

CONSIGLIO NAZIONALE DELLE RICERCHE

GRUPPO NAZIONALE PER LA DIFESA DALLA CATASTROFI IDROGEOLOGICHE Linea 1. Previsione e prevenzione dagli eventi idrologici estremi

PROGETTO VAPI VALUTAZIONE DELLE PIENE IN ITALIA

Rapporto sulla

VALUTAZIONE DELLE PIENE ITALIA NORD OCCIDENTALE

PORTATA AL COLMO DI PIENA Bacino del Fiume Po e Liguria Tirrenica

Estratto dal Rapporto Nazionale VAPI con aggiornamenti

A cura di Carlo DE MICHELE e Renzo ROSSO Unità Operativa 1.8

MILANO 2001 Copia delle memorie e dei rapporti contrassegnati con il simbolo * nel capitolo "Riferimenti Bibliografici" è disponibile a richiesta presso il POLITECNICO DI MILANO Dipartimento di Ingegneria Idraulica, Ambientale e del Rilevamento Sezione Idraulica CNR-GNDCI u.o.1.8 Piazza Leonardo da Vinci, 32 - 20133 MILANO renzo.rosso@polimi.it

Milano, Agosto 2001

4. SINTESI DEL RAPPORTO REGIONALE PER I COMPARTIMENTI DI PARMA E GENOVA

A cura di Carlo De Michele e Renzo Rosso, U.O. n°1.8 presso il Politecnico di Milano

4.1. Premessa

Per il territorio messo sotto osservazione dai Compartimenti del Servizio Idrografico e Mareografico Nazionale (SIMN) di Parma e di Genova, che comprende il bacino del Po, chiuso a Pontelagoscuro ed i bacini liguri con foce sul litorale tirrenico, è stato pubblicato un Rapporto Regionale soltanto in forma di prima bozza, ed è in fase di preparazione uno specifico "Manuale di valutazione delle piene". Questa breve nota sintetizza i risultati salienti ottenuti, al fine di consentire la stima delle portate al colmo con assegnato periodo di ritorno, per qualsiasi sezione del reticolo idrografico dei corsi d'acqua del territorio indagato. La sintesi è stata articolata con riferimento soprattutto alle indagini contenute nel rapporto sulla *Valutazione delle Piene nel Bacino Padano e nella Liguria Tirrenica* di De Michele & Rosso [1999], che presenta un sostanziale avanzamento delle ricerche già delineate nella preliminare versione di Brath & Rosso [1994], entrambi compilati dall'U.O. 1.8 del Politecnico di Milano. La presentazione sintetica dei risultati, riportata nel seguito, fornisce unicamente le indicazioni essenziali per applicare le procedure proposte e si rimanda al rapporto di cui sopra per il dettagliato sviluppo di tali procedure.

4.2. Base di dati utilizzata

4.2.1. Pluviometria

Sono stati utilizzati i dati osservati nelle stazioni di misura pluviometriche e pluviografiche del SIMN fino al 1986. Dopo un'analisi di qualità dell'informazione contenuta nelle serie storiche registrate, è stato ottenuto un data base comprendente 366 stazioni di misura (270 nel bacino padano e 96 in Liguria) con almeno 20 anni di osservazione e numerosità media di 34 anni.

4.2.2. Idrometria

Con riferimento alle diverse edizioni della Pubblicazione n°.17 del SIMN, fino al 1970 era possibile identificare 125 stazioni idrometriche con almeno 9 anni di misura. Grazie alla collaborazione della Sezione di Genova dello stesso SIMN è stato altresì possibile integrare il campione della Liguria Tirrenica con i dati relativi al periodo 1970-1993 desunti dalle registrazioni idrometrografiche disponibili. Utilizzando un criterio non parametrico di valutazione dell'attendibilità delle serie storiche, e considerando solo stazioni di misura con area del bacino sotteso non superiore a 3000 km², sono state selezionate 74 stazioni di misura idrometriche (57 nel bacino padano e 17 in Liguria) con numerosità variabile da 9 a 60 anni, e valor medio di 23 anni. Ai fini dell'identificazione delle regioni omogenee sono stati altresì considerate le serie storiche relative ad altre 24 stazioni idrometriche ricadenti in bacini limitrofi all'area di interesse ubicate in Emilia Romagna e Trentino Alto Adige¹.

¹ Le serie storiche dei massimi annuali delle portate al colmo di piena del Trentino Alto Adige sono state fornite all'U.O. 1.8 dall'U.O. 1.1 Dott. Villi.

4.3. Leggi di variazione dei coefficienti di crescita con il periodo di ritorno

4.3.1. Pluviometria

4.3.1.1. Piogge di breve durata e forte intensità

Non si è ritenuto identificare sottozone pluviometriche omogenee in relazione alla distribuzione di probabilità cumulata (DPC) delle piogge da 1 a 24 ore consecutive e, in alternativa, si è provveduto alla valutazione della DPC per ogni stazione in base all'ipotesi di invarianza di scala [Burlando & Rosso, 1996] utilizzando la distribuzione generalizzata del valore estremo (GEV). Stimati i parametri di forma, k, di scala, α , e di posizione, ϵ , della DPC/GEV per la stazione in esame (vedi Tab. 4A.1 in Appendice) resta univocamente determinata la relazione fra periodo di ritorno T e valore del coefficiente di crescita K_T :

$$T = \frac{1}{1 - F_K(K)} = \frac{1}{1 - \exp\left\{-\left[1 - \frac{k}{a}(K - e)\right]^{1/k}\right\}}$$
(4.1)

valida per piogge massime annuali di durata da 1 a 24 ore consecutive.

Più utile dal punto di vista pratico è la forma inversa della (4.1), per cui, fissato un valore T del periodo di ritorno in anni, si ricava il corrispondente valore del coefficiente di crescita K_T :

$$K_T = \mathbf{e} + \frac{\mathbf{a}}{k} \left(1 - e^{-ky_T} \right) \tag{4.2}$$

dove y_T indica la variabile ridotta di Gumbel, pari a $y_T = -\ln\left(\ln\frac{T}{T-1}\right)$ e i valori dei parametri k, α e

 ε sono riportati in Tab. 4A.1 per i siti dove sono localizzate le stazioni pluviometriche. Per gli altri siti, si riportano nelle Figg. 4.1-3 le mappe dei parametri k, α e ε per l'intero territorio, che sono state ricavate per interpolazione con metodi di kriging secondo la procedura illustrata da Rosso et al. [1997].

L'altezza di pioggia cumulata con periodo di ritorno T-ennale va quindi valutata come

$$h_T(d) = m(d)K_T \tag{4.3}$$

dove m(d) è il valore atteso dell'altezza di pioggia massima annuale caduta in d ore consecutive (v. paragrafo 4.4.1.1).

Fig. 4.1: Mappa del parametro di forma, k, della distribuzione di probabilità del coefficiente di crescita dei massimi annuali delle piogge da 1 a 24 ore consecutive, con indicazione delle 366 stazioni di misura pluviometrografiche considerate.

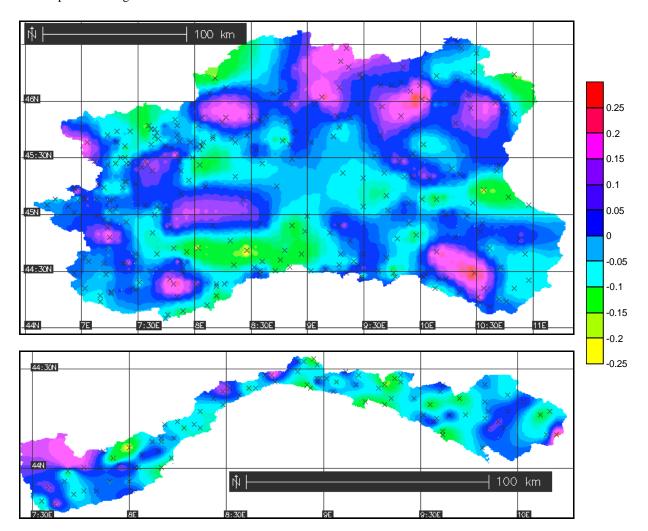


Fig. 4.2: Mappa del parametro di scala, α , della distribuzione di probabilità del coefficiente di crescita dei massimi annuali delle piogge da 1 a 24 ore consecutive, con indicazione delle 366 stazioni di misura pluviometrografiche considerate.

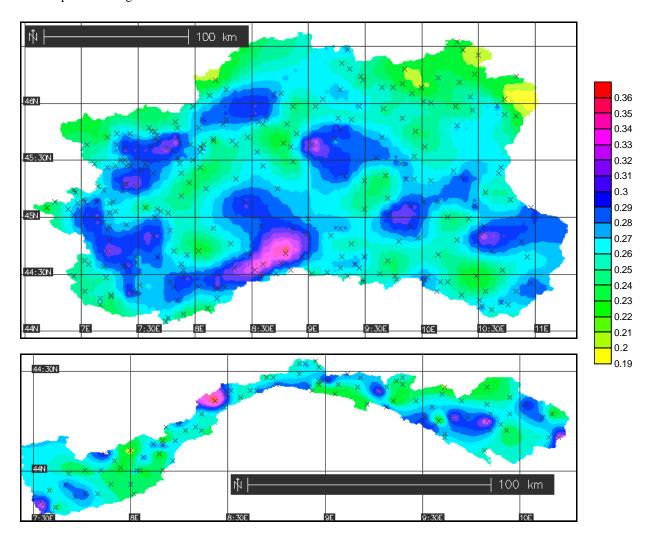
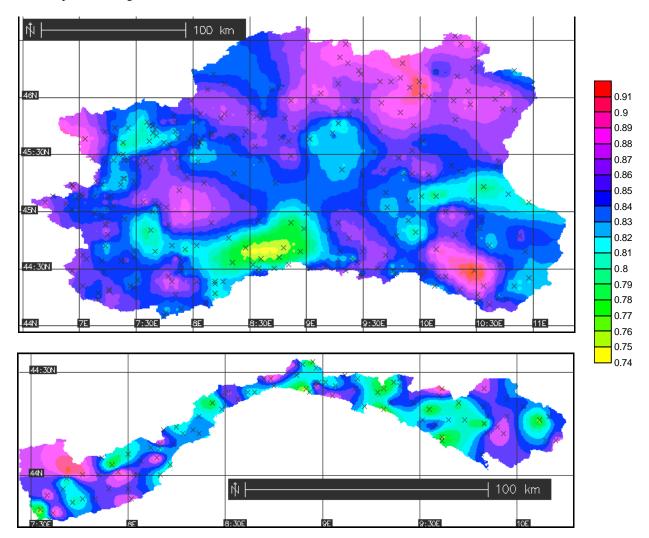
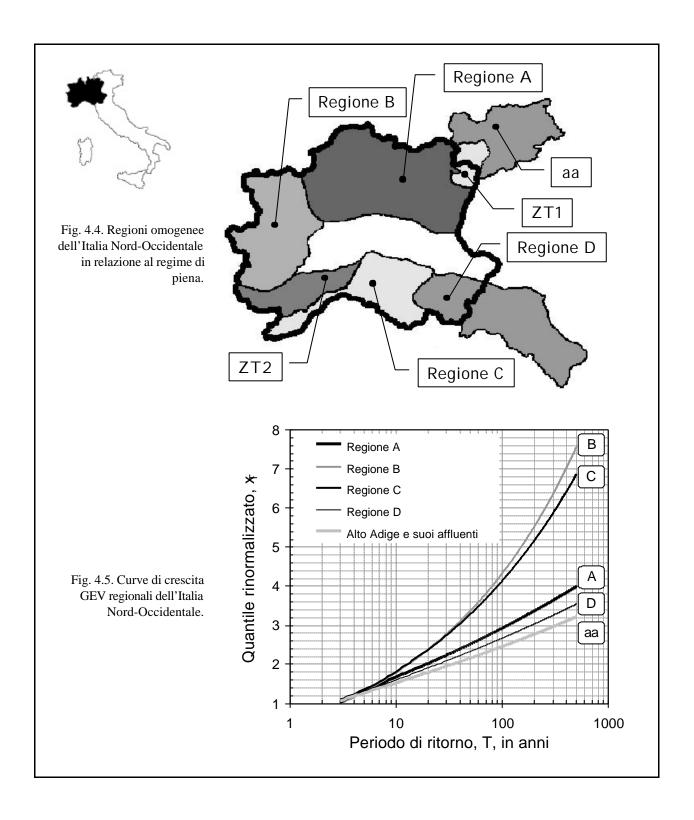



Fig. 4.3: Mappa del parametro di posizione, ε, della distribuzione di probabilità del coefficiente di crescita dei massimi annuali delle piogge da 1 a 24 ore consecutive, con indicazione delle 366 stazioni di misura pluviometrografiche considerate.

