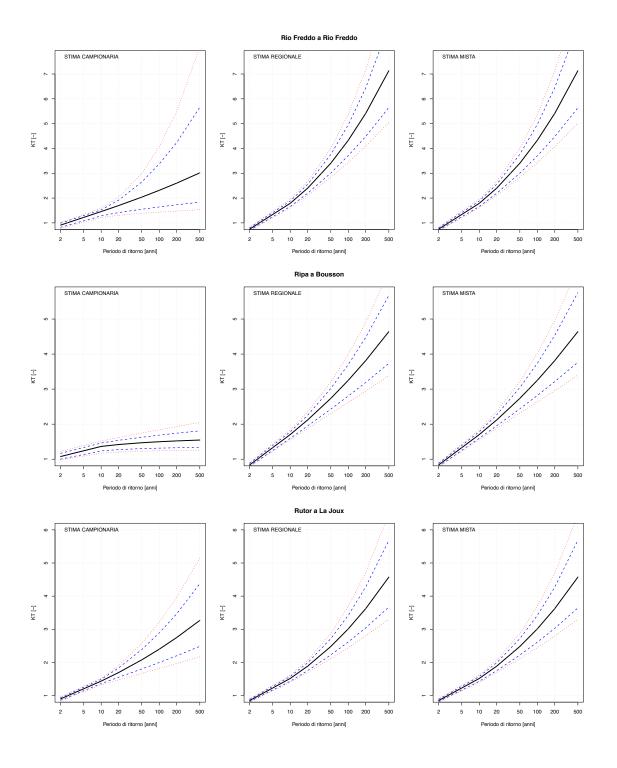


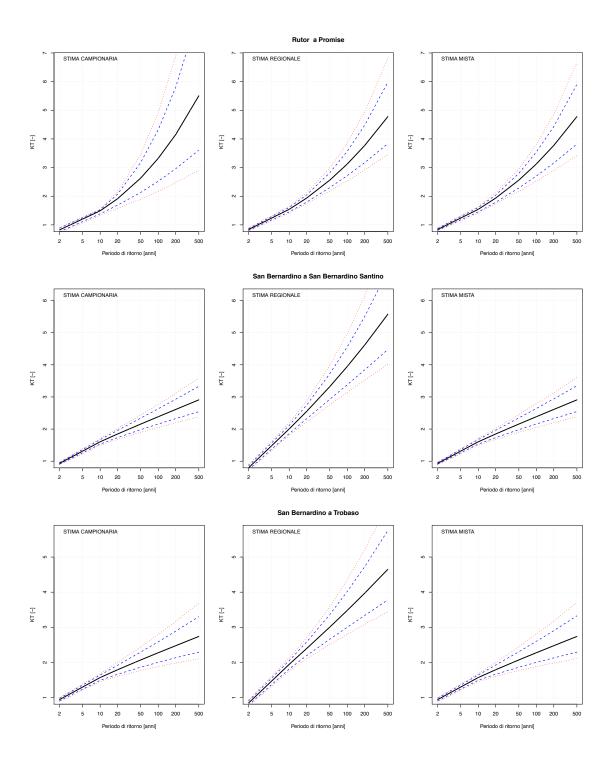


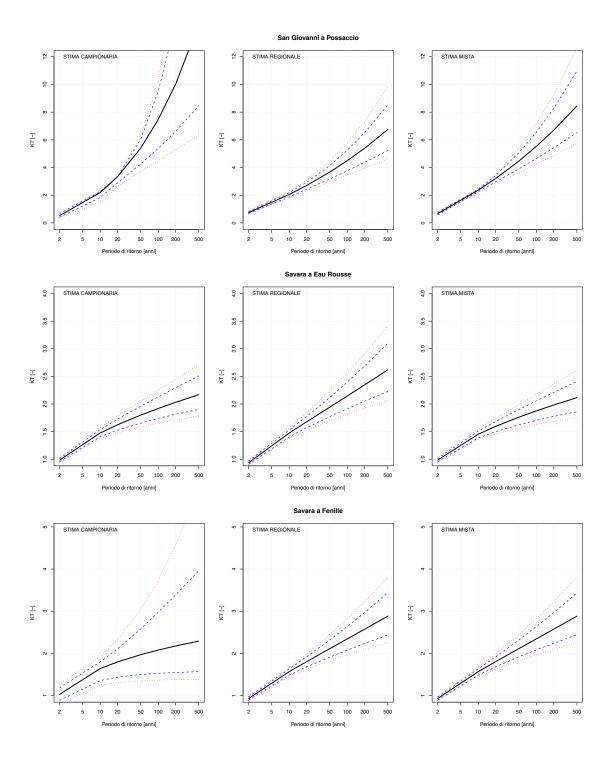


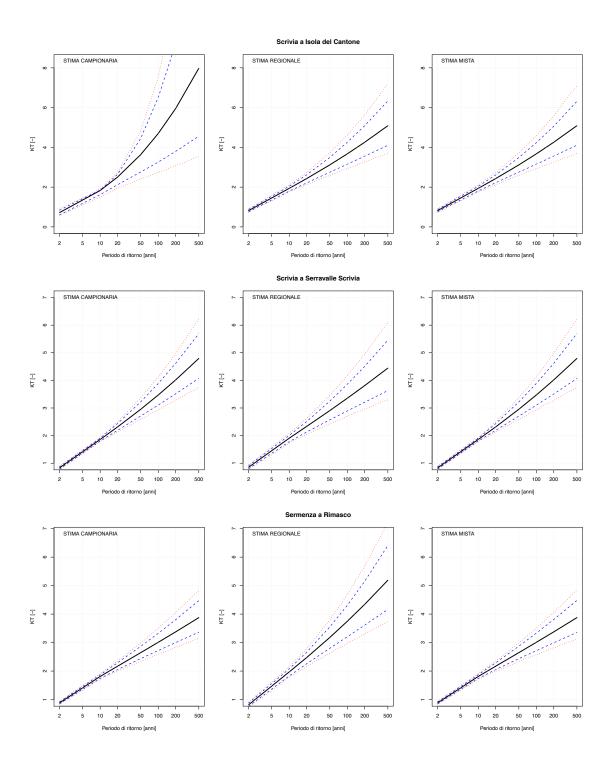


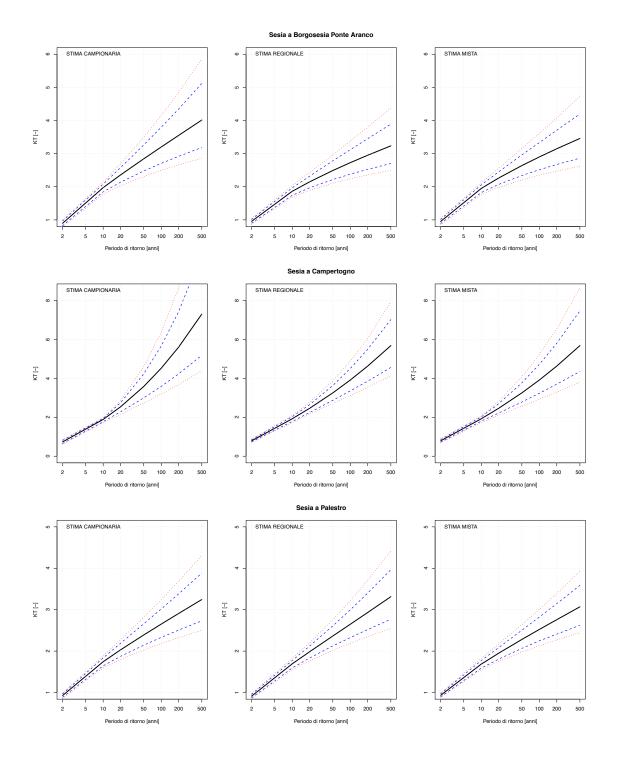


