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Identification of the flood frequency curve in ungauged basins is usually performed by means of regional
models based on the grouping of data recorded at various gauging stations. The present work aims at
implementing a regional procedure that overcomes some of the limitations of the standard approaches
and adds a clearer representation of the uncertainty components of the estimation.

The information in the sample records is summarized in a set of sample L-moments, that become the
variables to be regionalized. To transfer the information to ungauged basins we adopt a regional model
for each of the L-moments, based on a comprehensive multiple regression approach. The independent
variables of the regression are selected among a large number of geomorpholoclimatic catchment
descriptors. Each model is calibrated on the entire dataset of stations using non-standard least-squares
techniques accounting for the sample variability of L-moments, without resorting to any grouping proce-
dure to create sub-regions. In this way, L-moments are allowed to vary smoothly from site to site in the
descriptor space, following the variation of the descriptors selected in the regression models. This
approach overcomes the subjectivity affecting the techniques for the definition and verification of the
homogeneous regions. In addition, the method provides accurate confidence bands for the frequency
curves estimated in ungauged basins.

The procedure has been applied to a vast region in North-Western Italy (about 30,000 km2). Cross-val-
idation techniques are used to assess the efficiency of this approach in reconstructing the flood frequency
curves, demonstrating the feasibility and the robustness of the approach.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The evaluation of the frequency of flood events in ungauged
catchments is usually approached by building suitable statistical
relationships (models) between flood statistics and basins charac-
teristics, calibrated on a set of records of annual maxima. These
models are used to transfer the information available at the gauged
sites to the target basin, where only morphoclimatic catchment’s
characteristics are available. This type of procedure is called a re-
gional model, because it identifies a subset of basins, called region,
that is used as a pooling set where the information to be trans-
ferred to ungauged site resides. In standard regional models, the
basins, which are assumed to belong to a homogeneous region, do-
nate their (common) statistical properties of the flood frequency
curve to the ungauged basins that are assumed to fall in the same
region.

Various methods to achieve this goal have been proposed in the
literature (see for example the review by Cunnane (1988) and
Grimaldi et al. (2011)), differing to each other mainly on the basis
ll rights reserved.
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of the distribution used to describe the at-site data (see e.g.
Hosking and Wallis, 1997 for a bouquet of distributions), and on
the pooling criterion used for the delineation of regions. Several
techniques have been proposed for region delineation. Among oth-
ers, we can mention: cluster analysis and proximity pooling (Burn,
1990), hierarchical approaches (Fiorentino et al., 1987; Gabriele
and Arnell, 1991), neural network classifiers (Hall and Minns,
1999) and mixed approaches (Merz and Bloschl, 2005). For any
of these techniques the check for statistical homogeneity within
the regions is an important issue (Viglione et al., 2007; Castellarin
et al., 2008).

However, most of the standard statistical tools for the estima-
tion of the flood frequency curve in ungauged basins present lim-
itations. In particular, (i) the subdivision of the domain of
interest in homogeneous regions, and (ii) the choice of an a priori
probability distribution to describe the sample data, can be consid-
ered as limiting factors, due to the difficulties of managing estima-
tions where abrupt changes occur across regions, or distributions
demonstrate not to keep their properties inside and across regions.

Regarding the point (i), different approaches exist to create
homogeneous regions. For instance, regions can be created by
splitting in separated areas the geographical space or a multi-
dimensional space of the physiographic basin’s characteristics
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(e.g. Ouarda et al., 2001, Fig. 1). The regions can be defined by
means of fixed boundaries (e.g. cluster analysis procedures) or by
means of a pooling technique that does not define fixed regions,
as in the region-of-influence (ROI) approach (Burn, 1990). The
ROI approach is more flexible than the fixed-regions approach be-
cause it creates site-dependent regions. However, the estimates are
not smooth (both in geographic or physiographic spaces) due to
possible discontinuities at the border between one ROI and
another.

The main limitation of the approaches that use a subdivision in
separate regions is the difficulty to assess a reliable and stable con-
figuration of the regions (e.g. which catchments to include or not in
a particular region). In fact, since there is no prior information
about the regions configuration, any algorithm used for regions
delineation induces some errors. Then, the regions must be tested
for their statistical homogeneity, although the related tests can be
rather weak in the estimation of statistical heterogeneity (Viglione
et al., 2007). A few papers have tried to overcome this problem
proposing methods based on the interpolation of the hydrological
variable in the descriptors space (Chokmani and Ouarda, 2004;
Chebana and Ouarda, 2008), or based on the so-called top-kriging
(Skoien et al., 2006). The first technique presents problems in the
definition of the descriptors used for the interpolation, while the
top-kriging is heavily dependent on the availability of large data-
sets that would support a reliable construction of a ‘‘objective’’
variogram. The idea not to resort to a grouping procedure to form
the regions has been also developed by Stedinger and Tasker
(1985), and recently improved by Griffis and Stedinger (2007),
where the advantages of using this approach are underlined. Using
no regions there is no longer the need for an homogeneity test: the
statistical characteristics of the floods can vary from site to site and
the model will try to reproduce this variability.

All the above approaches require, at the initial stage, an hypoth-
esis on the at-site frequency distribution chosen to describe the
data CDF (cumulative distribution function) and to estimate flood
quantiles. In fact, these methods basically perform more or less re-
fined interpolation techniques on the flood quantiles estimated at
site. This bring us back to point (ii) above, which is related to the
choice of an a priori CDF to represent the data. However, different
probability distributions can fit equally well the data for low return
periods, while they may produce diverging estimates when extrap-
olated to high return periods (an example will be given in the fol-
lowing Fig. 6). This effect becomes even more evident in the case of
short records, which are particularly important in data-scarce
regions.