4.3.2. Idrometria

4.3.2.1. Portata al colmo di piena

E' stata adottata la suddivisione in 4 ZO (vedi Tab. 4.1 e Fig. 4.4) ottenuta attraverso l'analisi delle portate al colmo massime annuali tramite un metodo multi-livello (v., p.es., De Michele & Rosso [2001*b*]). Sono state altresì individuate due zone di transizione, per le quali è statisticamente confutabile l'ipotesi di omogeneità e la valutazione di piena richiede una specifica impostazione, riportata nel seguito.


Tab. 4.1: Zone omogenee di piena dell'Italia Nord Occidentale e loro campo di validità in funzione dell'area *A* del bacino idrografico sotteso.

	Zona	Confini	A, Km ²
Α	Alpi e Prealpi Centrali	Abbraccia i bacini padani dal Chiese al Sesia	40÷2500
В	Alpi e Prealpi Occidentali	Comprende i bacini padani dalla Dora Baltea al torrente Grana	40÷1900
С	Appennino Nord Occidentale e Bacini Tirrenici	Abbraccia i bacini liguri con foce al litorale tirrenico ed i bacini padani dallo Scrivia al Taro	15÷1500
D	Appennino Nord Orientale	Comprende i bacini padani dal torrente Parma al Panaro (compresi i bacini adriatici dal Reno al Conca)	6÷1300
aa	Alto Adige e suoi Affluenti	Comprende i bacini in sponda destra dal Rienza all'Avisio, in sponda sinistra dal Rio Riva al Rio Valsura	90÷2700
ZT1	Zona disomogenea dell'Alto Garda: transizione tra Zona A e Alto Adige	Comprende i tributari del lago di Garda e il bacino del Noce	20÷1100
ZT2	Zona disomogenea delle Alpi Marittime: transizione tra la Zona B e la Zona C	Comprende il bacino Tanaro e suoi affluenti	50÷1500

Quale distribuzione di probabilità cumulata (DPC) del coefficiente di crescita del massimo annuale delle portate al colmo di piena, indicato ancora con il simbolo K, è stata adottata la distribuzione generalizzata del valore estremo (GEV) ed i parametri ottenuti dall'analisi al secondo livello sono riportati in Tab. 4.2. Le relative curve di crescita sono anche riportate nell'abaco di Fig. 4.5.

Tab. 4.2: Parametri della distribuzione di probabilità GEV del coefficiente di crescita K_T per le zone omogenee di piena dell'Italia Nord Occidentale (N indica la numerosità del campione utilizzato).

	Zona	N	a	e	k
Α	Alpi e Prealpi Centrali	316	0.365	0.745	-0.110
В	Alpi e Prealpi Occidentali	347	0.352	0.635	-0.320
С	Appennino NW & Bacini Tirrenici	753	0.377	0.643	-0.276
D	Appennino NE	439	0.334	0.775	-0.089
aa	Alto Adige e suoi affluenti	467	0.292	0.804	-0.088

Si riportano di seguito, nella Tab. 4.3, i valori di K_T ottenuti numericamente dalla (4.2) per alcuni valori del periodo di ritorno.

Tab. 4.3: Valori del coefficiente di crescita K_T del massimo annuale delle portate al colmo di piena per alcuni valori salienti del periodo di ritorno T.

	Zona		Periodo di Ritorno, anni									
		2	5	10	20	25	40	50	100	200	500	1000
Α	Alpi e Prealpi Centrali	0.88	1.34	1.68	2.03	2.14	2.40	2.52	2.93	3.37	4.00	4.52
В	Alpi e Prealpi Occidentali	0.77	1.31	1.80	2.38	2.60	3.10	3.37	4.33	5.52	7.57	9.57
С	Appennino NW e B. Tirrenici	0.79	1.34	1.82	2.38	2.58	3.04	3.29	4.14	5.17	6.87	8.47
D	Appennino NE	0.90	1.31	1.61	1.91	2.01	2.23	2.33	2.67	3.03	3.55	3.96
aa	Alto Adige e suoi affluenti	0.91	1.27	1.53	1.80	1.88	2.07	2.16	2.46	2.77	3.22	3.58

Si può anche fare riferimento all'espressione inversa (4.2) che, dati i valori assunti dai parametri della distribuzione GEV nelle ZO esaminate, diventa:

• Alpi e Prealpi Centrali:
$$K_T = 0.745 - (0.365/0.110) \times [1 - \exp(0.110 \times y_T)]$$
 (4.4a)

• Alpi e Prealpi Occidentali:
$$K_T = 0.635 - (0.352/0.320) \times [1 - \exp(0.320 \times y_T)]$$
 (4.4b)

• Appennino NW - Bacini Tirrenici:
$$K_T = 0.643 - (0.377/0.276) \times [1 - \exp(0.276 \times y_T)]$$
 (4.4c)

• Appennino NE:
$$K_T = 0.775 - (0.334/0.089) \times [1 - \exp(0.089 \times v_T)]$$
 (4.4*d*)

• Alto Adige e suoi affluenti:
$$K_T = 0.804 - (0.292/0.088) \times [1 - \exp(0.088 \times y_T)]$$
 (4.4e)

dove il valore di y_T è calcolato in base al prefissato valore di T in anni.

Per valutare le piene nei corsi d'acqua della zona disomogenea ZT2 si prevede la parametrizzazione della curva di crescita GEV sito per sito, pesando i parametri della legge GEV in base alle distanze minime del sito stesso dai confini delle limitrofe zone B e C. Le stesse considerazioni si applicano alla zona disomogenea ZT1, che rappresenta la transizione tra Zona A e Alto Adige (aa). Ai fini pratici, l'interpolazione pesata con la distanza dalle zone limitrofe si può condurre direttamente sui valori del fattore di crescita (p.es., sui valori di Tab. 4.3 per i periodi di ritorno salienti ivi riportati).

4.3.2.2. Incertezza di stima del coefficiente di crescita

Nelle valutazioni di piena va considerata l'incertezza con cui le previsioni statistiche vengono determinate, che viene misurata, in generale, dagli intervalli di confidenza dei quantili stimati. Fissato un livello di confidenza di 100(1-a/2)%, l'intervallo di confidenza del fattore di crescita è dato dai limiti

$$\hat{K}_{T}^{+,-} = \hat{K}_{T} \pm \mathbf{z}_{a/2} \sqrt{Var(\hat{K}_{T})}$$
(4.5)

dove il simbolo ^ indica la stima di K_T , e $\mathbf{z}_{a/2} = \Phi^{-1}(1-a/2)$ indica l'inversa della funzione di distribuzione di probabilità della variabile normale standard, $\Phi(\zeta) = \Pr[\mathbf{Z} \leq \zeta]$, superato con una

probabilità pari a a/2. Occorre quindi determinare l'errore di stima del fattore di crescita, che dipende sia dalla distribuzione di probabilità, sia dal metodo di stima dei parametri. La formula approssimata proposta da De Michele & Rosso [2001a] per la valutazione della varianza di stima del fattore di crescita distribuito secondo una legge GEV con $k \le 0$, porge

$$Var[\hat{K}_T] = \frac{\mathbf{a}^2}{N} \exp\{y_T \exp[-1.823k - 0.165]\}, \text{ per } k \le 0,$$
 (4.6)

dove y_T è la variabile ridotta di Gumbel, N la numerosità del campione regionale rinormalizzato, α e k i parametri della distribuzione GEV. Noti i valori di N, α e k, e prefissato il periodo di ritorno T, si calcola $Var[\hat{K}_T]$ con la formula (4.6) in base al valore di y_T ottenuto con la (4.3). Il risultato va sostituito nella (4.5) che, fissato un livello di significatività a, il corrispondente livello di confidenza di 100(1-a/2)% e calcolato il relativo valore di $\mathbf{z}_{a/2} = \Phi^{-1}(1-a/2)$, porge la coppia dei valori dell'intervallo di confidenza del coefficiente di crescita per l'assegnato periodo di ritorno. Per alcuni valori salienti di T e per il livello di confidenza di 100(1-a/2) = 84%, tali limiti sono riportati anche in Tab. 4.4.

Tab. 4.4: Valori dei limiti di confidenza del coefficiente di crescita K_T relativi a un livello di confidenza di 100(1-a/2) = 84% ($\zeta_{a/2} = 1$) per alcuni valori salienti del periodo di ritorno T.

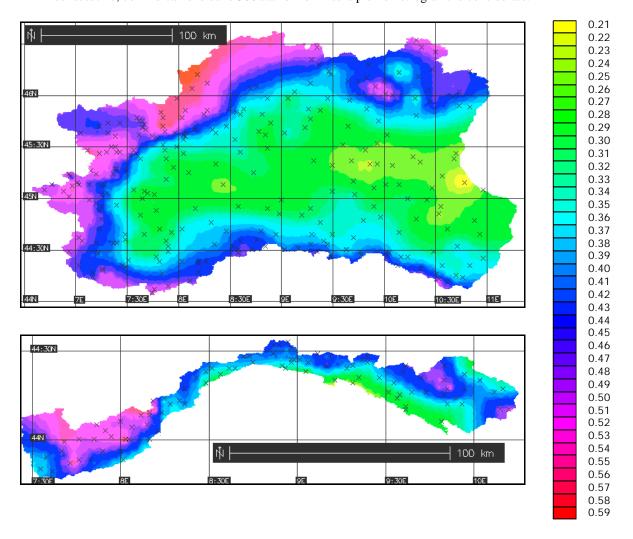
	Zona	Periodo di Ritorno, anni							
		10	20	50	100	200	500		
Α	Alpi e Prealpi Centrali	1.61÷1.74	1.93÷2.12	2.37÷2.68	2.71÷3.15	3.05÷3.69	3.49÷4.51		
В	Alpi e Prealpi Occidentali	1.69÷1.90	2.20÷2.56	3.00÷3.74	3.71÷4.95	4.47÷6.58	5.45÷9.69		
С	Appennino NO & B. Tirrenici	1.75÷1.89	2.27÷2.49	3.07÷3.50	3.79÷4.49	4.60÷5.74	5.78÷7.95		
D	Appennino Nord Orientale	1.56÷1.66	1.84÷1.98	2.22÷2.44	2.52÷2.83	2.81÷3.26	3.19÷3.90		
aa	Alto Adige e suoi affluenti	1.49÷1.57	1.74÷1.85	2.07÷2.26	2.33÷2.59	2.59÷2.96	2.92÷3.52		

4.4. Stima del valore medio

4.4.1. Leggi di probabilità pluviometriche

4.4.1.1. Piogge puntuali

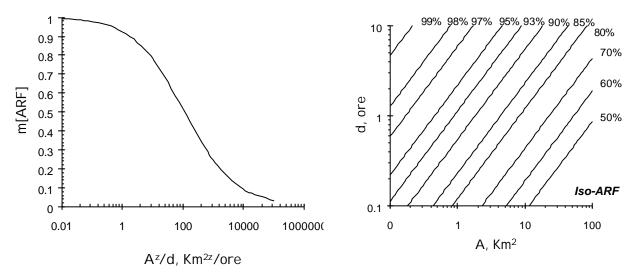
Le leggi di probabilità pluviometriche definiscono come varia la media del massimo annuale dell'altezza di pioggia su una fissata durata d, m[h(d)], con la durata stessa. Per la Zona in esame è stata adottata una espressione del tipo:


$$m[h(d)] = a_1 d^n \tag{4.7a}$$

I parametri della (4.7) sono stati valutati con regressione ai minimi quadrati nelle 366 stazioni di misura pluviografiche presenti sul territorio esaminato (vedi Tab. 4A.1 in Appendice). I valori osservati variano per a_1 da 10 a 49 mm/oreⁿ e per n da 0.21 a 0.61: l'ampiezza di questi intervalli richiede un modello di variabilità spaziale dei parametri. In particolare, si è fatto riferimento ad un modello a variabilità continua: per una pratica applicazione della (4.7a), vengono fornite, in Figg. 4.6-7, le mappe isoparametriche di a_1 e di n per l'intero territorio.

