
ESERCIZIO:

Riesame dei risultati del metodo razionale con due metodi di stima della pioggia netta

Scopo dell'esercizio è riesaminare la formulazione tradizionale del metodo razionale considerando diverse durate della precipitazione di progetto.

Si fa riferimento al bacino del Chisone a S. Martino, di cui si dispongono i dati già desunti dall'esercitazione 6:

Lunghezza asta principale L	56,276	km
Area bacino A	581	km²
Z _{medio}	1739	m slm
Z _{min}	415	m slm
H'=z _{medio} -z _{min}	1324	m slm
Tempo di corrivazione tc	6,2	ore
ψ	0,402	
а	17,438	
n	0,506	
k ₁₀₀	2,374	
i	16,79	mm/h

Si è calcolato il tempo di corrivazione mediante la formula di Giandotti:

$$t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8\sqrt{H'}} = \frac{4 \cdot \sqrt{581} + 1.5 \cdot 56.276}{0.8\sqrt{1324}} = 6.2 \ h$$

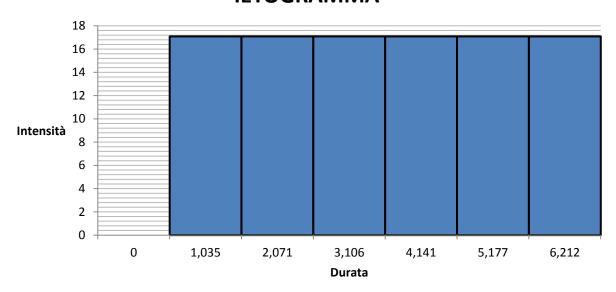
Successivamente si è calcolato il valore dell'intensità di pioggia i_{100} (t_c):

$$i_{100} = a \cdot k_{100} \cdot t_c^{(n-1)} = 17.438 \cdot 2.374 \cdot 6.2^{(0.506-1)} = 16.8 \, mm/h$$

Si procede quindi alla stima di Q_{100} attraverso la formula razionale:

$$Q_{100} = 0.28 \cdot \psi \cdot i_{100} \cdot A$$

Si è ottenuto un valore di portata di picco di piena pari a:


Q ₁₀₀	1089,48	m³/s
------------------	---------	------

CASO 1: Metodo ψ

Noti i dati del bacino, si è potuto costruire uno ietogramma costante nelle intensità:

Δt =	1,035	ore
d (h)	h(d,t)	i _j
1,04	42,13	16,79
2,07	59,83	16,79
3,11	73,46	16,79
4,14	84,97	16,79
5,18	95,12	16,79
6,21	104,32	16,79

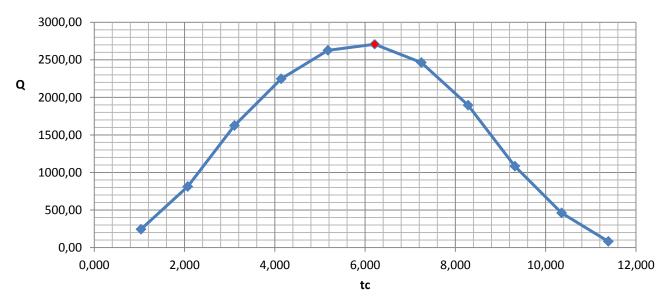
IETOGRAMMA

Si costruisce quindi l'idrogramma di piena secondo il metodo cinematico, procedendo fino al tempo $t = 12\Delta t$.

Di seguito sono riportati i dati per le singole aree comprese tra due isocorrive:

Aree	Z	u
52,245	415	0,090
121,905	884	0,210
174,15	1354	0,300
133,515	1824	0,230
81,27	2294	0,140
17,415	2764	0,030
0	3234	0

Per ciascuna area si è definito il rapporto percentuale $u_i=\frac{a_i}{A}$, si è ricavato per $\Delta t < t < 12 \ \Delta t$, $q_i=\sum u_i \cdot i_i$ e di conseguenza anche $Q_i=A\cdot q_i$.


