

FRANE INDOTTE DA PRECIPITAZIONI: PREVISIONE E PREVENZIONE

Seminario organizzato nell'ambito del Corso Integrato di Protezione Idraulica del Territorio e Sistemazioni Idrauliche

Analisi idromeccanica dei fenomeni di instabilità delle coltri superficiali

Prof. Claudio Scavia

Dipartimento di Ingegneria Strutturale e Geotecnica POLITECNICO DI TORINO

30 Ottobre 2009

Modellazione idromeccanica dell'innesco

1. Modello del discontinuo

infiltrazione della pioggia lungo le discontinuità naturali

2. Modello del continuo equivalente

Modello del discontinuo

Esempi di Scivolamenti bi- e tri-dimensionali

La pioggia si infiltra lungo i piani di discontinuità ma difficilmente vengono a crearsi pressioni neutre.

Se esiste un riempimento di materiale argilloso che viene a contatto dell'acqua possono instaurarsi fenomeni di instabilità.

Modello del discontinuo

Esempi di Scivolamenti planari

Alternanze di marne e arenarie. Scivolamento su un livello di marna costituito da argille rigonfianti.

La pioggia s'infiltra lungo fratture verticali e provoca il decadimento delle caratteristiche di resistenza del livello rigonfiante.

Modello del discontinuo

Esempi di Scivolamenti planari

Alternanze di marne e arenarie.

Modello del continuo equivalente

Esempi di Scivolamenti profondi in terra

La pioggia s'infiltra nel terreno ed incrementa il livello della falda profonda. La relazione tra l'intensità e la durata della pioggia e la stabilità del pendio non è sempre facilmente determinabile.

Modello del continuo equivalente

Esempi di Scivolamenti profondi in ammassi non strutturati

La pioggia s'infiltra tra i massi e incrementa il livello della falda al contatto con l'ammasso roccioso competente. Difficoltà per la definizione dei parametri fisico – meccanici.

Frane superficiali - Innesco

Approccio Empirico

Esempio di soglie pluviali empiriche per la previsione dei fenomeni di instabilità superficiale

da Guzzeti et al., 2007

- <u>J</u> = gradiente idraulico [-]
- ψ = altezza di pressione = u / γ_w [m]
- S = grado di saturazione [-]

 φ = quota piezometrica = ψ + *z* [m] *n* = porosità [-] ϑ = contenuto volumetrico d'acqua = *n*S [-]

Frane superficiali - Innesco

FILTRAZIONE NON STAZIONARIA IN UN MEZZO NON SATURO

EQUAZIONE DI RICHARDS

SOLUZIONE

MODELLI SEMPLIFICATI (Iverson)

dove:

$$C(\varphi) = \frac{K(\varphi)}{C(\varphi)} \qquad C(\varphi) = \frac{d\varphi}{d\psi} \qquad A(\psi) = \frac{dK(\varphi)/d\psi}{C(\varphi)}$$
DIFFUSIVITA' [m²/s] CAPACITA' IDRICA [m⁻¹] [m/s]

METODI NUMERICI

COMPLETI

(FLAC^{3D}, SEEP/W)

Frane superficiali - Innesco

CALCOLO DELLA STABILITA' – PENDIO INDEFINITO

Frane superficiali - Innesco STABILITA' VALUTATA CON LE EQUAZIONI CARDINALI DELLA STATICA Componente idraulica del fattore di sicurezza : dz $F.S._{w} = -\frac{\gamma_{w}\psi(Z,t)\tan\varphi'}{\gamma_{sat}Z\sin\alpha\cos\alpha}$ **΄c'**, φ', **Κ**,γ_w,γ_{sa} $F.S._{w}(Z,t) = F.S._{w}(Z) + F.S.'_{w}(Z,t)$ con: $F.S._{w_0}(Z) = -\frac{\psi_0(Z)\gamma_w \tan \varphi'}{\gamma_{sat} Z \sin \alpha \cos \alpha} \quad \Longrightarrow \quad \begin{array}{c} \text{componente} \\ \text{stazionaria} \end{array}$ water flow $F.S.'_{w}(Z,t) = -\frac{[\psi(Z,t) - \psi_{0}(Z)]\gamma_{w} \tan \varphi'}{\gamma_{sat} Z \sin \alpha \cos \alpha}$ componente transitoria

Esempi di debris flow

(image courtesy of GEO, Hong Kong)

Esempi di debris flow

(after Chen et al., 2006

Esempi di mud flow

Propagazione: Meccanica del continuo

Ipotesi 1

Dalla massa eterogenea reale ad un continuo equivalente

Depth-averaged equations: 2D vs. 3D

- **Depth-averaging** essenzialmente elimina una dimensione integrando le equazioni di bilancio nello spessore.
- Questo ha portato a incoerenze nelle terminologia. Es., "3D" ≡ "depth-averaged 2D"
- Nell'ambito di questa presentazione, "2D" e "3D" semplicemente denotano modelli che simulano il moto su topografie 2D e 3D, rispettivamente.

Depth-averaged equations: 2D vs. 3D

La massa è assunta incomprimibile e con densità costante, ρ . In un sistema di riferimento legato alla topografia, le equazioni di massa e di conservazione della quantità di moto nella direzione x- e y- risultano essere le seguenti:

$$\int \frac{\partial h}{\partial t} + \operatorname{div}(h\overline{u}) = 0$$

$$\frac{\partial}{\partial t}(h\overline{u}) + \frac{\partial}{\partial x}(h\overline{u^2}) + \frac{\partial}{\partial y}(h\overline{u}\overline{v}) = \gamma_x gh + \frac{1}{\rho}\frac{\partial}{\partial x}(h\overline{\sigma_{xx}}) + \frac{1}{\rho}\frac{\partial}{\partial y}(h\overline{\sigma_{xy}})$$

$$\frac{\partial}{\partial t}(h\overline{v}) + \frac{\partial}{\partial x}(h\overline{u}\overline{v}) + \frac{\partial}{\partial y}(h\overline{v^2}) = \gamma_y gh + \frac{1}{\rho}\frac{\partial}{\partial x}(h\overline{\sigma_{xy}}) + \frac{1}{\rho}\frac{\partial}{\partial y}(h\overline{\sigma_{yy}})$$

$$\sigma_{zz} = \rho g\gamma_z(h-z)$$

$$\overline{u} = (\overline{u}, \overline{v}) \quad \text{velocità media}$$

$$\beta \quad \text{spessore della massa}$$

$$\gamma_i \quad \text{coefficienti di proiezione del vettore gravità } \mathbf{g}$$

$$T_{\mu} = \sigma_{zz} \quad \text{termine di resistenza alla base}$$

Implementazione numerica ricorrendo a <u>mesh</u> e <u>risolutori</u> diversi

SIMULAZIONE DELLA FRANA DELLA VAL POLA MEDIANTE CODICE DI CALCOLO RASH3D (Pirulli, 2005)

...GRAZIE PER L'ATTENZIONE...

FRANE INDOTTE DA PRECIPITAZIONI: PREVISIONE E PREVENZIONE

Seminario organizzato nell'ambito del Corso Integrato di Protezione Idraulica del Territorio e Sistemazioni Idrauliche

Meccanismi e tipologie di instabilità nelle coltri superficiali

Prof. Claudio Scavia

Dipartimento di Ingegneria Strutturale e Geotecnica POLITECNICO DI TORINO

30 Ottobre 2009