Fig. 4.6: Mappa del coefficiente pluviometrico orario, a_1 , mm/oreⁿ pari al valore atteso della pioggia oraria massima annuale, con indicazione delle 366 stazioni di misura pluviometrografiche considerate.

Fig. 4.7: Mappa dell'esponente di scala, *n*, della della pioggia massima annuale al variare della durata da 1 a 24 ore consecutive, con indicazione delle 366 stazioni di misura pluviometrografiche considerate.

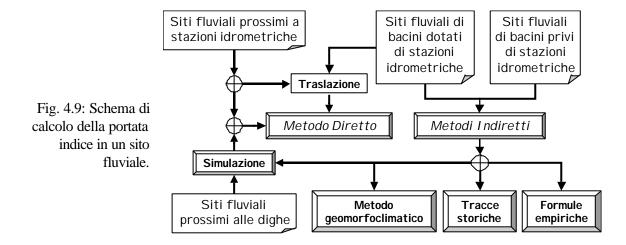

4.4.1.2. Fattore di riduzione areale delle piogge di breve durata e forte intensità

Il valore atteso del fattore di riduzione areale delle precipitazioni può essere calcolato impiegando il modello auto-affine di De Michele & Rosso [2000*b*], ossia

$$\mathbf{y} = m[ARF(d, A)] = m\left[\frac{h(d, A)}{h(d)}\right] = \left[1 + \mathbf{v}\left(\frac{A^{z}}{d}\right)^{b}\right]^{-(1-n)/b},$$
(4.7b)

dove *A* indica l'area del bacino di interesse, in Km², e *d* la durata, in ore. Nella formula (4.7*b*) *n* indica l'esponente di scala delle linee segnalatrici nel centro di scroscio, mentre con ϖ , *b* e *z* sono parametri empirici, che, p.es., per l'area metropolitana milanese sono dati da $\varpi = 0.01$ ore^{*b*}/Km^{*bz*}, b = 0.54 e z = 1 (v. Fig. 4.8).

Fig. 4.8 La legge di attenuazione spaziale della pioggia mediante il modello auto-affine e le linee iso-*ARF*, che, sul piano Log*A* – Log*d*, sono rappresentate da rette di coefficiente angolare z.


4.4.2. Portata al colmo di piena media annua

4.4.2.1. Problemi e metodi

Il valore medio annuo della portata al colmo di piena istantanea, di seguita indicata come "portata indice" $m(Q) = q_{indice}$, che particolarizza la legge di previsione per il generico sito fluviale di interesse, può essere valutata applicando diverse metodologie, in ragione dell'informazione disponibile e dell'affidabilità con cui la previsione statistica viene richiesta dalla specifica applicazione (vedi Fig. 4.9). Va peraltro rilevato come tale valutazione presenti notevoli difficoltà, in quanto costituisce uno dei problemi aperti di maggiore complessità dell'idrologia. Si ritiene tuttavia che le indicazioni fornite in questa sede possano costituire un utile ausilio, sia per le valutazioni speditive, sia per lo sviluppo di metodologie più sofisticate.

In generale, si possono determinare cinque diverse situazioni, a seconda che le previsioni di piena siano condotte

- in un sito fluviale dotato di stazione idrometrica o prossimo a una stazione idrometrica,
- in un sito fluviale di un bacino dotato di stazioni idrometriche,
- in un sito fluviale di un bacino privo di stazioni idrometriche,
- in un sito fluviale in corrispondenza o prossimo a uno sbarramento,
- in un sito fluviale caratterizzato da forte antropizzazione.

Nel primo caso, la stima della portata indice va senz'altro condotta con il metodo diretto, ossia stimando il valore di q_{indice} dalla media osservata dei massimi annuali di portata al colmo, con l'avvertenza che, per i siti prossimi a stazioni idrometrografiche, la media osservata va riscalata rispetto all'area del bacino idrografico sotteso.

Nel terzo caso, la stima della portata indice va giocoforza condotta con metodi indiretti, ossia stimando il valore di q_{indice} per mezzo di una delle opzioni previste a tale scopo nel successivo paragrafo. Nel secondo caso, qualora siano disponibili osservazioni dirette in corsi d'acqua dello stesso bacino idrografico, l'applicazione del metodo indiretto può altresì giovarsi della informazione locale al fine di restringere i larghi margini di incertezza che affligge comunque le stime indirette.

Un quarto caso, affatto particolare, riguarda i siti fluviali in corrispondenza o prossimi agli sbarramenti e, in particolare, alle dighe di ritenuta. Le grandi dighe italiane di competenza del Servizio Nazionale Dighe sono più di 550, con una presenza assai significativa nell'Italia Nord Occidentale, e sono state realizzate prevalentemente nel corso di questo secolo. Poichè molte dighe sono in esercizio da lungo tempo, sono disponibili serie più o meno lunghe di registrazioni dei livelli d'invaso, che l'attuale normativa prescrive peraltro ai gestori degli impianti. Questo tipo di informazione può fornire indicazioni assai utili per i bacini interessati da questo tipo di asservimento.

L'ultimo caso si applica alle sezioni torrentizie e fluviali prossime ad agglomerati urbani dove storicamente si sono verificate esondazioni, ovvero laddove sia possibile ricostruire i livelli idrici di massima piena in base a documentazioni affidabili, soprattutto in relazione a opere di ingegneria idraulica di asservimento del corso d'acqua (ponti, restringimenti, canalizzazioni) e di difesa fluviale (argini, scolmatori, casse di espansione).

Nel fornire alcune indicazioni di carattere specifico per la soluzione del problema nei casi salienti

sopra delineati, viene premesso ai punti successivi un breve inquadramento delle metodologie, dirette e indirette. Nei successivi punti vengono rispettivamente illustrate le modalità di applicazione dei metodi diretti e indiretti, che nel "Manuale di valutazione delle piene", in preparazione, trovano concreto riferimento nella specifica trattazione delle diverse tipologie di situazione sopra evidenziate.

4.4.2.2. Metodi diretti

Metodo diretto AFS

Quando si dispone di N' anni di osservazioni di portata al colmo di piena massima annuale (serie AFS) nel sito fluviale di interesse, la stima della portata indice è fornita dalla media aritmetica delle N' osservazioni $q'_1, \ldots, q'_{N'}$, ossia

$$\hat{q}_{indice} = \hat{\bar{q}}_{AFS} = \frac{1}{N'} \sum_{i=1}^{N'} q'_{i} , \qquad (4.8)$$

dove il simbolo ^ sta per "valore stimato". Una valutazione del relativo errore standard di stima può essere condotta con la formula

$$\mathbf{s}_{\hat{q}_{indice}} = \sqrt{\frac{1}{N'(N'-1)} \sum_{i=1}^{N'} (q'_i - \hat{q}_{indice})^2} , \qquad (4.9)$$

che mostra una rapida diminuzione dell'errore stesso all'aumentare della numerosità del campione disponibile. Dalla verifica dell'ipotesi nulla per un livello di significatività a, si possono derivare i limiti di confidenza a un livello di confidenza di 100(1-a/2)% come $\hat{q}_{indice} \pm \Phi^{-1}(1-a/2)\mathbf{s}_{\hat{q}_{indice}}$, dove $\Phi^{-1}(.)$ indica l'inversa della funzione di distribuzione di probabilità della variabile normale standard. I valori di $\hat{q}_{indice} \pm \mathbf{s}_{\hat{q}_{indice}}$ sono generalmente indicati come "limiti sigma" e corrispondono a un livello di confidenza pari a 84%.

Metodo diretto PDS

Quando si dispone di N' anni di osservazioni di portata al colmo di piena nel sito fluviale di interesse, la stima della portata indice può essere condotta a partire dalla media dei massimi locali sopra una soglia prefissata, $q''_{1},...,q''_{N''}$, detta serie di durata parziale o PDS, ossia

$$\hat{\bar{q}}_{PDS} = \frac{1}{N''} \sum_{i=1}^{N''} q''_i . \tag{4.10}$$

Nell'ipotesi di distribuzione GEV e di successione poissoniana degli eventi che danno luogo ai massimi locali, la portata indice è univocamente legata al tasso di occorrenza L^{-1} degli eventi, ai parametri della curva di crescita e alla media dei massimi locali, a loro volta distribuiti secondo la legge generalizzata di Pareto [Brath et al., 1996]. La formula

$$q_{indice} = \frac{1}{\boldsymbol{e} + \frac{\boldsymbol{a}}{k} \left(1 - \frac{\boldsymbol{L}^k}{1+k} \right)} \hat{q}_{PDS}, \text{ con } \boldsymbol{L} < \left[\left(1 + k \right) \left(1 + \frac{k\boldsymbol{e}}{\boldsymbol{a}} \right) \right]^{1/k}, \tag{4.11}$$

consente quindi di valutare il valore di q_{indice} in base a quelli di e, a e k della Zona omogenea di riferimento, del numero medio annuo di eventi, L, e della media stimata della serie PDS. Questo metodo è più efficiente del precedente per campioni di lunghezza N' limitata. La scelta della soglia va comunque condotta tenendo presente che bisogna rispettare l'ipotesi di indipendenza stocastica tra gli eventi.

4.4.2.3. Metodi indiretti

Formule empiriche

I metodi empirici tradizionali sintetizzano le relazioni tra q_{indice} e le caratteristiche fisiche dei corsi d'acqua tramite formule che, in linea generale, contemplano, quali variabili esplicative, indici di piovosità $[X_1, \ldots, X_p]$, di composizione geolitologica o geopedologica, $[Y_1, \ldots, Y_g]$, di copertura vegetale $[Z_1, \ldots, Z_v]$, di geomorfologia fluviale, $[U_1, \ldots, U_f]$, e di carico antropico $[W_1, \ldots, W_c]$. Spesso vengono impiegate relazioni del tipo

$$q_{indice} = \operatorname{costantex}\left(\prod_{i=1}^{p} X_{i}^{b_{i}}\right) \times \left(\prod_{i=1}^{g} Y_{i}^{g_{i}}\right) \times \left(\prod_{i=1}^{v} Z_{i}^{v_{i}}\right) \times \left(\prod_{i=1}^{f} U_{i}^{f_{i}}\right) \times \left(\prod_{i=1}^{c} W_{i}^{c_{i}}\right), \tag{4.12}$$

dove la costante e gli esponenti della formula (4.12) vengono usualmente stimati tramite regressione lineare della trasformazione logaritmica delle medie osservate, $\ln q_{indice}$, su quella degli indici ($\ln X_1,..., \ln X_p, \ln Y_1,..., \ln Y_g, \ln Z_1,..., \ln Z_v, \ln U_1,..., \ln U_f, \ln W_1,..., W_c$) particolarizzati per le stazioni disponibili. Poichè la numerosità dei campioni disponibili per la taratura è generalmente assai limitata, bisogna altresì limitare il numero di variabili esplicative, in modo da garantire la necessaria robustezza e consistenza del modello statistico, la cui caratteristica principale è quindi la parsimonia.