Si è ottenuto:

		u1	u2	u3	u4	u5	u6
t	i	0,090	0,210	0,300	0,230	0,140	0,030
1,035	16,79	1,510		-			
2,071	16,79	1,510	3,523		-		
3,106	16,79	1,510	3,523	5,033			
4,141	16,79	1,510	3,523	5,033	3,859		
5,177	16,79	1,510	3,523	5,033	3,859	2,349	
6,212	16,79	1,510	3,523	5,033	3,859	2,349	0,503
7,247			3,523	5,033	3,859	2,349	0,503
8,283				5,033	3,859	2,349	0,503
9,318					3,859	2,349	0,503
10,353						2,349	0,503
11,389							0,503
12,424							

q	q
1,510	243,703
5,033	812,344
10,067	1624,687
13,926	2247,484
16,275	2626,578
16,778	2707,812
15,268	2464,109
11,745	1895,469
6,711	1083,125
2,852	460,328
0,503	81,234

Diagrammando le portate si ha:

IDROGRAMMA DI PIENA

Da cui si ricava che la Q_{totale} massima è pari a 2707,81 m $^3/s$.

Da tale valore, moltiplicandolo per $\psi = 0,402$, si ottiene la portata di picco di piena, cioè:

Q picco 1088,54	m³/s
------------------------	------

Si deduce che con il metodo ψ si ottiene un valore molto prossimo a quello ottenuto con la formula razionale tradizionale.

CASO 2: Metodo SCS - CN

Viene dato CN = 74.

Inoltre dai dati di partenza si può ricavare la pioggia lorda: $P = i \cdot tc = 16,79 \cdot 6,2 = 104,32 \text{ mm}$

Il volume specifico di saturazione S dipende dalla natura del terreno e dall'uso del suolo (rappresentati dal parametro CN). Vale:

$$S = S_0 \left(\frac{100}{CN} - 1 \right) = 254 \left(\frac{100}{74} - 1 \right) = 89,24 \text{ mm}$$

Serve anche calcolarsi il volume di pioggia sottratto a priori dal bilancio, per via della vegetazione o da accumuli in depressioni, ossia:

$$I_a = c \cdot S = 0.2 \cdot 89.24 = 17.85 \text{ mm}$$

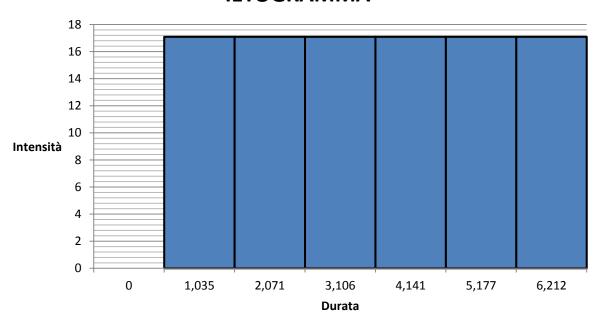
Si può dunque calcolare la pioggia netta mediante l'espressione:

$$P_{netta} = \frac{(P - I_a)^2}{(P - I_a + S)} = \frac{(104,32 - 17,85)^2}{(104,32 - 17,85 + 89,24)} = 42,56 \text{ mm}$$

$$I_{\text{netta}} = \frac{P_{netta}}{t_C} = \frac{42,56}{6,2} = 6,87 \text{ mm/h}$$

$$Q_{\text{netta}} = \frac{i \cdot A}{3.6} = \frac{6.87 \cdot 581}{3.6} = 1108,74 \text{ m}^3/\text{s}$$

Anche stavolta il valore è prossimo a quello ottenuto con la formula razionale.


Per tracciare uno ietogamma costante, facciamo nuovamente riferimento alla formula del metodo ψ , di cui useremo stavolta la formula inversa per trovare I:

$$Q_{netta} = 0.28 \cdot \psi \cdot I \cdot A \Rightarrow I = \frac{Q_{netta}}{0.28 \cdot \psi \cdot A} = \frac{1108,74}{0.28 \cdot 0.402 \cdot 581} = 17,09 \text{ mm/h}$$

Rappresentando lo ietogramma si ha:

Δt =	1,035 ore	
d (h)	h(d,t)	ij
1,04	42,13	17,09
2,07	59,83	17,09
3,11	73,46	17,09
4,14	84,97	17,09
5,18	95,12	17,09
6,21	104,32	17,09

IETOGRAMMA

