

COMPITO A CASA n° 2

Riesame dei risultati del metodo razionale con due diversi metodi di stima della pioggia netta.

Con riferimento all'esercitazione 6, relativa al bacino del Chisone a S. Martino, si è individuata con il metodo razionale la portata di progetto:

$$Q_{100} = \frac{i_{100} \cdot A \cdot \psi}{3.6} = \frac{17,12 \cdot 581 \cdot 0,402}{3.6} = 1110,6 \frac{m^3}{s}$$

dove il pedice 100 indica il tempo di ritorno T (anni).

Considerando la curva di possibilità pluviometrica (Fig.1), relativa all'esercitazione 6, è stato possibile stimare l'intensità di pioggia media, che risulta pari a:

$$i_m = 17,11 \; \frac{mm}{h}$$

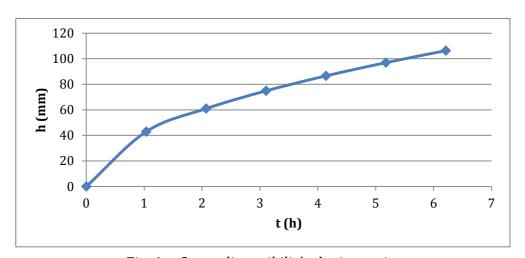


Fig. 1 – Curva di possibilità pluviometrica

Si fa riferimento quindi ad uno ietogramma rettangolare (a intensità costante e pari a i_m) per una pioggia di durata variabile tra 1/6 e 6/6 del tempo di corrivazione, calcolato tramite la formula di Giandotti nell'esercitazione 6, e pari a 6,21 h.



Fig. 2 – *Ietogramma lordo costante*

Metodo della corrivazione

Sono note le caratteristiche geometriche del bacino del Chisone:

$\mathbf{z_i}(m)$	$\mathbf{a_i}$ (km^2)
415	52,245
884	121,905
1354	174,15
1824	133,515
2294	81,27
2764	17,415
3234	0

Dato il tempo di corrivazione si individuano k=6 intervalli di tempo; in ognuno di essi si valuta la portata di pioggia affluente:

$$Q_k = \sum_{j=1}^k a_j \cdot i_{(k-j+1)} = i_m \cdot \sum_{j=1}^k a_j$$

Per completezza si riportano anche le portate relative ai 6 intervalli di tempo successivi al tempo di corrivazione, necessari al deflusso di tutta la pioggia caduta sul bacino.

t (h)	$\mathbf{Q}(m^3/s)$
0	0
1,035	248,38
2,07	827,94
3,105	1655,89
4,14	2290,65
5,175	2677,02
6,21	2759,82
7,245	2511,43
8,28	1931,87
9,315	1103,92
10,35	469,17
11,385	82,79
12,42	0

Il massimo valore di portata, pari a 2759,82 m³/s, come previsto si rileva proprio in corrispondenza del tempo di corrivazione.

Per il calcolo degli assorbimenti vengono utilizzati il metodo di Ψ e il metodo SCS-CN, che ci consentono di valutare la pioggia netta.

Metodo Ψ

Dato il coefficiente di afflusso del bacino, Ψ = 0,402, è possibile valutare l'intensità di pioggia netta come percentuale di quella totale:

$$I_n = \psi \cdot I = 0,402 \cdot 17,11 = 6,88 \frac{mm}{h}$$

Si ripete quindi il metodo della corrivazione, utilizzando l'intensità di pioggia netta, allo scopo di valutare la portata netta defluente.

t (h)	$\mathbf{Q}_{\mathbf{netta}} (m^3/s)$
0	0
1,035	99,85
2,07	332,83
3,105	665,67
4,14	920,84
5,175	1076,16
6,21	1109,45
7,245	1009,60
8,28	776,61
9,315	443,78
10,35	188,61
11,385	33,28
12,42	0

Nello stesso diagramma (Fig.3) si riportano i pluviogrammi relativi alla portata lorda e a quella netta, per confrontare gli afflussi e i deflussi.

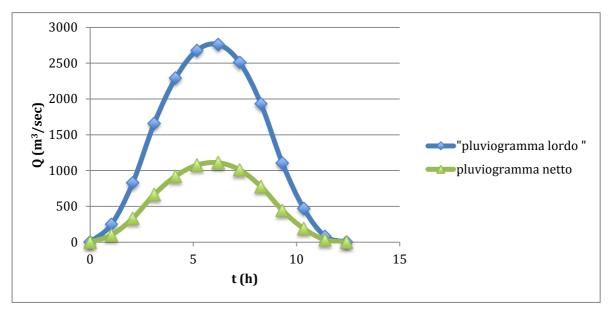


Fig. 3 – *Pluviogrammi*

Metodo SCS - CN

Secondo tale modello, l'altezza di pioggia netta dall'inizio dell'evento meteorico fino all'istante generico t, risulta legato all'altezza di pioggia lorda P, caduta nel medesimo intervallo temporale dalla relazione:

$$P_{netta} = \frac{(P - I_a)^2}{P - I_a + S}$$

dove I_a rappresenta la perdita iniziale, ovvero quel valore limite di altezza di pioggia che il terreno può trattenere nella fase iniziale del fenomeno, senza che vi sia rodotto deflusso. Si ricava dalla relazione:

$$I_a = 0.2 \cdot S$$

S, invece, è il massimo volume specifico di acqua che il terreno può trattenere in condizioni di saturazione, e vale:

$$S = 254 \cdot (\frac{100}{CN} - 1)$$

Il valore di P utilizzato è relativo alla pioggia cumulata, è quindi pari a P = 106,32.

$\mathbf{t_{c}}\left(h\right)$	I (<i>mm/h</i>)	$\mathbf{P_{tot}}(mm)$	$\mathbf{P_e}$ (mm)	I _{netta} (mm/h)
6,21	17,11	106,32	44,044	7,092

Riapplicando nuovamente il metodo della corrivazione, utilizzando il valore di intensità appena calcolato, si è giunti alle portate nette:

t (h)	$\mathbf{Q}_{\mathbf{netta}} (m^3/s)$
0	0
1,035	102,93
2,07	343,1
3,105	686,19
4,14	949,23
5,175	1109,34
6,21	1143,65
7,245	1040,72
8,28	800,55
9,315	457,46
10,35	194,42
11,385	34,31
12,42	0

Nello stesso diagramma (Fig.4) si riportano nuovamente i pluviogrammi relativi alla portata lorda e a quella netta, per confrontare gli afflussi e i deflussi.

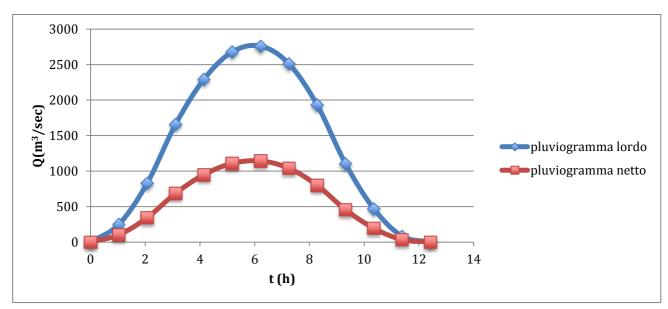


Fig. 4 – Pluviogrammi