Benchè relazioni di questo tipo siano spesso in grado di spiegare una quota rilevante della varianza osservata di $\ln q_{indice}$, la loro capacità previsionale è abbastanza modesta quando si procede all'antitrasformazione. Poichè i margini di incertezza sono molto elevati, non è escluso che questi possano raggiungere, e superare, anche il 100% del valore calcolato in alcune zone prive di osservazioni, come del resto risulta evidente dagli andamenti delle regressioni condotte utilizzando la procedura "jack-knife". Occorre perciò verificare in primo luogo la congruenza tra le portate stimate per via regressiva e quelle effettivamente smaltibili senza esondazioni nel tronco fluviale che comprende la sezione di interesse. Il valore stimato di q_{indice} deve generalmente essere contenuto nell'alveo; qualora ciò non avvenga, salvo situazioni affatto particolari, la stima di q_{indice} ottenuta con questa procedura va riesaminata in base a elementi oggettivi riferiti alla geometria dell'alveo, alle sue caratteristiche idrauliche, alla piovosità del bacino. Per ovviare, almeno parzialmente, a questi inconvenienti, le stime prodotte dalle leggi di regressione prima indicate vanno confrontate con verifiche puntuali basate sui metodi sotto riportati.

Per i bacini dell'Italia Nord-Occidentale sono state tarate diverse formule empiriche con il metodo della regressione statistica, anche per rispondere alle specifiche esigenze legate alla disponibilità o meno di informazioni sufficienti a definire le variabili esplicative (v. Tab. 4.5). I risultati relativi ai bacini delle quattro regioni omogenee dell'Italia Nord Occidentale sono anche riportati in Fig. 4.10, dove si evidenzia il largo margine di incertezza legato all'applicazione delle formule empiriche derivate con il metodo della regressione statistica. Tale margine si riflette anche sui limiti sigma della portata indice stimata con questo metodo, che sono valutabili come $\exp[Ln(q_{indice}) \pm SE_{Log}]$, dove SE_{Log} indica l'errore standard di stima della trasformazione logaritmica della portata indice.

Tab. 4.5: Parametri della formula empirica per la stima della portata indice (in m³/s) nella forma $q_{indice} = c_0 \times X_1^{c_1} \times X_2^{c_2} \times X_3^{c_3} \times X_4^{c_4} \times X_5^{c_5} \times X_6^{c_6} \; .$

Regione			Espone	nte della V	ariabile Esp	plicativa		R^2_{LOG}	R^2	Bias
	c_0	c_1	c_2	c_3	c_4	c_5	c_6	[-]	[-]	[%]
		X ₁ Area del bacino sotteso, A	X_2 Coefficiente pluviale orario, $a_1=E[H_1]^{\ddagger}$	di invarianza di scala pluviale, <i>n</i>	del bacino sotteso	X_5 Parametro di ritenzione, $S_{\rm HI}/100$	X_6 Fattore di forma del bacino, $A/L_{\rm ap}^2$	_		
		$[Km^2]$	[mm/ore ⁿ]	[-]	[Km]	[mm]	[-]			
Α	2.1	0.799						0.61	0.29	30
Α	1.8´10 ⁻³	1.090	1.700					0.71	0.59	23
Α	9.3 10-4	1.124	2.630	3.162				0.91	0.81	7.4
Α	1.9´10 ⁻⁴	1.145	2.596	2.246		-0.849		0.93	0.93	5.5
В	0.5	0.901						0.76	0.29	10
В	7.3´10 ⁻³	0.920	1.523					0.89	0.75	7.6
В	1.6´ 10 ⁻²	0.800	1.408		1.170			0.91	0.82	6.2
В	7.8´10 ⁻³	0.839	1.736		1.042		0.349	0.93	0.86	4.9
С	5.2	0.750						0.75	0.63	12
С	2.62	0.807			-0.626			0.87	0.65	5.6
С	2.51	0.874			-0.717		0.265	0.88	0.71	5.2
С	0.21	0.897	0.678		-0.686		0.285	0.89	0.78	4.6
D	2.49	0.772						0.89	0.77	10
D	2.80´10 ⁻⁵	1.235	3.513				-0.720		0.92	

 $^{^{\}ddagger}$ $E[H_1]$: valore atteso dell'altezza di pioggia massima annuale per una durata unitaria.

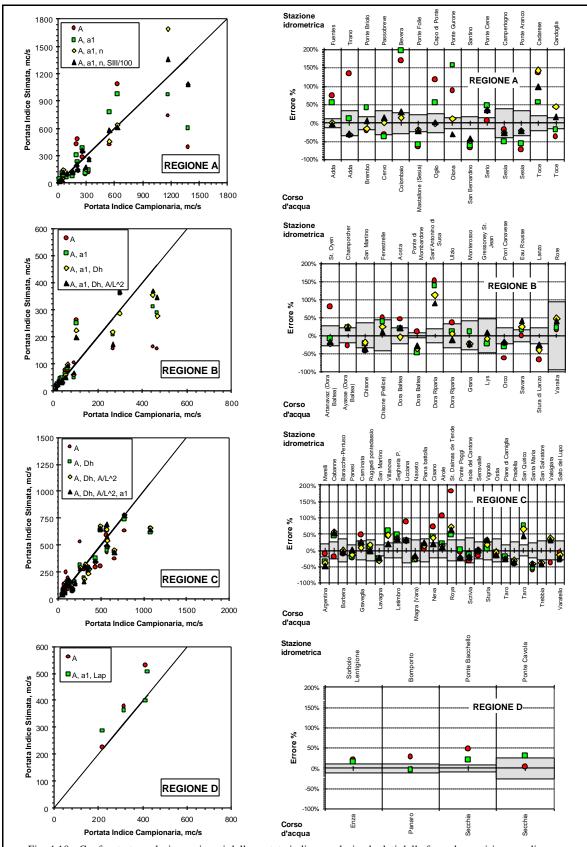


Fig. 4.10 - Confronto tra valori campionari della portata indice e valori calcolati dalla formula empirica con diverse combinazioni di variabili esplicative. Il diagramma riporta l'errore percentuale rispetto al valore campionario ed evidenzia i limiti di confidenza al 95% delle stime campionarie stesse, utili per condurre un test statistico di verifica dell'ipotesi nulla.

Metodo delle tracce storiche

La documentazione in traccia delle alluvioni storiche può fornire una informazione utile alla valutazione della portata indice. Il procedimento prevede il censimento delle esondazioni osservate e/o documentate, ossia degli eventi in cui la portata al colmo ha superato un livello di soglia q_s noto o calcolato in base alla capacità idraulica di smaltimento della sezione in esame. A tal fine, i dati del "Censimento delle aree italiane storicamente colpite da frane e da inondazioni" [Guzzetti et al., 1994] possono costituire una utile base di partenza.

Se nel sito in esame si può ricostruire la vicenda alluvionale per un periodo abbastanza lungo, è possibile valutare la frequenza storica ricostruita della portata di soglia q_s considerata. Quando sono stati documentati H superamenti in N' anni, il valore atteso del periodo di ritorno del valore q_s è dato da [cfr., Kottegoda & Rosso, p.425, 1997]

$$\hat{T}_{q_s} = \frac{N'+1}{H+1} \,. \tag{4.13}$$

La portata indice si può quindi calcolare come

$$q_{indice} = \frac{q_s}{K_{\hat{T}_s}},\tag{4.14}$$

dove il valore di soglia $K_{\hat{T}_s}$ del fattore di crescita viene calcolato con la formula (4.2) per il particolare valore del periodo di ritorno calcolato con la formula (4.13).

L'analisi storica richiede cura particolare, poichè vanno considerate le sole esondazioni dovute al supero effettivo della capacità di smaltimento del tronco fluviale, e non gli eventuali sfondamenti arginali, i rigurgiti da ostruzione e altri fenomeni di esaltazione degli effetti di una piena. A tale scopo bisogna ricorrere al tracciamento di profili idraulici di moto permanente. Il metodo si presta in modo particolare allo studio di siti fluviali storicamente soggetti a elevato carico antropico, in corrispondenza di tronchi di corsi d'acqua controllati da asservimenti idraulici, quali gli attraversamenti stradali e ferroviari, le coperture, le arginature.

I limiti sigma della stima del periodo di ritorno della portata di soglia, che sono dati da

$$\hat{T}_{q_s} \pm \mathbf{s}_{\hat{T}_{q_s}} = \frac{N'+1}{H+1\mp\sqrt{\frac{(N'-H)(H+1)}{N'+2}}},$$
(4.15)

indicano che il metodo è soggetto a un grado di incertezza crescente con la rarità dei superamenti.

Metodo geomorfoclimatico

Il metodo geomorfoclimatico (Bacchi & Rosso, 1988; Adom et al., 1989; Brath et al., 1992) si basa sulla derivazione in probabilità della portata al colmo a partire dalle caratteristiche stocastiche del campo di pioggia e dalle caratteristiche fisiche del bacino esaminato. L'applicazione di questo metodo comporta la preliminare valutazione di alcune grandezze caratteristiche del bacino e della sollecitazione meteorica temibile:

- A: l'area del bacino imbrifero sottesa dalla sezione di interesse;
- CN: indice adimensionale di assorbimento del terreno (0 < CN < 100) a scala di bacino, secondo

il metodo CN-SCS [Soil Conservation Service, 1986; De Michele et al., 2000a];

- t_L : tempo di ritardo del bacino, che caratterizza la risposta della rete idrografica descritta dall'idrograma unitario istantaneo,
- m_i e V_i : rispettivamente, tasso medio di pioggia e coefficiente di variazione del tasso di pioggia di un generico nubifragio, descritto dal modello Poisson Rectangular Pulses (PRP) sotto forma di impulso rettangolare di intensità e durata aleatori;
- m_t e V_t : rispettivamente, durata media e coefficiente di variazione della durata di un generico nubifragio;
- L: valore atteso del numero di nubifragi in un generico anno.

In base a tali grandezze vengono quindi calcolati:

- $h = m_P / (m_P + S)$: fattore di assorbimento relativo, pari al rapporto tra l'altezza media di precipitazione di un nubifragio, $m_P = m_i m_t$ in mm, e la quantità $(m_P + S)$, dove S rappresenta il massimo volume specifico di ritenzione del terreno, S = 254(CN/100 1) in mm²;
- $c = m_t / t_L$: fattore di attenuazione idrografica, pari al rapporto tra la durata media di un evento e il tempo di ritardo³ del bacino;
- $y = m[ARF(m_t, A)]$: fattore di riduzione areale del tasso di pioggia, che descrive l'attenuazione spaziale del tasso di pioggia in funzione della durata media di pioggia m_t e dell'area del bacino A (v. paragrafo 4.4.1.2 e De Michele & Rosso [2000b]).

Il metodo fornisce quindi una valutazione della media dei massimi della serie di durata parziale nella forma

$$\overline{q}_{PDS} = A \frac{m_R}{m_t} \left[1 - e^{-c} - \mathbf{y} V_t^2 \left(\mathbf{c} e^{-c} + e^{-c} - 1 + \frac{1}{2} \mathbf{c}^2 e^{-c} \right) + \frac{m_P}{m_R} \mathbf{y} V_t^2 \mathbf{h} (2 - \mathbf{h}) \left(\mathbf{c} e^{-c} + e^{-c} - 1 \right) \right]$$
(4.16)

dove

$$m_R = m_P \mathbf{h} [1 + \mathbf{y} V_P^2 (1 - \mathbf{h})^2]$$
(4.17)

rappresenta il volume specifico di ruscellamento, ossia il volume specifico di piena (volume per unità di superficie del bacino) dovuto al deflusso diretto.

