UCLA Seminar – February 26, 2008

Improving basin-specific hydrologic predictability incorporating largescale climate information

Peter A. Troch Matt Switanek

Surface Water Hydrology Group The University of Arizona

Not for distribution © Troch 2008

Enhancing Water Supply Reliability

An Interdisciplinary Project to Improve Predictive Capacity in the Lower Colorado River Basin

Courtesy USGS

Lake Mead Elevations

Lake Mead Elevations

Lake Mead Elevations

Moisture source to Colorado River Basin

Not for distribution © Troch 2008

Research question

- Can we confidently predict at seasonal to annual time scale the available water amount in the Lower
 Colorado River basin based on ocean-atmosphere-land links?
- More specifically, can we do this for the Little Colorado River catchment (69,400 km²; Annual average water yield: 1.98*10⁸ m³/year (161,000 acre*ft/year)

Data

- Temperature and Precipitation
 - University of Washington
 - 1/8° interpolated data set for the contiguous US
 - 505 grid cells in the Little Colorado
- Discharge
 - USGS Cameron station (contribution area very close to total basin area)
- Sea Surface Temperature
 - International Comprehensive Ocean Atmosphere Data Set
 - 2° resolution at a monthly time step
- Used daily basin (spatial) averages of temperature, precipitation and discharge to obtain
 - Monthly average temperatures
 - Monthly sums of precipitation and discharge
- Monthly SSTs were spatially averaged over 20° longitude by 10° latitude windows
 - Initially smooth the data and help fill places and times with no data

Methods

- Monthly SSTs were correlated at each point in the Pacific with 3month average temperatures and 3-months sums of precipitation and discharge, with increasing temporal lags:
 - For example, January SSTs were correlated with Jan-Mar, Feb-Apr, ...
 Jun-Aug basin variables (temperature, precipitation, discharge)
- Find the most correlated points in the Pacific with the Little Colorado climate and hydrology variables;
- Test significance of conditioned versus unconditioned pdf shifts in temperature, precipitation and discharge;
- Identify observation kernels, linking SST anomalies to basin-specific climate and hydrologic response, using Gaussian Mixture models (Parzen densities);
- Develop seasonal to annual prediction tool to provide most likely value (mean of normalized variable), as well as pdf to reflect uncertainty (for ensemble simulations, e.g.)

Results: correlation coefficients for different lags

Not for distribution © Troch 2008

Results: correlation coefficients for different seasons

Not for distribution © Troch 2008

Stacking it up against ENSO and PDO

65.24

February 26 2008

Seminar

.68

LICL

-.13 42.23

Not for distribution

75%

© Troch 2008

6/10/2009 2:29:32 PM

16

17 2:29:32 PM

Does SST state defines also significant shifts in hydrologic response?

		All (std dev)	All (mm)	Conditioned (std dev)	Conditioned (mm)	
	25%	68	.077	-1.16	.013	
Not fo © Troo	50%	0	.452	49	.135	
	r distribution th 2008	.68 _{UCLA}	Seminal - 529	2008 .18	.653 6/10/2009 2:29:32	18 2 PM

Predictive confidence SST states

95

90

<90

95

90

-<90

A M

JJAS

Months

O N D

0

F

J

M

• Precipitation

• Temperature

UCLA Seminar – F

Not for distribution © Troch 2008

Predictive confidence SST indices

• Precipitation

Not for distribution © Troch 2008

lacksquare

Seasonal prediction of Temperature: NINO3

© Troch 2008

Seasonal prediction of Precipitation: NINO3

June SST anomalies to predict precipitation in Little Colorado 2 seasons ahead (December-February)

CORRCOEF = .16 RMSE = 270.1 NS = .0005

Not for distribution © Troch 2008

Seasonal prediction of Precipitation: SST states

June SST anomalies to predict precipitation in Little Colorado 2 seasons ahead (December-February)

CORRCOEF = .62 RMSE = 234.4 NS = .3214

November PDO-based discharge prediction

Little Colorado Discharge

Not for distribution © Troch 2008

November ENSO-based discharge prediction

Little Colorado Discharge

Not for distribution © Troch 2008

November SST-based discharge prediction

Little Colorado Discharge

Not for distribution © Troch 2008

SST state-based prediction of discharge

SST state

NINO3

Not for distribution © Troch 2008

UCLA Seminar – February 26, 2008

29 6/10/2009 2:29:32 PM 7

Outlook: Land and atmosphere water balance

$$\left| \left\langle \frac{\partial S}{\partial t} \right\rangle = - \left\langle \frac{\partial W}{\partial t} \right\rangle - \left\langle \nabla_H \cdot \vec{Q} \right\rangle - \left\langle \vec{R} \right\rangle$$

Not for distribution © Troch 2006 SRP Meeting October 25th, 2006

Outlook: water storage dynamics

Not for distribution © Troch 2008 UCLA Seminar – February 26, 2008

31 6/10/2009 2:29:32 PM

Outlook: real-time TWS monitoring

Outlook: storage-discharge relationship

Acknowledgments

- Bureau of Reclamation Lower Colorado (Terry Fulp and Nan Yoder);
- UA Water Sustainability Project;
- Kathy Jacobs, Dave Meko, Bonnie Kolby, Bart Nijssen;
- Rosalind Bark, Kyomi Morino, Lana Jones, Laura Lindenmayer;
- Matej Durcik, Ryan Teuling, Sonia Seneviratne, Martin Hirschi; Ruud Hurkmans, Shaakeel Hasan;
- Andy Wood, Dennis Lettenmaier.