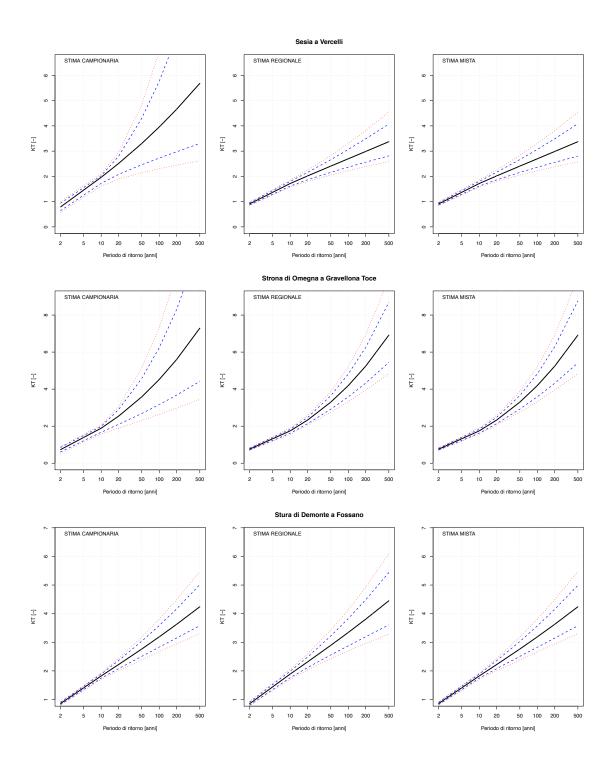


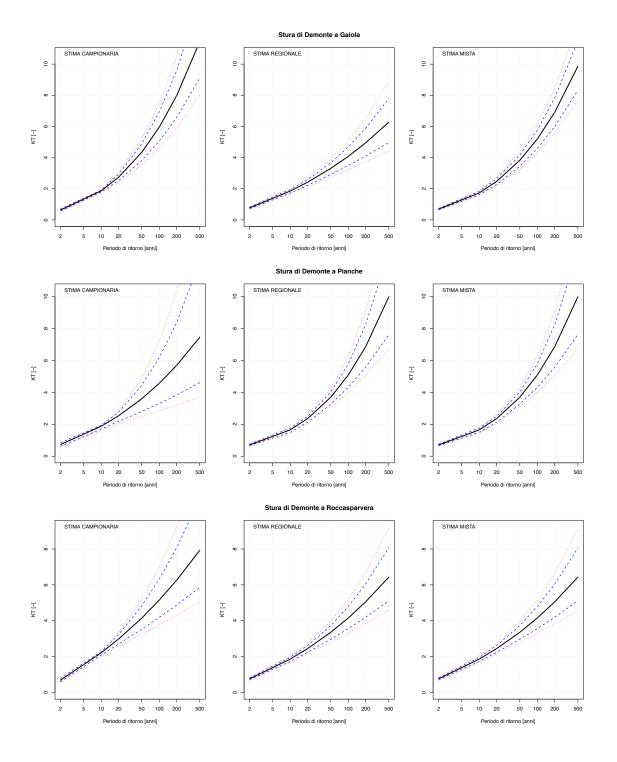


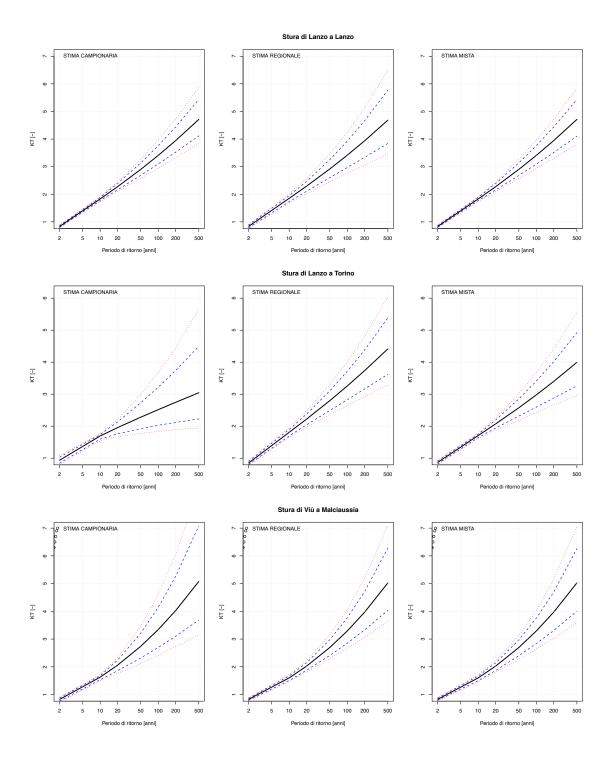


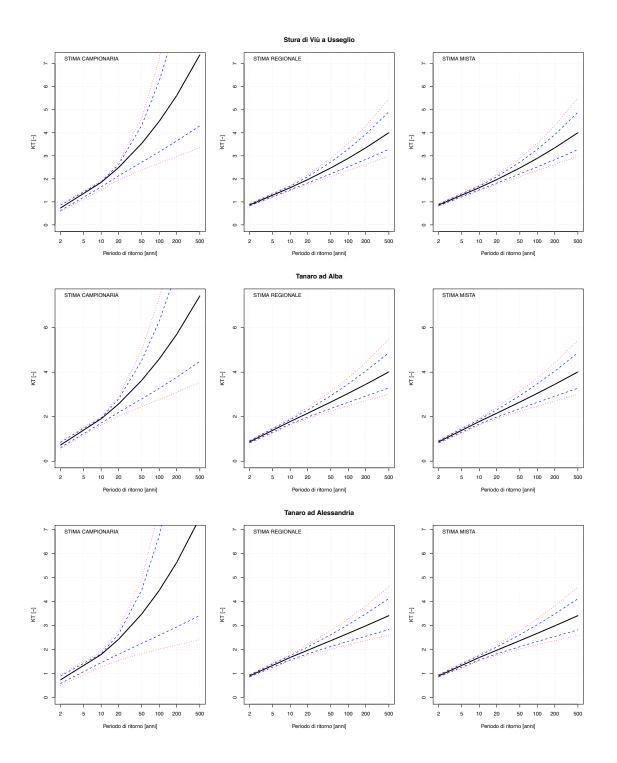


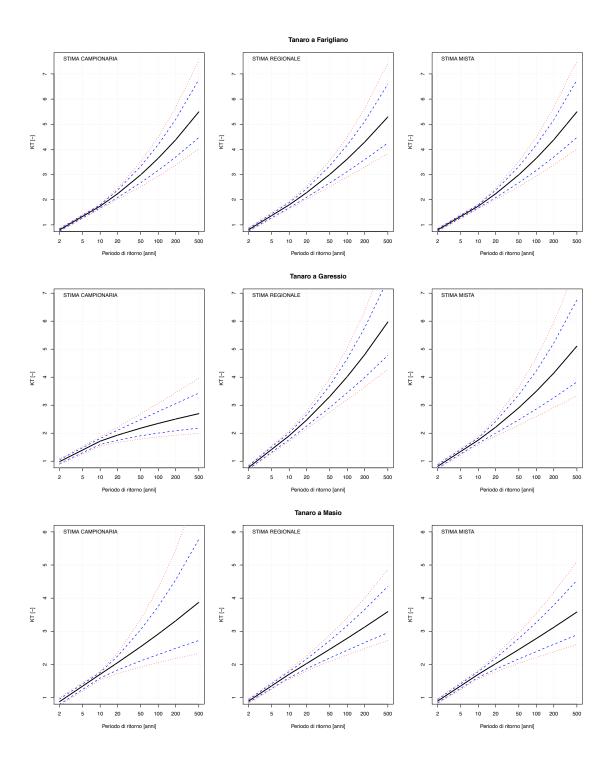