La valutazione di q_{indice} a partire dal valore calcolato di \overline{q}_{PDS} va condotta tramite la formula (4.11). Sostituendo la (4.17) nella (4.16) e, quindi, il risultato nella (4.11) si ottiene quindi la formula

² Mappe dei parametri *CN* e *S* per il bacino padano sono riportate in De Michele et al. [2000*a*].

 $^{^3}$ Il tempo di ritardo può essere stimato, per esempio, in base all'idrogramma unitario istantaneo geomorfologico (GIUH), ossia come $t_L = 2.3 \, (R_A/R_B)^{0.3} \, R_L^{-0.4} \, L_\Omega/V$, dove R_A , R_B e R_L sono rispettivamente i rapporti d'area, di biforcazione e di lunghezza secondo lo schema Horton-Strahler, L_Ω è la lunghezza dell'asta d'ordine massimo, in km, e V la velocità media spazio-temporale dell'onda di piena, in m/s [Rosso, 1984]. In alternativa, si può impiegare la formula empirica $t_L = 0.22 \, (L_{ap})^{0.84} (S)^{0.14} (p_{mb})^{-0.20}$, in ore, dove L_{ap} indica la lunghezza dell'asta principale, in Km, S il massimo volume specifico di ritenzione del terreno, S = 254 (CN/100 - 1), in mm, e p_{mb} la pendenza media, espressa in percentuale, calcolata, p.es., mediante il GIS Arc-View® a partire dal modello digitale delle quote con risoluzione N-E di 220 per 230 metri [Bocchiola et al., 2001, in print].

$$q_{indice} = \frac{1}{\mathbf{e} + \frac{\mathbf{a}}{k} \left(1 - \frac{\Lambda^k}{1+k} \right)} \times A \frac{m_P}{m_t} \times \left\{ \mathbf{h} \left[1 + \mathbf{y} V_P^2 (1 - \mathbf{h})^2 \right] \times \left[1 - e^{-\mathbf{c}} - \mathbf{y} V_t^2 \left(\mathbf{c} e^{-\mathbf{c}} + e^{-\mathbf{c}} - 1 + \frac{1}{2} \mathbf{c}^2 e^{-\mathbf{c}} \right) \right] + \mathbf{y} V_t^2 \mathbf{h} (2 - \mathbf{h}) \left(\mathbf{c} e^{-\mathbf{c}} + e^{-\mathbf{c}} - 1 \right) \right\}$$

$$(4.18)$$

con l'avvertenza che il valore di Λ corrisponda a quello stabilito dal modello poissoniano di precipitazione con cui sono stati determinati i valori di m_i , V_i , m_t e V_t . Inoltre, l'applicazione delle formule (4.16), (4.17) e (4.18) va condotta utilizzando unità di misura coerenti.

Questo metodo fornisce valori di q_{indice} intrinsecamente più robusti di quelli ricavabili mediante le tradizionali formule regressive, di cui rappresenta una valida alternativa per i bacino che sottendono aree comprese tra 10 e 1000 Km². Esso consente di determinare anche la correlazione tra la portata al colmo e il volume di piena, offrendo così la possibilità di valutare in senso probabilistico gli idrogrammi di piena, necessari per la formulazione di scenari di progetto in alcune applicazioni (v. Bacchi & Rosso, 1988; Adom et al., 1989).

Metodi di simulazione idrologica

Con la costruzione di un modello idrologico di piena, in grado di descrivere la trasformazione afflussi-deflussi per le piene salienti, è possibile ricostruire una successione di eventi di piena nel sito fluviale di interesse. Se si dispone di un almeno un idrogramma osservato o, almeno, di una valutazione in traccia della portata al colmo di piena per gli eventi documentati da registrazioni pluviografiche, questa informazione può essere usata per tarare il modello. In caso di più eventi documentati, vale la pena di controllare le prestazioni del modello in un certo numero di casi non impiegati in fase di taratura. Le necessità di taratura variano con la complessità del modello, con la base fisica delle rappresentazioni matematiche adottate e con il dettaglio con cui viene descritto il sistema delle superfici scolanti e della rete idrografica. Gli attuali sviluppi della modellistica idrologica tendono sempre più a limitare il peso della fase di taratura del modello, riducendo la quantità dei parametri di calibrazione a favore di parametri valutabili in base alle caratteristiche fisiche del sistema e aumentando, nello stesso tempo, il dettaglio spaziale del modello stesso.

Simulazione a ingressi noti. Il calcolo del valore della portata indice può essere condotto via simulazione a ingressi noti, ricostruendo, tramite il modello, una serie esaustiva di episodi di piena per un congruo periodo, documentato da registrazioni pluviografiche sull'area del bacino sotteso dal sito fluviale di interesse. Dagli idrogrammi viene quindi estratta la serie ricostruita $q''_1, \ldots, q''_{N''}$ di N'' anni di portata al colmo massima annuale, in base alla quale calcolare la media come in caso di osservazioni dirette. Poichè si opera nel continuo temporale, il modello idrologico di piena deve prevedere l'aggiornamento continuo dello stato di imbibimento del terreno o, almeno, la sua valutazione all'inizio di ogni scroscio saliente. Il metodo è abbastanza consolidato con numerose applicazioni tecniche, anche se richiede uno sforzo non indifferente di raccolta e digitalizzazione delle serie di dati di precipitazione a fine risoluzione temporale (p.es. oraria).

Simulazione dell'evento critico. In alternativa alla simulazione a ingressi noti, si può ricorrere a una più semplice procedura approssimata, utilizzando, in luogo della serie storica dei dati pluviometrici, la linea segnalatrice di probabilità pluviometrica attesa nel centro di scroscio localizzato in posizione

baricentrica, esprimibile in forma di equazione monomia

$$i_m = a_1 d^{n-1}, (4.19)$$

dove i_m indica il valore atteso del tasso di pioggia temibile in d ore consecutive sul bacino sotteso, mentre i valori dei parametri a_1 (indice pluviometrico orario, in mm/oreⁿ, pari al valore atteso della pioggia oraria massima annuale) e n è esponente di scala, sono da intendersi mediati sull'area del bacino sotteso dalla sezione di interesse. In questo caso, bisogna altresì

- ridurre il tasso di pioggia in ragione della superficie del bacino sotteso e della durata dello scroscio secondo formulazioni adeguate,
- introdurre un verosimile profilo di pioggia in grado di riprodurre gli ietogrammi osservati, ossia la variabilità temporale della pioggia durante lo scroscio stesso.

Per via della indeterminatezza della durata dello scroscio critico, bisogna procedere a un insieme di simulazioni per diverse durate, in base alle quali ricavare il valore di picco con il metodo dell'evento critico. Questa procedura insinua una molteplicità di indeterminazioni, legate sia alla ipotesi di trasformazione della pioggia temibile attesa in portata temibile attesa, sia alla congettura di evento critico, sia alle approssimazioni sulla configurazione spazio-temporale della pioggia stessa. Il maggiore svantaggio della procedura semplificata risiede comunque nella sua insensibilità alla variabilità spaziale delle precipitazioni. Tale procedura, per la sua consolidata pratica applicativa, può essere peraltro impiegata per calcoli speditivi, tenendo comunque presente il cospicuo margine di incertezza dei risultati ottenibili⁴.

Simulazione a ingressi stocastici. Metodi più avanzati di simulazione prevedono la simulazione stocastica del campo di precipitazione. Con questo procedimento, si possono produrre lunghe serie sintetiche di tasso di pioggia a fine risoluzione temporale, tipicamente oraria o sub-oraria, talvolta anche in più siti, utilizzando modelli multisito o modelli spazio-temporali. I dati sintetici vengono quindi utilizzati in ingresso al modello deterministico di trasformazione afflussi-deflussi come in caso di ingressi noti. Poichè generalmente si opera nel continuo temporale, il modello di piena deve prevedere l'aggiornamento continuo dello stato di imbibimento del terreno o, almeno, la sua corretta valutazione all'inizio di ogni scroscio. Dall'idrogramma viene poi estratta la serie ricostruita $q''_1, \ldots, q''_{N''}$ di N'' anni di portata al colmo massima annuale, in base alla quale calcolare la media come in caso di osservazioni dirette. La letteratura fornisce alcuni esempi di applicazione del metodo, il cui utilizzo comporta peraltro una tecnologia complessa e costosa, che ne confina attualmente l'uso nel settore della ricerca applicata.

Codici di calcolo automatico. I metodi di simulazione possono utilizzare svariati codici di calcolo automatico per la costruzione del modello. Dal punto di vista della descrizione temporale del sistema, i modelli sono continui, se simulano il ciclo idrologico completo a scala di bacino, ovvero episodici, se simulano la risposta del bacino al singolo nubifragio isolato, note le condizioni iniziali del sistema all'inizio del nubifragio stesso. Dal punto di vista della descrizione spaziale del sistema, i modelli sono globali, se simulano i processi idrologici tramite una rappresentazione parametrica concentrata del bacino idrografico, ovvero distribuiti, se simulano tali processi tramite una rappresentazione parametrica locale a fine risoluzione spaziale. Esempi di codici per la costruzione di

Parma e Genova Pag. 4.23

⁴ Quando utilizzata per la stima della portata indice, questa procedura è peraltro meno distorta di quanto avvenga quando essa viene applicata alla stima dei quantili, per via dell'ipotesi di isofrequenza tra piogge intense e deflussi di piena, in molti casi confutata da episodi osservati (basti pensare agli eventi del 1994 e del 2000 in Piemonte).

- modelli episodici globali sono forniti, p.es., dai codici HEC-1 [Hydrologic Engineering Center, 1990; Haested Methods, 1996], RORB [Laurenson & Mein, 1990] e FLEA [Ranzi & Rosso, 1997];
- modelli continui globali sono forniti, p.es., dai codici PRMS [Leavesley et al., 1983] e HYRROM [Institute of Hydrology, 1994];
- modelli episodici distribuiti sono forniti, p.es., dai codici THALES [Grayson et al., 1995] e FEST98 [Mancini et al., 1999];
- modelli continui distribuiti sono forniti, p.es., dai codici IHDM [Beven et al., 1987] e da quelli derivati da SHE-Hydrologic European System, quali MIKE-SHE [DHI, 1993] e SHE-SHESED/SHE-TRANS [Bathurst et al., 1995].

Quando il processo di piena viene simulato tramite modelli episodici, bisogna comunque tenere conto delle condizioni iniziali del sistema all'inizio del nubifragio.

Altri metodi tradizionali

Una metodologia di tipo tradizionale, che può risultare talvolta utile per stimare, in prima istanza, il valore di q_{indice} , fa riferimento al contributo unitario di piena dedotto dai valori delle medie dei colmi di bacini idrologicamente simili e prossimi al bacino in esame. In questo caso si possono utilizzare sia dati pubblicati dal SIMN, laddove nel bacino "simile" esista o esisteva una stazione idrometrica, sia ricostruzioni in base alle tracce storiche, sia simulazioni, qualora, per informazione disponibile, l'applicazione di tali metodologie si adatti meglio allo studio del bacino "simile" che a quello del bacino in esame. La stima della portata indice, in questo caso, si ottiene moltiplicando il contributo unitario medio del bacino "simile" per la superficie del bacino di interesse. Varianti di questa metodologia introducono caratterizzazioni della pluviometria e della geomorfologia dei bacini stessi, generalmente su base affatto empirica e, quindi, difficilmente esportabile. Per via delle difficoltà nella definizione pratica del concetto di similitudine idrologica in questo contesto, questo insieme di metodologie non viene qui considerato, anche se può rivelarsi utile, in alcuni casi, per valutazioni speditive di larga massima.