In this paper, we followed the idea of transferring hydrological
information assuming no regions nor pooling groups, and we use
the L-moments and their dimensionless ratios as statistical vari-
ables to be transferred to the ungauged sites. In particular, we se-
lect the sample L-moment of order one (the mean), the coefficient
of L-variation (LCV) and the L-skewness (LCA) of the record. Region-
alizing these three L-moments allows one to reconstruct the whole
flood frequency curve, at least if three-parameter curves are se-
lected. The choice of the mean, LCV and LCA as hydrological signa-
tures in a regional framework can be interpreted in an index-
flood framework (Dalrymple, 1960) considering the mean as the
scale factor and the L-moments ratios as the descriptors of the
dimensionless growth curve. A similar approach has been applied
by Vogel et al. (1999) to the annual streamflow, who regionalized
the first two moments instead of the L-moments.

The use of the mean, LCV and LCA instead of a quantile or distri-
bution-parameter is also helpful, for both calibration and predic-
tion purposes, when catchments with short sample records are
used in the analysis. In fact, during the model calibration phase,
sample L-moments are computed even if their sample variability
is high (but known or quantifiable), without resorting to often
inefficient estimates of the at-site parent distribution. This avoids
information loss due to the elimination of short records. On the
other hand, if one is interested in the local quantile prediction at
a gauged site with a short record, it is still possible to compute,
for instance, the index-flood (Qind) and the LCV directly on the sam-
ple record, leaving to the regional procedure the estimation of LCA.
From this point of view, this approach extends the original index-
flood method, in which Qind is often estimated locally, based on
even few at-site measurements, while the growth curve is derived
by a regional model.

The relationships built to transfer the information to the unga-
uged sites are based on multiple regressions and are discussed in
Section 2.2. The choice of the probability distribution used for
the final quantile estimation is based on a model averaging ap-
proach and is reported in Section 3. The proposed methodology
is applied to an area of about 30.000 km2 located in North-Western
Italy, including 70 gauging stations. The application is presented in
Section 4 and final remarks are reported in the conclusions section.

2. Model definition

2.1. At-site estimates: systematic and non-systematic information

The first step of the procedure is to check the available data and
use them to compute suitable statistical indicators at the gauged
sites. Among the possible types of data which can be used in the
statistical analysis (e.g. Stedinger et al., 1993), common procedures
implicitly assume a record of n systematic measures. Sometimes,
however, systematic records of data can be integrated with addi-
tional data, derived from measurements of significant occasional
events. This can be particularly useful when the original systematic
record is short. When a number of occasional additional measure-
ments is available, one can merge them with the systematic ones
to improve the robustness of the final estimates (e.g. Bayliss and
Reed, 2001).

To calculate the probability weighted moments (PWMs) of the
extended record, we use a method suggested by Wang (1990): the
merged sample of total length nall is arranged in increasing order

xð1Þ 6 xð2Þ 6 � � � 6 xðnall�lþ1Þ 6 xðnall�lþ2Þ 6 . . . 6 xðnallÞ ð1Þ

where the subscript in round brackets indicates the sorted position;
the l largest events, exceeding a threshold x0, are considered as a
censored sample, whose elements can be either systematic or occa-
sional data. Then, the ‘‘equivalent’’ length m is associate to the com-
plete record, equal to the number of years between the first and the
last measurement of both the systematic and the occasional record,
considered together. When working with censored samples, the
theoretical formula for the PWM of order r of a random variable X
with distribution function F(x) = P(X 6 x), as br ¼

R 1
0 xðFÞFrdF, must

be split in two components (Wang, 1990),

br ¼
Z F0

0
xðFÞFr dF þ

Z 1

F0

xðFÞFr dF ¼ b00r þ b0r ð2Þ

where F0 = F(x0) is the non-exceedance probability relative to the
censoring threshold x0. The unbiased estimator of b00r is then (Wang,
1990):

b00r ¼
1
n

Xnall

i¼1

ði� 1Þði� 2Þ . . . ði� rÞ
ðn� 1Þðn� 2Þ . . . ðn� rÞ x

00
ðiÞ ð3Þ

where x00ðiÞ is deducted from the sorted sample as

x00ðiÞ ¼
xðiÞ if xðiÞ < x0;

0 if xðiÞ P x0:

(
On the other hand, the estimator of b0r is (Wang, 1990)
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b0r ¼
1
m

Xm

i¼m�nallþ1

ði� 1Þði� 2Þ . . . ði� rÞ
ðm� 1Þðm� 2Þ . . . ðm� rÞ x

0
ðiÞ ð4Þ

where x0ðiÞ is the above-threshold sample, i.e.

x0ðiÞ ¼
0 if xðiÞ < x0;

xðiÞ if xðiÞ P x0:

(
Still following Wang (1990), the unbiased estimator of br is
br ¼ b0r þ b00r .

The censoring threshold x0 represents the level above which the
non-systematic flood values are assumed as deserving to be re-
corded. x0 can be assumed equal to the smallest non-systematic
measure (Bayliss and Reed, 2001). In the absence of non-system-
atic information, the above formulas reduce to the usual defini-
tions of PWMs.