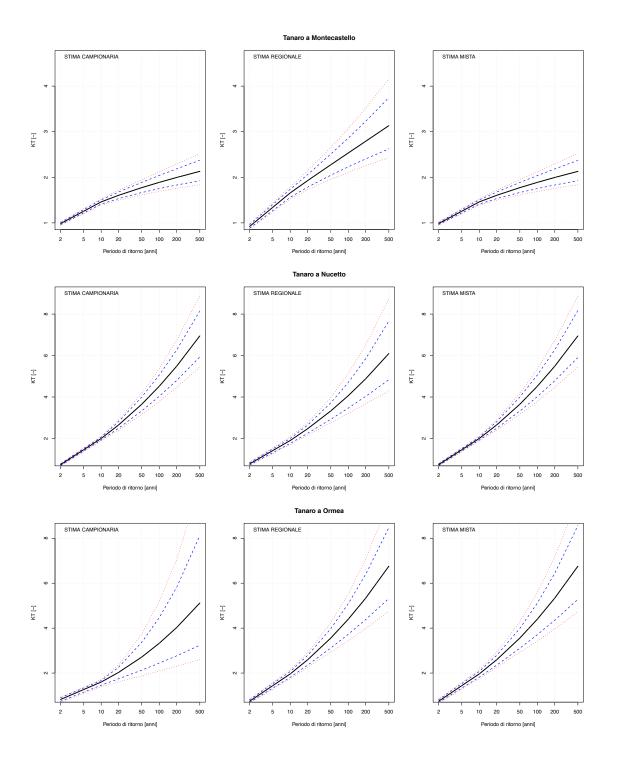


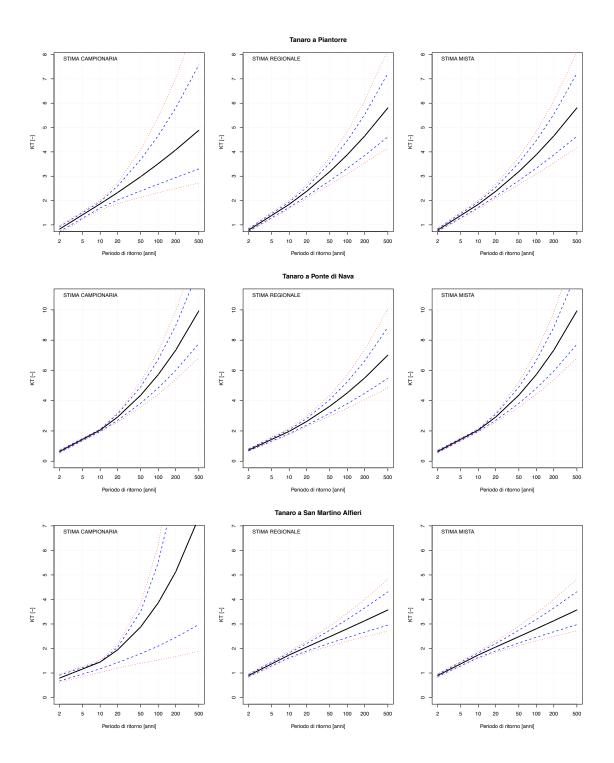


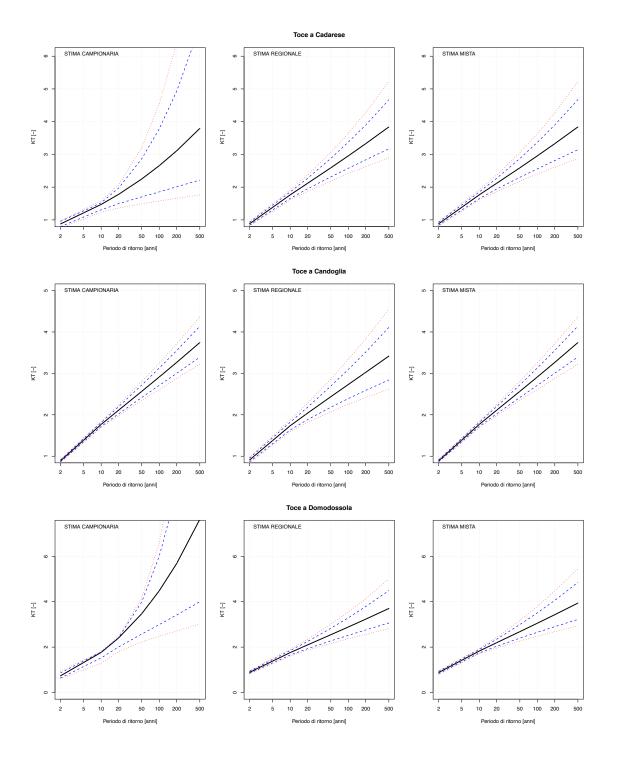


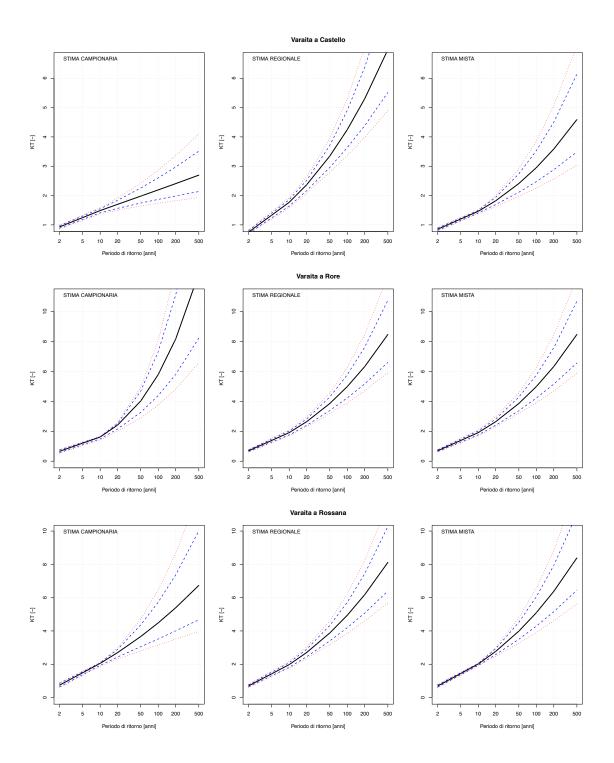


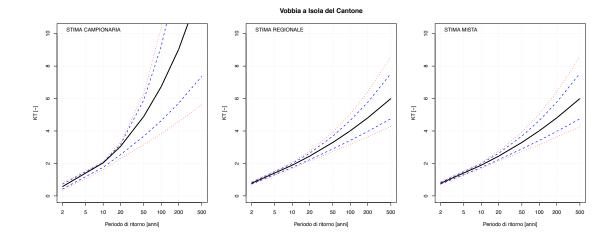