4.5. Riferimenti bibliografici

- *Adom, D.N., Bacchi, B., Brath, A., & R. Rosso, On the geomorphoclimatic derivation of flood frequency (peak and volume) at the basin and regional scale, in: *New Directions for Surface Water Modelling*, edited by M.L. Kavvas, IAHS Publ. no.181, 165-176, 1989.
- *Bacchi, B. & R. Rosso, Analisi geomorfoclimatica dei modelli di regionalizzazione della frequenza delle piene, *Atti XXI Convegno di Idraulica e Costruzioni Idrauliche*, L'Aquila, 5-8 settembre, Vol.1, pp.15-28, 1988.
- Bathurst, J.C., Wicks, J.M. & P.E. O'Connell, The SHE-SHESED basin scale water flow and sediment transport modelling system, in: *Computer Models of Watershed Hydrology*, edited by V.P. Singh, Water Resurces Publications, p.563-594, Highlands Ranch, CO, Usa, 1995.
- Beven, K., Calver, A: & E. Morris, *The Institute of Hydrology Distributed Model*, Natural Environmental Research Council, Institute of Hydrology, Report n.98, Wallingford, UK, 1987.
- *Brath, A., Bacchi, B. & R. Rosso, La derivazione geomorfoclimatica della distribuzione di probabilità delle portate di piena, *Idrotecnica*, 4, 183-200, 1992.

- *Brath, A. & R. Rosso, Valutazione delle Piene nel Bacino Padano e nella Liguria Tirrenica, in *La valutazione delle piene in Italia-Rapporto Nazionale di Sintesi*, Bozza, CNR-GNDCI, Allegato B, 1994.
- *Brath, A., De Michele, C. & R. Rosso, Una metodologia indiretta a base concettuale per la valutazione della portata indice, *Atti XXV Convegno di Idraulica e Costruzioni Idrauliche*, Torino, 18-20 settembre, Vol.1, pp.52-63, 1996.
- *Burlando, P., Mancini, M. & R. Rosso, FLORA: a distributed flood risk analyser, in: *Computer Support for Environmental Impact Assessment*, edited by G Guariso and B. Page, North-Holland, Amsterdam, pp.91-102, 1994.
- *Burlando, P. & R. Rosso, Scaling and multiscaling models of depth-duration-frequency curves of storm precipitation, *Journal of Hydrology*, Vol. 187, p.45-64, 1996.
- Danish Hydraulic Institute, *MIKE SHE WM*, *A short description*, Danish Hydraulic Institute, Hosholm, Danmark, 1993.
- *De Michele, C. & R. Rosso, La valutazione delle piene nell'Italia Nord-Occidentale: bacino padano e Liguria tirrenica, in: in *La valutazione delle piene in Italia-Rapporto Nazionale di Sintesi*, Bozza, CNR-GNDCI, 1999.
- *De Michele, C., Guidi, G. & R. Rosso, La valutazione della risposta idrologica del terreno nel bacino padano: caratterizzazione spaziale e mappatura del massimo potenziale di ritenzione idrica, *L'Acqua*, n.6/2000, 17-24, 2000*a*.
- *De Michele, C., & R. Rosso, Formulazione scala-invariante del fattore di riduzione areale delle piogge, Atti XXVII Convegno di Idraulica e Costruzioni Idrauliche, Genova, 12-15 settembre, 2000, Vol.2, pp.205-212, 2000*b*.
- *De Michele, C. & R. Rosso, Uncertainty assessment of regionalized flood frequency estimates, *Journal of Hydrologic Engineering ASCE*, Vol.6, no.6, p.453-459, 2001a.
- *De Michele, C. & R. Rosso, A multi-level approach to flood frequency regionalization, in: *Hydrology Days*, edited by J. Ramirez, Colorado State University, Fort Collins, Colorado, p.264-277, 2001b.
- Grayson, R.B., Bloschl, G. & I.D. Moore, Distributed parameter hydrologic modelling using vector elevation data: THALES and TAPES-C, in: *Computer Models of Watershed Hydrology*, edited by V.P. Singh, Water Resurces Publications, p.669-696, Highlands Ranch, CO, Usa, 1995.
- Guzzetti, F., Cardinali, M. & P., Reichenbach, The AVI Project: A Bibliographical and Archive Inventory of Landslides and Floods in Italy. *Environmental Management*, **184**, 623-633, 1994.
- Haested Methods, Visual HEC-1, Haested Methods, Waterbury, CT, Usa, 1996.
- Hydrologic Research Center, *HEC-1 Flood Hydrograph Package User Manual*, Computer program Document no.1A, U.S. Army Corps of Engineers, Davis, CA, Usa, 1990.
- Institute of Hydrology, HYRROM-HYdrological Rainfall Runoff Model, Natural Environmental

- Research Council, Institute of Hydrology, Wallingford, UK, 1996.
- Kottegoda, N.T. & R. Rosso, *Statistics, Probability and Reliability for Civil and Environmental Engineers*, Mc-Graw-Hill Publishing Company, New York, 1997.
- Laurenson, E.M. & R.G. Mein, *RORB*, *Version 4, Runoff Routing Program, User Manual*, Dept. Civil Engineering, Monash University, Clayton, Victoria, Australia, 1990.
- Leavesley, G.H., Lichty, R.W., Troutman, B.M. & L.G. Saindon, Precipitation-runoff modeling system-User's manual, U.S. Geological Survey, Water Resurces Investigation Report, no.83-4238.
- *Mancini, M., Montaldo, N. & R. Rosso, A Flash-Flood Event-Based Spatially-Distributed Rainfall-Runoff Transformation (FEST98) Model, in: FRAMEWORK Flash-flood Risk Assessment under the iMpacts of land use changes and river Engineering WORKs, First Annual Report, edited by R. Rosso, EC Contract ENV4-CT97-0529, Politecnico di Milano, February 1999
- Ranzi, R. & R. Rosso, *FLEA: FLood Event Analyser*, Versione in italiano, HARPACEAS, Milano, 1997.
- Rosso, R., Nash model relation to Horton order ratios, Water Resour. Res., 20(7), 914-920, 1984.
- *Rosso, R., De Michele, C. & A. Montanari, La previsione statistica delle piogge di forte intensità e breve durata. Applicazione alla liguria tirrenica e al bacino del Po, in: *La difesa idraulica del territorio*, a cura di U. Maione e A. Brath, Editoriale Bios, pp.1-30, Cosenza, 1997.
- Soil Conservation Service, *National Engineering Handbook*, section 4, Hydrology, Rev. ed., U.S. Department of Agriculture, Washington D.C., U.S.A, 1986.

4A Appendice

Tab. 4A.1: Parametri, ϵ , α e k, della distribuzione di probabilità del coefficiente di crescita e parametri a_1 ed n della legge di variabilità della media del massimo annuale dell'altezza di pioggia su una fissata durata d.

BACINO PADANO

l coolità	Num Anni	3	α	k	a₁	n
Località	Num. Anni	_	_	_	mm/ore ⁿ	_
OROPA	54	0.858	0.236	-0.026	34.3	0.511
VERCELLI	54	0.828	0.255	-0.091	27.9	0.281
CREMONA	53	0.800	0.274	-0.134	24.9	0.286
LOCO	52	0.799	0.274	-0.139	38.3	0.383
VARALLO	52	0.865	0.266	0.074	34.0	0.489
HONE-BARD	52	0.821	0.318	0.015	25.0	0.510
IVREA	52	0.849	0.243	-0.043	28.6	0.310
CUNEO	52	0.825	0.253	-0.106	25.7	0.338
SPIGNO	52	0.764	0.313	-0.154	24.9	0.387
MANTOVA	52	0.811	0.242	-0.173	27.1	0.206
TORINO	51	0.836	0.262	-0.048	29.4	0.249
LAVAGNINA	51	0.745	0.288	-0.241	35.3	0.429
BOSCHI	51	0.806	0.280	-0.104	29.8	0.378
MARRA	51	0.813	0.292	-0.060	28.3	0.389
LANZADA	51	0.896	0.200	0.058	13.5	0.456
SPARONE	50	0.848	0.288	0.051	29.1	0.476
BOSCO	50 50				32.3	
		0.855	0.280	0.064		0.472
BARDI	50	0.869	0.225	-0.005	23.7	0.373
BRENO	50	0.873	0.225	0.016	21.2	0.313
CAMPERTOGNO	49	0.813	0.277	-0.091	26.2	0.545
VOGHERA	49	0.819	0.266	-0.094	24.4	0.267
ROSONE	48	0.833	0.269	-0.041	22.1	0.526
MIGNANO	48	0.828	0.259	-0.080	26.7	0.345
BORGONATO	48	0.825	0.240	-0.136	27.8	0.275
GHEDI	48	0.834	0.254	-0.073	28.1	0.236
RIMASCO	47	0.858	0.290	0.095	26.0	0.532
PONT	47	0.845	0.285	0.035	33.7	0.380
VIÙ	47	0.808	0.267	-0.125	27.4	0.529
MILLESIMO	47	0.812	0.272	-0.104	24.8	0.432
CANNOBIO	47	0.828	0.284	-0.028	37.4	0.412
PESSINETTO	46	0.803	0.309	-0.057	30.8	0.432
COMBAMALA	46	0.846	0.234	-0.076	19.5	0.392
BRÀ	46	0.824	0.235	-0.150	22.4	0.290
ISOLA	46	0.867	0.249	0.045	26.5	0.250
BOBBIO	46	0.860	0.249	-0.017	23.3	0.336
BORGOMANERO	46				29.7	
		0.845	0.243	-0.056		0.370
BERGAMO	46	0.859	0.271	0.058	30.5	0.272
BORMIO	46	0.881	0.196	-0.026	10.4	0.498
PONT	45	0.833	0.288	-0.003	26.0	0.424
CORSAGLIOLA	45	0.844	0.285	0.030	27.0	0.402
BEDONIA	45	0.856	0.250	0.001	31.3	0.370
LAGO	45	0.868	0.258	0.068	18.8	0.448
CERESOLE	44	0.832	0.275	-0.032	18.2	0.540
STRETTARA	44	0.817	0.285	-0.061	25.0	0.310
NOVARA	44	0.821	0.266	-0.090	25.7	0.335
LILLAZ	43	0.771	0.306	-0.148	17.8	0.527
GRESSONEY-TRIN.	43	0.842	0.241	-0.073	14.6	0.550
MAZZÈ	43	0.844	0.217	-0.125	28.6	0.243
CALCINERE	43	0.804	0.312	-0.049	25.3	0.434
FEDIO	43	0.862	0.239	-0.003	17.4	0.498
ISOLA	43	0.756	0.283	-0.225	33.9	0.376
SESTOLA	43	0.851	0.255	-0.006	25.4	0.389
TREVIGLIO	43	0.825	0.285	-0.037	29.1	0.254
GAVER	43	0.882	0.232	0.072	19.1	0.491
MONCENISIO	42	0.895	0.232	0.161	15.2	0.449
PEROSA	42	0.836	0.272	-0.024	18.5	0.449
PESCHIERA	42 42	0.836	0.272	-0.024 -0.058	26.0	0.476
VALLE	42 42	0.877	0.236	0.008	20.0	0.251
DOMODOSSOLA	42	0.845	0.273	0.012	21.3	0.529