L-moments are then obtained as linear combination of PWMs
(e.g. Hosking and Wallis, 1997). The first statistic of interest is usu-
ally the index-flood, that corresponds to the sample average,

Q ind ¼ b0; ð5Þ

while the L-moments ratios LCV and LCA are computed as:

LCV ¼
2b1 � b0

b0
; ð6Þ

LCA ¼
6b2 � 6b1 þ b0

2b1 � b0
: ð7Þ

Also the coefficient of L-kurtosis,

Lkur ¼
20b3 � 30b2 þ 12b1 � b0

2b1 � b0
; ð8Þ

can be used in some cases, for example to estimate a four-parame-
ter probability distribution.

The estimates of sample L-moments are integrated with an esti-
mate of their sample variance, which is a key element of our model
because of the particular regression approach adopted in the
regionalization procedure. Elmir and Seheult (2004) proposed a
method for the computation of variances and covariances of sam-
ple L-moments and of the ratios of sample L-moments; however,
their formulation appears to be inconsistent when applied to short
samples, producing in some cases negative estimates of the vari-
ance. Instead, we start defining the standard deviation of the in-
dex-flood, following the Bulletin 17B Appendix 6 (Interagency
Advisory Committee on Water Data, 1982), as

rQind
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n2

X
xi<x0

ðxi � Q indÞ2 þ
1

m2

X
xiPx0

ðxi � Q indÞ2
s

ð9Þ

where Qind is calculated with Eq. (5). It is easy to see that, in the ab-
sence of non-systematic data, Eq. (9) reduces to the usual standard
deviation of the mean rQind

¼ rQ=
ffiffiffi
n
p

.
The uncertainty of estimates of LCV and LCA is more difficult to

assess. Due to the presence of short samples, equations reported
by Elmir and Seheult (2004) cannot be applied, so we resort to a
set of simplified formulas obtained by Viglione (2007) on the basis
of Monte Carlo simulations. The standard deviation of the LCV and
LCA are:

rLCV ¼
0:9 LCVffiffiffi

n
p ; ð10Þ

and

rLCA ¼
0:45þ 0:6 jLCAjffiffiffi

n
p ; ð11Þ

respectively. Moreover, sample LCV and LCA are found to be corre-
lated, with a cross-correlation coefficient
q ¼ 1� expð�5 LCAÞ
1þ expð�5 LCAÞ

: ð12Þ

Eqs. (10)–(12) are approximations, and cannot be easily modified to
deal with samples extended by mean of occasional information.
Consequently, we use rLCV and rLCA calculated only on the system-
atic sample.

2.2. Regression models

After the definition of the statistics of interest at the gauged sta-
tions, a model to transfer the information to the ungauged sites is
needed. In this work, the regional model is intended as a set of rela-
tions that allows one to estimate the first three L-moments in an
ungauged basin on the basis of a number of basins descriptors.
These relationships, defined by means of linear regressions, are
built considering the whole descriptors domain, without using
any subregion or any limitation. Consequently, homogeneity tests
are no longer necessary, because the flood frequency curves are al-
lowed to change site by site.

We define YT as the vector containing the true values of the sta-
tistics of interest, in turn index-flood, coefficient of L-variation and
coefficient of L-skewness. Any transformation of these variables
can also be considered. The basic hypothesis is that YT can be de-
scribed through the linear relation:

YT ¼ Xbþ d ð13Þ

where the (N � p) matrix X contains p suitable descriptors relative
to N basins, b is the vector of regression coefficients and d is the vec-
tor of the residuals due to the incorrectness of the linear model
approximation, i.e. the model error. Moreover, in regional flood fre-
quency analysis applications, the true statistics YT are not known,
and should be replaced by their sample estimators in the whole cal-
ibration phase:

Y ¼ YT þ g ð14Þ

where g represents the vector of the sampling errors, built up by
considering the relations (9)–(11).

Combining Eqs. (13) and (14), the regression model becomes:

Y ¼ Xbþ e ð15Þ

where e = d + g is the vector of the residuals that contains both the
model and the sampling errors.

The simplest method to estimate the regression coefficients is
based on the ordinary least squares (OLS) procedure, that, how-
ever, is usually not appropriate in hydrological analyses. In fact,
due to the presence of records of different length and of cross-cor-
relation among different records (e.g. Stedinger and Tasker, 1985),
the requirements of homoscedasticity and independence of the
residuals are often violated. To deal with these limitations, the
weighted and the generalized least squares (WLS and GLS respec-
tively) methods have been developed, which require the definition
of the covariance matrix of the observations (Montgomery et al.,
2001).

In a GLS framework, the vector containing unbiased estimators
b̂ of the regression coefficients b can be computed as (Montgomery
et al., 2001)

b̂ ¼ XTK�1X
� ��1

XTK�1Y; ð16Þ

where K is the sampling covariance matrix of the at-site estimators
Y. In particular, the ordinary least squares (OLS) are the special case
in which K is the identity matrix, whereas the weighted least
squares (WLS) involve a generic diagonal matrix (the diagonal ele-
ments of K are the sample variances of each at site estimator). K
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has positive values also out of diagonal in the GLS case, i.e. when
cross-correlations between sample estimates cannot be neglected.