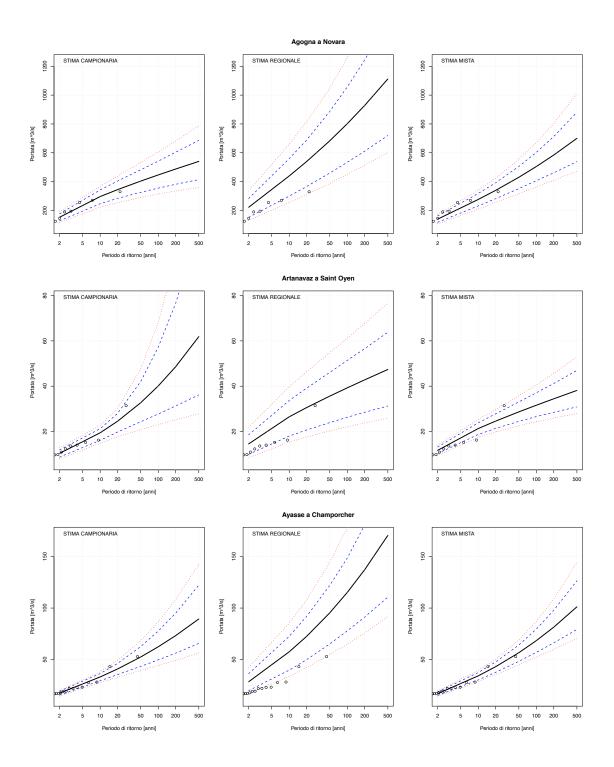


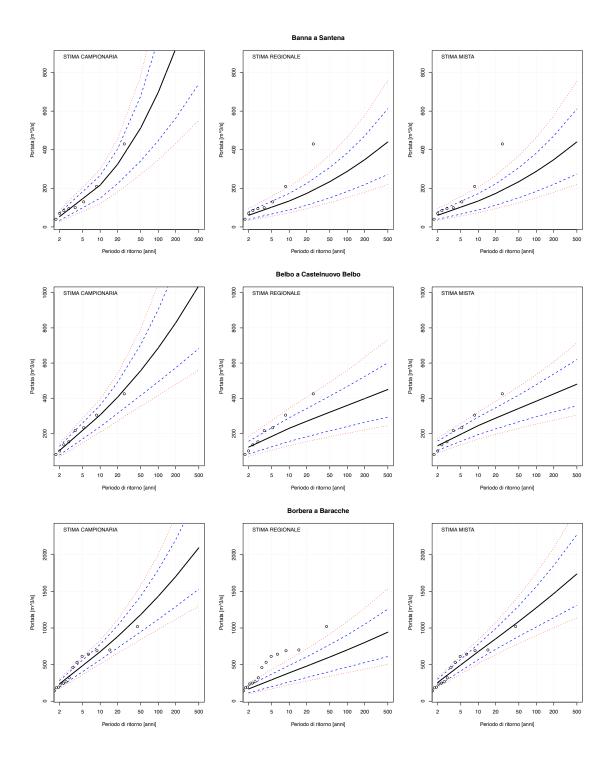


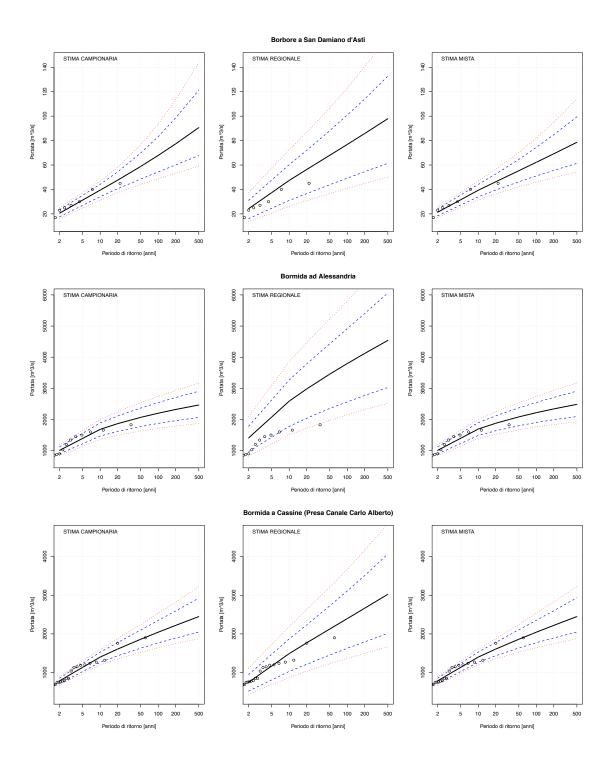


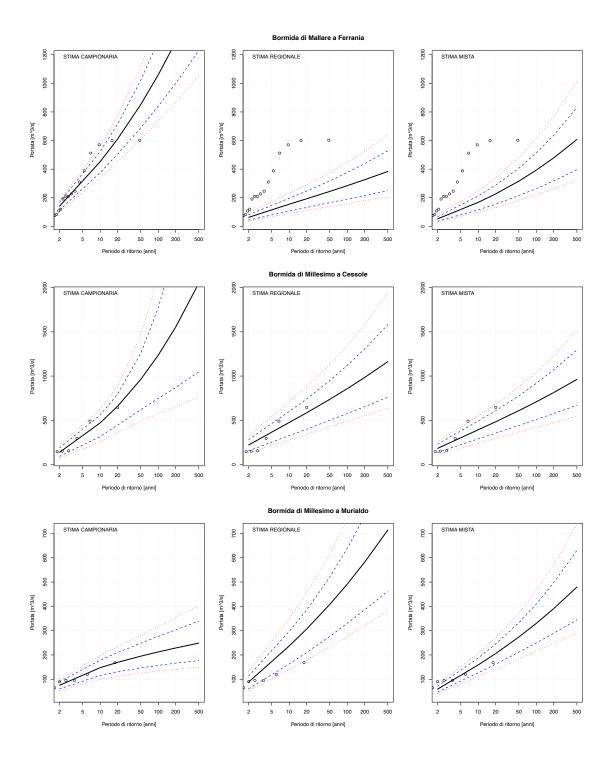


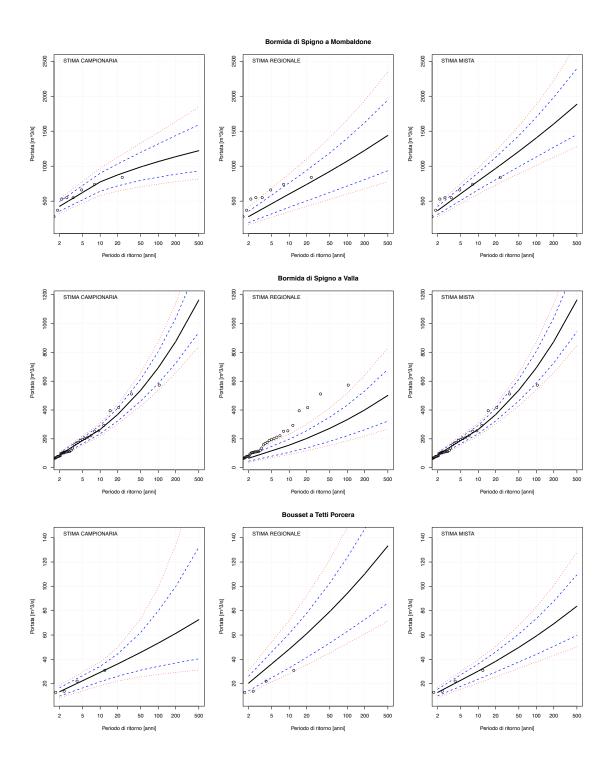









CURVE DI FREQUENZA CON FASCE DI CONFIDENZA


Vengono riportate le curve di frequenza corredate delle rispettive fasce di confidenza al 10%, 20% e 80%, 90% determinate mediante simulazioni Monte Carlo. Per ogni stazione, la figura di sinistra rappresenta le curve ottenute sulla base degli L-momenti campionari; la figura centrale rappresenta le curve ottenute sulla base degli L-momenti regionali in cross-validazione (i valori derivano dalla ricalibrazione in cross-validazione dall'equazione (3.6) per Q_{ind} , dell'equazione (4.12) per L_{CV} e dell'equazione (4.17) per L_{CA}); la figura di destra riporta la "stima mista", ovvero quella ottenuta utilizzando gli L-momenti campionari o regionali sulla base della loro varianza di stima. La scelta degli L-momenti nel caso di stima mista viene fatta considerando le rispettive varianze di stima riportate nelle tabelle 6 e 10.