Località	Num. Anni	3 -	α -	k –	a₁ mm/ore ⁿ	n –
NTROBBIO	42	0.846	0.270	0.006	29.9	0.354
CLUSONE	42	0.872	0.222	0.001	26.5	0.374
CHAMPDEPRAZ	41	0.824	0.273	-0.066	19.0	0.516
USSEGLIO	41	0.796	0.266	-0.163	18.0	0.536
BARDONECCHIA	41	0.872	0.214	-0.021	10.8	0.501
PINO	41				25.1	0.301
		0.870	0.248	0.057		0.257
OSIGLIA	41	0.786	0.268	-0.183	23.0	0.434
SELVANIZZA	41	0.864	0.248	0.032	24.9	0.352
MONTEMARZINO	41	0.787	0.297	-0.124	22.0	0.312
FERRIERE	41	0.852	0.269	0.030	26.6	0.315
_AGO	41	0.872	0.227	0.016	11.4	0.529
ROVESCA	41	0.860	0.252	0.023	20.5	0.566
CREMA	41	0.859	0.219	-0.061	27.8	0.238
COMO	41	0.851	0.246	-0.029	31.9	0.296
/ERRES	40	0.783	0.283	-0.164	19.1	0.499
SORGOFRANCO	40	0.873	0.279	0.140	30.8	0.342
SAMPEYRE	40	0.835	0.281	-0.010	17.8	0.448
CUMIANA	40	0.830	0.266	-0.057	24.4	0.342
IGONCHIO	40	0.851	0.247	-0.028	25.2	0.463
ARNETAC.LE	40	0.885	0.228	0.080	21.5	0.348
'ARZI	40	0.837	0.247	-0.077	25.3	0.295
RIVA	40	0.862	0.204	-0.091	19.6	0.347
AGO	39	0.871	0.247	0.060	15.6	0.521
ENALZIO	39	0.797	0.265	-0.162	15.4	0.502
IAGGIA	39	0.797			25.8	0.502
	39		0.248	-0.064		0.507
RMEA	39	0.827	0.223	-0.170	23.1	0.503
CQUI	39	0.739	0.260	-0.306	22.3	0.400
OSSO	39	0.844	0.260	-0.023	29.0	0.386
SUSTO	39	0.864	0.259	0.054	36.3	0.263
OGGIOLA	38	0.837	0.242	-0.089	35.8	0.430
OSTA	38	0.818	0.281	-0.067	12.0	0.490
ANZO	38	0.834	0.309	0.042	28.9	0.441
ILLAR	38				25.7	0.405
		0.854	0.259	0.014		
OMBRIASCO	38	0.773	0.311	-0.137	26.3	0.290
RTIGLIETO	38	0.741	0.363	-0.122	34.8	0.454
AVEZZE-LAGO	38	0.815	0.271	-0.098	37.6	0.449
REGGIO	38	0.808	0.282	-0.095	24.9	0.267
SELLE	38	0.828	0.192	-0.247	18.3	0.583
MEMMO	38	0.860	0.271	0.065	25.5	0.384
OLLEGNO	37	0.840	0.293	0.032	37.8	0.344
ASTELDELFINO	37	0.849	0.252	-0.019	13.7	0.494
CCEGLIO	37	0.857	0.249	0.002	12.7	0.492
SAVIGLIANO	37					0.402
	07	0.798	0.291	-0.107	23.6	0.300
ERDUNO	37	0.772	0.272	-0.210	21.8	0.289
ONTANALUCCIA	37	0.876	0.261	0.114	25.6	0.398
S.MARIA	37	0.869	0.241	0.034	39.7	0.438
ALSOMAGGIORE	37	0.775	0.273	-0.203	28.6	0.336
ARMATO	37	0.839	0.230	-0.114	19.4	0.319
EZZECCA	37	0.863	0.254	0.043	22.4	0.372
USINO	37	0.867	0.235	0.015	11.4	0.464
OMAGNANO	36	0.832	0.241	-0.108	36.2	0.327
ROSSASCO	36	0.850	0.280	0.043	23.7	0.424
AIRO	36	0.829	0.274	-0.043	29.2	0.424
IASONE	36	0.806	0.246	-0.179	38.3	0.446
ARPI	36	0.859	0.280	0.081	22.4	0.280
OASCA	35	0.804	0.265	-0.141	22.2	0.521
.GERMANO	35	0.854	0.284	0.066	25.4	0.448
:ASTELLO-DIGA	35	0.861	0.227	-0.032	14.3	0.502
EVA	35	0.865	0.269	0.081	21.1	0.405
REOLUNGI	35	0.869	0.275	0.112	21.4	0.302
LESSANDRIA	35	0.852	0.282	0.056	19.5	0.286
PAVULLO	35	0.805	0.277	-0.115	23.9	0.352
PADULI	35	0.801	0.260	-0.161	41.9	0.425
IONE	35	0.884	0.177	-0.073	16.4	0.487
ONGO	35	0.853	0.275	0.046	29.2	0.387
MONCENISIO	34	0.854	0.246	-0.016	15.1	0.487
MONCALIERI	34	0.806	0.286	-0.093	24.3	0.247
	34	0.837	0.284	0.001	22.3	0.426

_ocalità	Num. Anni	3 —	α -	k –	a₁ mm/ore ⁿ	n –
PIANCASTAGNA	34	0.787	0.339	-0.050	34.3	0.411
MODENA	34	0.828	0.251	-0.099	25.4	0.263
_AVENA	34	0.892	0.223	0.100	29.1	0.375
CODOGNO	34	0.825	0.241	-0.131	28.1	0.257
CHIARI	34	0.851	0.252	-0.015	31.7	0.247
ΓIRANO	34	0.825	0.242	-0.129	18.1	0.307
CAMASCO	33	0.868	0.283	0.126	36.3	0.533
CHIOMONTE	33	0.827	0.269	-0.064	14.1	0.578
CHIVASSO	33	0.874	0.231	0.035	23.8	0.327
ASTI	33	0.858	0.263	0.038	22.0	0.294
/AL	33	0.851	0.231	-0.067	38.9	0.392
CABANNE	33	0.875	0.242	0.062	35.9	0.481
IEVE	33	0.762	0.282	-0.216	29.3	0.254
MONZAMBANO	33	0.861	0.261	0.047	26.9	0.219
SIGNESE	33	0.861	0.290	0.110	31.8	0.446
CAIS	33	0.877	0.244	0.077	22.0	0.535
SSO SUBLICACION	33	0.878	0.244	0.083	36.5	0.352
GUILLEMORE	32	0.806	0.306	-0.053	23.5	0.525
CASELLO	32	0.860	0.253	0.024	27.3	0.287
AN	32 32	0.880	0.232	0.066	19.9	0.416
ARIGLIANO IAMPALUDO	32 32	0.843 0.850	0.260 0.283	-0.027 0.050	22.8 33.7	0.313 0.477
AVI	32	0.650	0.263	-0.097	33.7 30.1	0.477
ORTONA	32	0.746	0.373	-0.097	28.1	0.417
IANDELAGOTTI	32	0.737	0.292	-0.206	26.7	0.500
IADONNA	32	0.830	0.280	-0.029	26.7 16.7	0.300
ERESARA	32	0.810	0.220	-0.275	27.8	0.431
RIVERO	31	0.770	0.230	-0.273	33.8	0.255
RIGNASCO	31	0.845	0.271	0.001	32.4	0.437
IELLA	31	0.845	0.258	-0.024	33.3	0.340
T.MARCEL	31	0.836	0.260	-0.024	13.6	0.452
CHATILLON	31	0.768	0.239	-0.289	14.3	0.471
MONTJOVET	31	0.827	0.285	-0.030	16.9	0.448
ERES	31	0.823	0.315	0.015	28.4	0.444
ALAVERTANO	31	0.848	0.268	0.011	12.3	0.528
CALVISANO	31	0.843	0.302	0.061	27.1	0.255
ILMINORE	31	0.845	0.245	-0.053	22.9	0.524
ECCO	31	0.854	0.241	-0.027	35.1	0.270
ESA	31	0.865	0.260	0.065	32.5	0.387
SUSA	30	0.872	0.273	0.120	15.0	0.513
USERNA	30	0.877	0.289	0.178	24.0	0.489
ORETO	30	0.828	0.313	0.030	18.8	0.498
ORNO	30	0.820	0.266	-0.093	26.8	0.469
OAZZE	30	0.841	0.265	-0.023	26.8	0.417
LAVESANA	30	0.806	0.311	-0.044	22.3	0.360
ENGIO	30	0.796	0.310	-0.077	26.6	0.440
10LATO	30	0.860	0.288	0.101	22.7	0.299
.FRANCESCO	30	0.874	0.252	0.082	21.8	0.465
OZZOLO	30	0.813	0.292	-0.060	31.3	0.255
HAMPORCHER	29	0.797	0.299	-0.094	25.9	0.449
ENASCA	29	0.854	0.316	0.131	20.9	0.429
IETRAPORZIO	29	0.852	0.238	-0.043	16.5	0.459
INADIO	29	0.851	0.225	-0.078	15.7	0.472
ARDINETO	29	0.845	0.223	-0.105	25.6	0.480
.MARTINO	29	0.886	0.232	0.094	27.7	0.389
ENEGONO	29	0.869	0.244	0.044	36.8	0.288
AGO	29 29	0.838	0.263	-0.036	32.2	0.423
PRZINUOVI	29 29	0.862 0.922	0.258 0.180	0.043 0.171	26.7 17.6	0.250 0.487
AL ODERA	29 29	0.922	0.180	0.171	25.3	0.487
DOLO	29 29	0.871	0.245	0.054 0.027	25.3 15.9	0.339
:AMANDONA	29 28	0.872	0.232	-0.103	35.3	0.435
ERTIGNANO	28 28	0.829	0.249	-0.103 -0.218	35.3 31.0	0.412
ROMIOD	28 28	0.820	0.212	-0.218 -0.221	16.1	0.322
ROMOD AGO	28 28	0.797	0.238	-0.221 0.049	16.1	0.481
COLLEGNO	26 28	0.883	0.247	0.049	22.4	0.304
/ERZUOLO	28 28	0.883	0.218	-0.038	22.4 27.9	0.304
SALUZZO	26 28	0.839	0.268	-0.036 -0.025	24.7	0.292