If one considers a non-exact model (Stedinger and Tasker, 1985;
Griffis and Stedinger, 2007), i.e. the model as an approximation of a
real unknown functional relation, the variance term relative to the
model error also has to be accounted for. In this case, the covari-
ance matrix K is computed by Stedinger and Tasker (1985) com-
bining two terms: the (unknown) model variance and the
(estimable) sample variance. The method used in this work is
based on this approach, where the two uncertainty components
are separated and the model variance is also used as a quality in-
dex. Note that in the literature the terms WLS and GLS usually refer
to covariance matrices containing only the sample variance; then,
to avoid misunderstandings due to the notation, here we will refer
to this approach as iGLS (or iWLS), where the ‘‘i’’ stands for ‘‘itera-
tive’’, since Eq. (18) requires an iterative solution. In this case K is
approximated by its estimator, defined asbKðr2

dÞ ¼ r2
d IN þ bR ð17Þ

where bR is the sample covariance matrix of Y, IN is the identity ma-
trix and r2

d is the model error variance. The regression coefficients b̂,
computed with Eq. (16), and r2

d are (jointly) estimated (Griffis and
Stedinger, 2007) searching for nonnegative solution to the equation

Y � Xb̂
� �T

r̂2
d IN þ bRh i�1

Y � Xb̂
� �

¼ N � p ð18Þ

where r̂2
d is the estimate of r2

d ; N is the number of catchments and
p is the number of independent variables used in the regression
(including the intercept).

In the paper by Stedinger and Tasker (1985) and related works,
a complete covariance matrix bR is used, that includes covariances
in the off-diagonal elements. In our study, the basins are assumed
to be independent of each other, because of the high climatic het-
erogeneity of the area: thus bR reduces to a diagonal matrix con-
taining the sample variance of the ith at site estimate of Qind, LCV

and LCA as the ith diagonal element. Strictly speaking, our model
therefore follows an iWLS approach.

2.3. Regression model selection

In regional analyses a great number of physical descriptors at
the basin scale can be used nowadays, thanks to the availability
of accurate digital terrain models and remotely sensed data. De-
spite this, it is necessary to define a suitable subset of descriptors
to be used in the regression, in order to obtain a robust model. Each
model should be tested for significance and against multicollinear-
ity before application (Montgomery et al., 2001). The statistical sig-
nificance of the descriptors used in the model is tested through
standard Student t-test, applied to each estimated regression coef-
ficient b̂j. The null hypothesis H0:bj = 0 is tested using the statistic

t0 ¼
b̂jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðb̂jÞ
q ð19Þ

(e.g. Montgomery et al., 2001) where the variance of the regression
coefficient is taken from the diagonal of the sampling covariance
matrix ðXT bKXÞ�1 (Reis et al., 2005).

The t0 statistic is compared against its limit value and the null
hypothesis is rejected, i.e. the coefficient is considered significantly
different from zero, if jt0j > ta/2,n�p, where t is the quantile of the
(two-tailed) Student distribution with a confidence level a and
n � p degrees of freedom.

The regression is also checked against multicollinearity, in order
to avoid to select descriptors that are mutually near-linearly re-
lated, that would lead to misleading results. The test used for this
purpose is the variance inflation factor (VIF) test (e.g. Montgomery
et al., 2001) with a limit value of 5, that is commonly accepted as
an indicator of absence of multicollinearity. The VIF value is calcu-
lated for each descriptor j of a selected model as VIFj ¼ ð1� R2

j Þ
�1,

where R2
j is the coefficient of determination obtained when the

vector of values of the j-th descriptor is regressed on the remaining
p � 1 descriptors. The test is passed if all the VIF values are lower
than the selected limit.

The models passing the t-Student and VIF tests are retained and
the model choice within this subset is based on the analysis of the
regression residuals: models with the lowest model variance are
favored. After the choice of the most appropriate model, we use
this model to calculate the predicted value of the variable of inter-
est (Qind, LCV and LCA) in an ungauged basin. Hence forward we will
use the ‘‘^’’ symbol to refer to the value predicted by the regres-
sion, while the symbol without any mark will denote the sample
estimate. One therefore has

bY ¼ xb̂; ð20Þ

where x is the row-vector of descriptors relative to the ungauged
basin and b̂ the regional regression coefficients vector (Eq. (16));
the variance of bY is (Reis et al., 2005)

r2bY ¼ r̂2
d þ x XT bK�1X

� ��1
xT ; ð21Þ

with X taken from the calibration dataset and bK from Eq. (17).
The method proposed here allows one to easily estimate the

variance of the regional Qind, LCV and LCA estimators. This is a rele-
vant advantage over standard regional methods, also because it al-
lows one to decide, in gauged stations, whether to use regional or
sample estimators. In fact, in these cases, it is possible to compute
both the sample (at-site) and the regional estimators and then
choose the one with the lowest variance. To this end, the standard
deviation of the sample estimates, computed on the available data
through Eqs. (9), (10) or (11), is compared to the standard devia-
tion of the corresponding estimates obtained by the regional model
by means of Eq. (21).
3. Selection of the probability distribution

The final aim of a regional procedure is to estimate the flood
quantile and its uncertainty for a specific return period at an unga-
uged site. So far, however, the procedure focused only on model-
ling Qind, LCV and LCA leaving aside the problem of the selection of
the distribution. The necessity of defining a probability distribution
function introduces an additional source of uncertainty, due to the
inherent ambiguity in this choice at the regional scale, particularly
when one deals with short samples. Indeed, for low return periods
there is more than one distribution that fits well the data, and the
selection of a suitable distribution for the regional model is not
trivial (Laio et al., 2009). A reasonable solution to this problem,
when there are no prior knowledge about a suitable distribution
to use, is to define the quantile for a specific return period follow-
ing a model-averaging approach.

The model averaging approach follows the idea that more than
one distribution may be suitable for the quantile estimation. In-
stead of choosing only one distribution (among those that behave
well in the fitting range), it is suggested to evaluate many of them
and to take their average for each quantile. The different distribu-
tions will share the same three lower-order L-moments, but of
course the quantile estimators will be different due to the different
shape of the distributions.

After the computation of the frequency curve, the uncertainty of
the quantile estimates is also assessed. Since regional L-moments
are estimated with their variance, we can use a Monte Carlo simu-
lation to define the confidence limits of the frequency curve



Fig. 1. Geographical location of the gauging stations used for the calibration and
validation of the model. The area is located in northwestern Italy, the names of the
stations are found in Claps et al. (2008, p.56).
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adopted. The method is summarized as follow: (i) for each basin
the regional Qind, LCV and LCV are computed as well as their vari-
ances; (ii) a set of fictitious values of Q 0ind; L0CV and L0CV is randomly
extracted from the specific distribution of each L-moment; (iii) the
parameters of any selected distribution are computed on the basis
of the L-moments sampled in (ii), and the quantile is estimated for
the required return period; (iv) points (ii) and (iii) are repeated for
a great number of times, so that the distribution of the quantile can
be empirically estimated; (v) confidence bands are defined based
on the quantile distribution built in point (iv).

Note that, when dealing with regional estimates, Qind, LCV and
LCV are assumed to be independent, so that one can consider three
univariate distributions. For the index-flood a lognormal distribu-

tion Q 0ind � logN bQ ind;r2bQ ind

� �
is appropriate when the regionalized

variable is logQind instead of Qind, as in our case study (see Section

4.2 for details); while two independent normal distributions are

used for L-moments ratios: L0CV � N bLCV ;r2cLCV

� �
and L0CA � NbLCA;r2cLCA

� �
. The normality (or log-normality) of bLCV and bLCA (or

Qind) distributions results from normality of residuals of the linear

(or multiplicative) regression.
Differently, the uncertainty of a quantile estimation based on

sample data depends on the mutually correlated LCV and LCA (Eq.
(12)). Therefore, the index-flood is sampled from a normal distri-
bution Q 0ind � NðQ ind; r2

QindÞ while the L-moments ratios are jointly
extracted from a multinormal distribution
ðL0CV ; L

0
CAÞ � NðLCV ; r2

LCV ; LCA;r2
LCA;qÞ. Normality or joint normality

of the average and L-moments estimators is asymptotically ob-
tained, with a rather fast convergence for small sample sizes (Hos-
king and Wallis, 1997).
4. Case study

4.1. Data availability

The methods described above are applied to a set of 70 catch-
ments located in the North-Western part of Italy (see Fig. 1, which
refers to the database used in Claps et al. (2008, p. 56)). The anal-
ysis is carried out on basins belonging mainly to mountainous
areas, with area ranging between 22 and 3320 km2 and mean ele-
vation from 471 to 2719 m a.s.l. To reduce any effect of upstream
lakes and/or reservoirs, we discarded basins whose catchment area
is covered by lakes in a percentage beyond 10%. The investigated
region presents basins subjected to various climate regimes, from
purely nivo-glacial to almost temperate-mediterranean.

The first step in the model building is the analysis of available
data of annual streamflow maxima, increased, in some cases, by
including non-systematic information about large floods occurred
in the area. Occasional values are retrieved from reports issued
by the national or regional environment agencies and refer to
unusually intense events occurred when no systematic measure-
ments were available. The method for inclusion of occasional infor-
mation allowed us to extend the time series length of 18 basins
using a total of 36 non-systematic measurements. The equivalent
time series are, on average, 20 years longer than those without
non-systematic information.

After the data checking, the sample index-flow, LCV and LCA coef-
ficients and their standard deviations are computed using the
equations in Section 2.1. A short summary of the sample coeffi-
cients is shown in Fig. 2 (panel (a) for the index-flood and panel
(b) for LCV and LCA), where the filled circles highlight the values re-
lated to the stations presenting non-systematic information.

A set of 40 basins descriptors (a detailed description can be
found in Claps et al. (2008, p.65)) has been built for the group of
catchments involved in this analysis, using geomorphologic and
climatic characteristics available in the CUBIST database (CUBIST
Team, 2007), with procedures developed in the CUBIST project
(www.cubist.polito.it). The digital terrain model used for the calcu-
lation (about 90 m cell grid) comes from the Shuttle Radar Topog-
raphy Mission (SRTM) of the NASA and it is freely available (see
http://www2.jpl.nasa.gov/srtm/index.html).
4.2. Regional model definition

The model structure adopted in this work for regional estima-
tion of Qind, LCV and LCA is linear, and parameters are determined
with an improved least squares procedure, as discussed in detail
in Section 2. Although this model has an additive structure (see
Eq. (13)), in hydrology it is common to use also multiplicative
models (Griffis and Stedinger, 2007, among others) in the form

Y ¼ a1Xa2
2 Xa3

3 . . . Xap
p e ð22Þ

that can be reduced to the linear additive form by means of a log-
transformation of both sides of the equation.

We examine additive and multiplicative model structures for
each of the cited statistics; details on the descriptors involved
and on the transformations applied are summarized in Table 1.
In particular, concerning the index-flood, two additive and two
multiplicative models are considered, with the dependent variable
equal either to Qind or to Qind/A, where A is the catchment area.
These models will be referred as Qind, QindA, lnQind and lnQindA,
respectively. The regional model for LCV is still based on an additive
model (named LCV) and a multiplicative one (lnLCV), while the LCA

is reproduced through an additive model only (LCA). A direct appli-
cation of the multiplicative model to LCA is not possible due to the

http://www.cubist.polito.it
http://www2.jpl.nasa.gov/srtm/index.html
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Fig. 2. Summary of sample estimates for the 70 basins located in Northwestern
Italy. Panel (a) shows the index-flood values related to the correspondent basin
area, while panel (b) reports sample LCV versus LCA. Panel (c) reports the diagnostic
plot of Hosking and Wallis (1997) in which sample LCA- Lkur pairs are compared to
those of some probability distributions: Gamma (GAM), generalized extreme value
(GEV), lognormal (LN3), Gumbel (G), generalized logistic (GL) and generalized
Pareto (GP). For all the panels, filled circles indicates the basins where non-
systematic information have been included in the analysis.