Località	Num. Anni	ε _	α -	k -	a₁ mm/ore ⁿ	n –
ALBA	28	0.816	0.197	-0.268	21.4	0.364
FOIRENZUOLA	28	0.828	0.295	-0.006	26.2	0.296
PARMA	28	0.844	0.257	-0.029	26.1	0.263
VARESE	28	0.852	0.241	-0.038	35.6	0.326
VALGRISANCHE	27	0.889	0.243	0.137	11.6	0.472
NGRIA	27	0.863	0.280	0.097	26.1	0.521
ROCHEMOLLES	27	0.841	0.240	-0.080	13.0	0.468
`	27					
MONDOVI		0.889	0.287	0.231	21.4	0.374
RIO	27	0.821	0.270	-0.082	18.7	0.421
DEMONTE	27	0.874	0.210	-0.024	14.1	0.514
S.MICHELE	27	0.868	0.240	0.028	24.5	0.461
STINABECCO	27	0.816	0.247	-0.145	39.0	0.399
MACUGNAGA	27	0.859	0.256	0.027	19.7	0.563
BUSSOLENO	26	0.826	0.296	-0.010	16.0	0.448
S.STEFANO	26	0.883	0.257	0.139	29.2	0.400
SASSUOLO	26	0.853	0.240	-0.036	20.8	0.370
BORETTO	26	0.840	0.276	-0.003	24.5	0.256
S.CATERINA	26	0.878	0.276	-0.003 -0.056	12.4	0.236
PORLEZZA	26	0.891	0.263	0.191	30.4	0.332
SABY	25	0.806	0.328	-0.016	18.5	0.615
.AGO	25	0.802	0.269	-0.141	18.6	0.487
PRAGELATO	25	0.834	0.273	-0.032	13.4	0.501
ORRIGLIA	25	0.853	0.263	0.016	39.9	0.425
CAMPO	25	0.860	0.264	0.050	20.0	0.415
SALLARATE	25	0.833	0.200	-0.206	36.0	0.297
CASANOVA	24	0.874	0.261	0.106	26.2	0.260
ORINO	24	0.819	0.250	-0.128	28.3	0.304
IIZZA	24	0.819	0.256	-0.116	20.5	0.366
JRBE	24	0.867	0.272	0.097	33.6	0.512
/ALDENA	24	0.850	0.273	0.028	28.9	0.424
ONTANELLA	24	0.862	0.288	0.108	26.0	0.261
STUETTA	24	0.876	0.270	0.134	17.3	0.516
MORINA	24	0.817	0.295	-0.042	31.7	0.323
ZUBIENA	23	0.795	0.287	-0.121	33.1	0.322
GRESSONEY	23	0.860	0.221	-0.055	13.9	0.545
AGO	23	0.856	0.274	0.053	18.8	0.550
	23					
AGO	23	0.847	0.236	-0.068	17.5	0.537
/OCCHIE	23	0.848	0.278	0.033	24.3	0.390
SANFRONT	23	0.845	0.294	0.051	25.0	0.457
ROCCABIANCA	23	0.888	0.220	0.074	23.6	0.319
POVIGLIO	23	0.827	0.328	0.051	28.8	0.224
COSTA	23	0.772	0.325	-0.113	37.7	0.296
SENINVOLTA	23	0.810	0.283	-0.087	30.6	0.218
MARCALLO	23	0.869	0.217	-0.026	32.1	0.279
MORTARA	23	0.835	0.267	-0.038	19.7	0.310
RONCONE	23	0.869	0.285	0.130	20.2	0.422
SORNO	23	0.879	0.256	0.130	37.0	0.422
				0.117		
SPRA ODL	23	0.869	0.233		35.8	0.331
ODI	23	0.842	0.235	-0.087	25.7	0.247
10MO	23	0.870	0.261	0.085	29.8	0.331
ASALE	22	0.842	0.302	0.056	28.6	0.231
'IOZENE	22	0.812	0.257	-0.137	21.0	0.518
AGO	22	0.888	0.238	0.121	21.3	0.483
ARATE	22	0.836	0.260	-0.049	33.4	0.308
MELEGNANO	22	0.810	0.296	-0.062	30.3	0.270
ONDRIO	22	0.876	0.290	-0.002	15.7	0.422
EMU'	22					
-		0.851	0.212	-0.112	14.8	0.451
ETTINENGO	21	0.802	0.287	-0.102	37.2	0.393
TRAMBINO	21	0.847	0.264	-0.002	28.1	0.310
IARZOLE	21	0.880	0.262	0.136	18.3	0.323
'IGNOLO	21	0.818	0.332	0.031	23.8	0.407
GUIGLIA	21	0.816	0.286	-0.062	24.5	0.339
BORGO	21	0.792	0.225	-0.264	24.9	0.399
IEVIANO	21	0.899	0.238	0.178	24.7	0.326
MAROLA	21	0.926	0.194	0.241	23.6	0.302
SOVERNOLO	21	0.793	0.290	-0.122	24.4	0.259
YMAVILLES	20	0.849	0.207	-0.134	12.8	0.431
SAINT	20	0.878	0.242	0.079	14.4	0.450

Località	Num. Anni	3	α	k	a ₁	n
Localita		_	_	_	mm/ore ⁿ	_
CUORGNÈ	20	0.853	0.284	0.066	28.1	0.330
S.LAZZARO	20	0.815	0.305	-0.027	27.0	0.332
ISOLA	20	0.835	0.307	0.040	32.6	0.247
CASALMAGGIORE	20	0.853	0.232	-0.053	25.2	0.269
LIZZOLA	20	0.918	0.241	0.301	18.3	0.500
VEROLANUOVA	20	0.873	0.261	0.099	28.5	0.236
SARONNO	20	0.795	0.341	-0.023	26.0	0.345

LIGURIA TIRRENICA

DIGUNA TIME	11011					
		3	α	k	a₁	n
Località	Num. Anni	C				
		_	_	_	mm/ore ⁿ	_
GIACOPIANE	60	0.827	0.275	-0.049	39.1	0.416
GENOVA UNI.	59	0.754			49.5	
			0.310	-0.180		0.340
CHIAVARI	57	0.760	0.309	-0.168	47.6	0.274
SAN MICHELE	57	0.848	0.269	0.011	39.3	0.348
ISOVERDE	57	0.822	0.258	-0.105	45.0	0.414
TIGLIOLO	55	0.789	0.261	-0.193	42.4	0.395
SARZANA	54	0.817	0.271	-0.092	38.8	0.311
ARLIA						
	53	0.764	0.304	-0.169	33.7	0.372
MIGNANEGO	53	0.802	0.294	-0.091	40.9	0.352
CASTELVECCHIO	50	0.815	0.300	-0.038	28.5	0.453
ROCCHETTA	50	0.858	0.257	0.025	35.0	0.451
IMPERIA	50	0.831	0.273	-0.041	26.8	0.353
POGLI DI ORT.	48	0.833	0.271	-0.039	27.7	0.444
						0.444
LA SPEZIA	48	0.834	0.299	0.025	36.8	0.313
ALASSIO	47	0.798	0.263	-0.161	28.8	0.351
BOLA DI TRESANA	47	0.855	0.275	0.051	38.8	0.391
STATALE DI NE`	47	0.834	0.269	-0.038	48.8	0.371
SERO` DI ZIGNAGO	46	0.836	0.237	-0.103	32.2	0.390
PANESI	46	0.797	0.297	-0.097	40.0	0.308
VERZI LOANO	46	0.830	0.280	-0.030	32.6	0.345
TAVARONE	44	0.768	0.290	-0.186	43.0	0.370
MONTAGNA	43	0.798	0.312	-0.068	38.0	0.413
VARESE LIGURE	43	0.818	0.266	-0.098	35.5	0.411
BALESTRINO	43	0.833	0.269	-0.042	26.5	0.415
CHIUSOLA	42	0.833	0.267	-0.046	33.3	0.427
BESTAGNO	42	0.790	0.269	-0.172	26.4	0.412
EQUI TERME	40	0.820	0.275	-0.074	31.0	0.446
PIANA DI SOGLIO	40	0.789	0.336	-0.050	43.0	0.366
ALBENGA	39	0.797	0.286	-0.118	26.0	0.408
S. MARG. VARA	39	0.819	0.307	-0.012	41.7	0.371
CAST. CHIAVARESE	39	0.816	0.333	0.025	46.6	0.299
AIROLE	38	0.796	0.295	-0.103	27.1	0.486
COLLE MELOGNO	37	0.823	0.280	-0.053	32.1	0.455
VARAZZE	37	0.839		-0.024	38.9	0.433
			0.267			
COLONIA ARNALDI	37	0.846	0.263	-0.007	40.4	0.440
CENTR. ARGENTINA	36	0.837	0.275	-0.013	26.0	0.385
SAVONA	36	0.814	0.283	-0.076	41.6	0.323
MONT. DI LEVANTO	35	0.816	0.275	-0.086	44.5	0.285
MAD. GUARDIA	35	0.765	0.292	-0.190	48.7	0.399
VIGANEGO	34	0.828	0.242	-0.121	43.5	0.401
SCIARBORASCA	34		0.252		43.5 44.7	
		0.852		-0.010		0.358
MATUCASO	34	0.805	0.266	-0.138	36.2	0.335
NOVEGINO	34	0.810	0.266	-0.123	38.6	0.345
ALTO	33	0.798	0.217	-0.267	26.5	0.441
LERCA	33	0.809	0.301	-0.054	37.8	0.360
LEVANTO	33	0.780	0.276	-0.183	38.9	0.300
MONTE CAPELLINO	33	0.764	0.261	-0.251	39.4	0.434
VENTIMIGLIA	32	0.862	0.267	0.067	23.8	0.393
S. PIETRO DI NOV.	32	0.803	0.296	-0.082	47.4	0.274
RIALTO	31	0.824	0.256	-0.099	37.9	0.332
COLLE BELENDA	31	0.869	0.239	0.031	20.9	0.489
GUINADI-PRESA	31	0.853	0.245	-0.025	32.6	0.432
CROCETTA D'OR.	31	0.799	0.301	-0.085	40.3	0.387
C. COOL I IVE CIT.	O i	0.700	0.001	0.000	₹0.0	0.007

Liguria Tirrenica (segue)

aguria Tirrenica (s		1	1	1	1	1
Località	Num. Anni	3	α	k	a_1	n
		_	_	_	mm/ore ⁿ	_
VALLE TANK	00	0.000	0.000	0.000		0.400
VALLE TANE	30	0.808	0.288	-0.083	27.9	0.480
NEIRONE	30	0.875	0.253	0.091	48.2	0.384
SCOFFERA	29	0.872	0.230	0.022	42.4	0.399
CISANO SUL NEVA	29	0.838	0.263	-0.035	26.3	0.472
S.SAN MARTINO	29	0.829	0.286	-0.022	40.0	0.372
PIGNA	29	0.814	0.301	-0.041	26.4	0.398
FIORINO	29	0.834	0.298	0.021	45.8	0.387
PARANA	29	0.847	0.283	0.040	38.1	0.471
IERA	28	0.830	0.318	0.044	37.4	0.374
GENOVA UFF. IDR.	27	0.798	0.256	-0.178	46.4	0.335
SANT` ILARIO	27	0.859	0.346	0.202	44.9	0.311
TRIORA	27	0.825	0.263	-0.080	28.2	0.454
MINUCCIANO	27	0.860	0.237	-0.015	36.0	0.458
ROCCA SIGILLINA	27	0.870	0.256	0.073	40.3	0.339
FEGLINO	26	0.758	0.339	-0.124	31.5	0.379
STELLANELLO	26	0.825	0.278	-0.050	31.1	0.464
CALVO	26	0.828	0.262	-0.075	34.8	0.359
SANREMO	26	0.874	0.255	0.091	23.5	0.379
MATTARANA	26	0.834	0.243	-0.097	35.2	0.370
VILLAFRANCA L.	26	0.845	0.277	0.020	38.0	0.408
PIEVE DI TECO	25	0.812	0.303	-0.040	29.4	0.462
MADONNA GRAZIE	25	0.762	0.270	-0.239	33.1	0.377
GENOVA CAST.	24	0.775	0.341	-0.077	47.6	0.341
CALICE AL COR.	24	0.874	0.271	0.128	32.8	0.423
COLLE DI NAVA	23	0.826	0.320	0.036	25.3	0.456
TESTICO	23	0.844	0.292	0.047	23.8	0.501
PIANA BATTOLLA	23	0.809	0.238	-0.186	34.7	0.354
S.MARGHERITA LIG.	23	0.846	0.275	0.018	48.8	0.276
PRATO	22	0.878	0.217	0.015	46.7	0.362
CALICE LIGURE	22	0.813	0.264	-0.117	33.9	0.360
BARACCA-BRACCO	22	0.862	0.227	-0.032	43.2	0.324
PIAZZA	22	0.835	0.305	0.038	32.8	0.354
S. SAN BERNARDO	22	0.803	0.315	-0.045	42.9	0.375
SANTUARIO	22	0.776	0.373	-0.023	33.4	0.385
CARPE	22	0.836	0.323	0.075	40.4	0.568
SANT EUSEBIO	21	0.770	0.269	-0.222	36.7	0.398
COLLA MELOSA	21	0.789	0.273	-0.168	29.4	0.487
CICHERO	21	0.874	0.242	0.061	44.7	0.373
C. SAN BART.	21	0.810	0.299	-0.056	29.5	0.461
TAVOLE	21	0.841	0.262	-0.029	32.4	0.453
ARENZANO	20	0.806	0.304	-0.029	37.7	0.433
CERIANA	20	0.800	0.265	-0.103	31.0	0.370
P. CENTOCROCI	20	0.817	0.203	0.026	29.1	0.430
F. CLINIOCROCI	20	0.074	0.220	0.020	23.1	0.430