Table 1
Different model structures used in the analysis. The last column provides the matrix of inde
matrix Xd in which each column is a different descriptor and each row a different catchm
intercept coefficient in Eq. (15).

Model denomination Original variable Transforma

Qind Qind none
QindA Qind Qind/A
lnQind Qind log (Qind)
lnQindA Qind log (Qind/A)
LCV LCV none
lnLCV LCV log (LCV)
LCA LCA none
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non-positiveness of the variable, that is incompatible with a loga-
rithmic transformation.

The best models to be used for the regional estimation are iden-
tified among all the possible combinations of a number of descrip-
tors ranging from 1 to 4, plus the intercept. The limit of four
descriptors is mainly due to the computational efforts required in
exploring all the descriptors combinations (�102,000 combina-
tions with 40 descriptors). Moreover, additional tests showed that
using more than four descriptors does not consistently improve the
efficiency and the robustness of the final estimates.

All of the above combinations of models are then tested for sig-
nificance and multicollinearity, and the ones passing the Student
and the VIF tests are ranked on the basis of their model variance
ðr̂2

dÞ. Models that emerge as the most efficient are finally checked
in order to verify the basic regression hypotheses (see diagnostic
plots in Figs. 3–5). Finally, the best model for each independent
variable is selected, as reported in Table 2.

When the dependent variable of interest is log-transformed,
Eqs. (20) and (21) yield estimates that are not directly usable and
need to be back-transformed to their original space. In this case,
if the regression residuals are normally distributed, bY is also nor-
mally distributed, and its back-transformation leads to a lognormal
variable. Therefore, we evaluate the mean of the estimate as

l ¼ exp lbY þ 1
2
r2bY

� �
ð23Þ

with lbY equal to bY , estimated with the regression in the logarithmic
space (Eq. (20)), and r2bY coming from Eq. (21). The variance of the
estimate is obtained as

r2
l ¼ l2 � expðr2bY Þ � 1

h i
: ð24Þ

This back-transformation can be important to avoid estimation bias
(e.g. Seber and Wild, 1989 2.8.7), although very often the simple
exponential transformation

l0 ¼ expðbY Þ: ð25Þ

is used to reconstruct the variable in its original space.

4.3. Regression results

Solutions obtained after sorting the models are reported in Ta-
ble 2, together with a short summary of the prediction errors, i.e.
the root mean squared error

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

s¼1

ðbY s � YsÞ2
vuut ; ð26Þ

the mean absolute error

MAE ¼ 1
N

XN

s¼1

jbY s � Ysj; ð27Þ

and the Nash–Sutcliffe efficiency
pendent variables X to be used in the linear regression, that depends on the descriptors
ent. The symbol 1 indicates an unitary column vector introduced to account for the

tion Sample standard deviation Descriptors

from Eq. (9) X = [1,Xd]
rQind

=A X = [1,Xd]
rQind

=Qind X = [1, logXd]
rQind

=Qind X = [1, logXd]
from Eq. (10) X = [1,Xd]
rLCV =LCV X = [1, logXd]
from Eq. (11) X = [1,Xd]



10 20 50 200 500 2000

10
20

50
20

0
50

0
20

00

Qind

Q
in

d 
es

tim
at

ed

Sample length
n < 40
n ≥ 40

(a)

0 500 1000 1500 2000 2500

0
50

0
10

00
15

00
20

00
25

00

Qind

Q
in

d 
es

tim
at

ed

from eq. (26)
from eq. (28)

(b)

−2 −1 0 1 2

−1
.0

−0
.5

0.
0

0.
5

Regression residuals theoretical quantiles

R
eg

re
ss

io
n 

re
si

du
al

s 
qu

an
til

es

(c)

2 3 4 5 6 7

−1
.0

−0
.5

0.
0

0.
5

Estimated ln(Qind)

R
eg

re
ss

io
n 

re
si

du
al

s

(d)

Fig. 3. Diagnostic diagram for index-flood estimation, model lnQind. Panel (a) reports the results in the log-transformed space. Panel (b) shows the comparison between
sample and estimated values in the original index-flow space. Empty and filled circles differ for the back-transformation used. Panel (c) and (d) report the check plots for
residual normality and homoschedasticity.
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NS ¼ 1�
PN

s¼1ðYs � bY sÞ2PN
s¼1 Ys � 1

N

PN
s¼1Ys

� � ; ð28Þ

computed after a cross-validation procedure (Table 4), where N is
the total number of the gauged stations. Cross-validation is a proce-
dure to validate models and can be easily implemented as follow:
(i) one station, in turn, is removed from the database; (ii) the model
coefficients are re-calibrated on the basis of the remaining data; (iii)
the variable of interest is reconstructed in the site removed and (iv)
the residual is computed by comparing the estimate with the sam-
ple value.

The model selected for Qind leads to a rather efficient estimation
of the variable. Among the possible transformations (linear or log-
transformed; normalized or not by the catchment area), our anal-
ysis showed that the most suitable model is lnQind. The selected
best model with four descriptors include: the catchment area A,
the mean annual precipitation (MAP), a permeability index cf and
the coefficient a of the IDF curve (Intensity-Duration curve of the
average of maximum annual rainfall, as expressed in the form
h = adn, with h as the cumulative precipitation for a duration d,
and a and n as catchment-averaged regression parameters). This
model passes the Student test with a level of significance of 1%
and the VIF test with a limit value of 5. Fig. 3 shows the regression
diagnostic plots, demonstrating the good qualities of the model.

The regional model of LCV is investigated through an additive
structure as well as a multiplicative one. These approaches are
respectively referred to as LCV and lnLCV. Regarding LCV, only a
few models pass the Student test with a 1% confidence level.
Therefore the 2% level is also considered, that correspond to a
greater probability of rejecting the null hypothesis that the regres-
sion coefficient is equal to zero. The first-ranked model (see Tables
2 and 4) has four descriptors: the mean elevation (H), the length of
the longest drainage path (LLDP), the length of the vector linking
the centroid to the basin outlet (LOV) and the coefficient n of the
IDF curve already introduced for the lnQind model. Diagnostic
plots for this latter models are shown in Fig. 4.

From observation of Fig. 4 (panel (a)), where the regional pre-
diction are compared against the sample values, we note that the
model is not able to catch the whole sample variability. This behav-
ior can be traced back to two main factors: (i) intrinsic limitations
of the multiple (linear) regression approach based on a set of sim-
ple descriptors (reality is certainly more complex than this); (ii)
uncertainty affecting sample estimates used for model calibration,
especially when they are estimated on short samples. An intuitive
representation of (ii) can be seen in Fig. 4 panel (a), looking at
empty and filled circles, as a function of the sample length: it is
apparent that the model is rather efficient at describing the LCV

of larger samples, while the large sample variability of LCV in small
samples decreases the quality of estimation for small samples.

The last statistic needed for flood regionalization is the coeffi-
cient of L-skewness (LCA), that is investigated using only the addi-
tive model. The best model we obtain is characterized by three
descriptors: longitude and latitude (Xs and Ys) and the LCV estimate
obtained from the previous step. The results are shown in greater
detail in Fig. 5; in this case, similar considerations apply as those
already discussed for the LCV.
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Fig. 4. Diagnostic plots for LCV estimation, model LCV. Panel (a) shows the
comparison between regional and sample estimates. Panel (b) reports the normal-
plot of the residuals.
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Fig. 5. Diagnostic plots for LCA estimation, model LCA. Panel (a) shows the
comparison between regional and sample estimates, highlighting the effect of
sample length by different circles size. Panel (b) reports the normalplot of the
residuals.
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4.4. Estimation of quantiles

As already mentioned in Section 3, the final aim of the proce-
dure is the estimation of the flood quantiles corresponding to as-
signed return periods (with uncertainty). Our work applies
regional regression models to distribution-free statistics to avoid
certain arbitrary constraints induced by the preliminary choice of
a distribution probability.

In this section, we discuss about: (i) the estimation of a flood
quantiles by means of the model averaging approach and (ii) the
assessment of the quantile estimates uncertainty by means of
Monte Carlo simulations. To address the first point, we evaluated
six different distributions commonly used in hydrology, fitting
each of them to the sample data relative to each of the 70 basins
under analysis. The distributions considered are: the Pearson type
Table 2
Regional models for the estimation of Qind, LCV and LCA. For a sh

Model Equation

lnQind log bQ ind ¼ �8:76þ 7:99� 10�1 log Aþ
LCV bLCV ¼ 1:58� 10�1 � 9:79� 10�5H � 3
LCA bLCA ¼ 3:92� 6:16� 10�7Xs � 6:94� 1
III or Gamma (GAM), the generalized extreme value (GEV), the
three-parameters lognormal (LN3), the Gumbel (G), the general-
ized logistic (GL) and the generalized Pareto (GP) (see Claps and
Laio (2008, p. 265) for the adopted parameterization). The fre-
quency curves fitted on the sample data can be plotted together
with the sample data. For this purpose, we assign a non-exceed-
ance probability to each sample value by means of a plotting posi-
tion. In this work we use the Hazen plotting position as defined by
Hirsch (1987) to include the non-systematic information.

An example is shown in Fig. 6 for the river Chisone at S. Martino.
This example shows that all the distributions have a similar behav-
ior up to a 100-years return period, except for the Gumbel, that is a
less flexible distribution, having only two parameters. A similar
ort description of the independent variables see Table 3.

1:09 log aþ 9:53� 10�1 log MAP þ 7:85� 10�1 log cf

:19� 10�3LLDP þ 9:67� 10�3LOV þ 6:07� 10�1n

0�7Ys þ 3:59� 10�1bLCV



Table 3
Descriptors involved in the regional models of Table 2. More details in Claps et al.
(2008, p. 66).

A Catchment area
H Mean catchment elevation
LLDP Length of the longest drainage path
LOV Length of orientation vector
Xs, Ys Basin outlet coordinates
cf Permeability index
MAP Mean Annual Precipitation
a, n Coefficients of the precipitation IDF curve in the form h = adnbLCV

Estimated LCV

Table 4
Summary statistics for the selected models, computed in cross-validation mode.

Model r2
d

rd NS RMSE MAE

lnQind 0.1153 0.340 0.89 101.2 60.1
LCV 0.0054 0.074 0.05 0.105 0.08
LCA 0.0085 0.092 0.09 0.165 0.14
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Fig. 6. Example of sample flood data for the river Chisone at S. Martino and
superposition of different theoretical frequency distributions. The thicker line is
obtained by averaging the theoretical curves. Black dots represents empirical data,
circled ones correspond to non-systematic events.
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Fig. 7. Example of quantiles confidence bands for the river Chisone at S. Martino
obtained with a Monte Carlo simulation. Panel (a) reports the bands when the three
L-moments are all obtained from sample data; while the curve in panel (b) is based
only on a set of regional L-moments obtained after cross-validation.
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behavior is obtained for most of the basins (see Claps and Laio,
2008, p. 285). The Gumbel distribution is reported only for com-
parison in these graphs, but is not considered in the model-averag-
ing procedure, because it has only two parameters. It is rather clear
that all other models are almost equally suitable to represent the
sample data; as a consequence we propose to take their average
as the frequency curve to consider for quantile estimation (thicker
line in Fig. 6).

For the assessment of the uncertainty of the quantile estimates
we use the Monte Carlo procedure described in Section 3. An
example of the obtained results is in Fig. 7 (see Claps and Laio
(2008, p. 190) for a complete report).

4.5. L-moments estimation in data-scarce stations

Strictly speaking, an ungauged catchment has no data records;
thus one needs to use regional models to obtain the estimates of
all the three L-moments under consideration. However, if only
few measurements are available, it is sometimes possible to esti-
mate at least the lower-order L-moments from the sample with
an acceptable degree of robustness. The choice between the regio-
nal and the sample estimation method depends on the variance of
the corresponding estimators.

An example is shown in Fig. 8, where a simple tool to decide if it
is more reliable a sample L-moment rather than a regional one is
reported. Each panel of Fig. 8 represents the sample standard devi-
ation of each L-moment as a function of a sample coefficient
(abscissa) and the record length (ordinate). The thicker iso-lines
correspond the average standard deviation of the model predic-
tions, and represent the limits that divide the area where is more
suitable the sample estimator to the area where the regional one
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Fig. 8. Comparison between regional and sample standard deviations for the index-
flood (panel a), LCV (panel b) and LCA (panel c). In each panel the thinner iso-lines
represent the standard deviation of sample estimators (in abscissa, based on the
sample of rQ, LCV and LCV respectively) and sample lengths n (in ordinate). Thicker
line represents the average of the regional standard deviation obtained in the case
study, and separate the area of the plot in which the (mean) regional variance is
lower than the sample one. For basins falling in the shaded area it is suggested to
used the sample estimate instead of the regional one and viceversa.
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is preferable. When a sample is available, one can enter in the plots
and check if the point falls in the shaded area (sample standard
deviation lower that the regional one): in this case it is suggested
to use the sample estimate. Circles reported in Fig. 8 represent
the calibration set and put in evidence as, increasing the L-moment
order, the regional approaches become more reliable for short re-
cords, due to increased variance of sample L-moments estimators
with increasing L-moment order. For instance, the Ayasse basin
at Champorcher (which have a 29-years record, rQ = 9.9,
LCV = 0.266 and LCA = 0.274), has a sample rQind

equal to 1.8 and a
sample rLCV equal to 0.05, which implies that the corresponding
point falls in the gray area in Fig. 8a and b, i.e.for both Qind and
LCV it is preferable to use the sample estimates. Instead, the sample
rLCA

, equal to 0.19, falls in the white area in Fig. 8c, i.e. the regional
LCA is more appropriate, because the (averaged) regional standard
deviation is 0.094.

In the light of the results of Fig. 8, one could take advantage of
the regional model to improve the local estimation of the flood fre-
quency curve, replacing sample L-moments with regionally-esti-
mated values whenever the regional estimates have smaller
variance. For the present case study, this applies to about 30% of
the LCV and about 80% of the LCA values.
5. Conclusions

The approach to the regional flood frequency analysis proposed
in this work aims at overcoming some limitations of the classical
methods based on (pooling) regions. Although some features of
our model already appeared in the scientific literature, the overall
conceptual framework is novel and useful for facilitating flood fre-
quency analysis where non-systematic or limited measurement
are available.

The method does not require to build up an at-site probability
distribution. The sample record is characterized by its L-moments,
that are used as the statistics necessary to reconstruct the complete
flood frequency curve, and that become the statistics to be regional-
ized. The use of regression models against a set of basins descriptors
allows the predicted L-moments to vary smoothly over the whole
descriptors domain, without any subdivision in sub-regions.

Although for higher-order L-moments a unique linear regres-
sion is still not able to completely describe the sample variability,
this is a step forward with respect to other approaches (for exam-
ple the ‘‘hierarchical’’ models) in which the higher-order moments
or L-moments are typically kept constant over large regions. By
avoiding the subjectivity of procedures that create regions and
estimate their homogeneity the model provides a ‘‘global’’ optimi-
zation rather than a ‘‘local’’ one.

The representation of sample data by L-moments avoids to force
the user to accept possible bad fittings related to the preemptive
choice of a probability distribution, and allows one to preserve
information contained in short samples, that otherwise would be
discarded. In the present work, eight stations out of 70 have less
than 20 data, and would probably be discarded in a traditional ap-
proach. Even though the importance of these short samples in the
whole data set is low for the higher-order L-moments, due to their
high variance, their preservation is important for ‘‘local’’ estima-
tion. In fact, our approach allows one to combine sample and regio-
nal predictions for the estimation of on-site frequency curve.

A final remark can be devoted to the inclusion of non
-systematic measurements in flood time series. In literature, non-
systematic data are commonly referred to historical flood, occurred
before the beginning of the measurement period. However, in the
Italian context, we often found time series with large gaps and
with some large events measured during this ‘‘ungauged’’ period.
In our procedure, these information can be interpreted as non-sys-
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tematic data and can be used as valuable additional
measurements.
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