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Abstract

The knowledge of the hydrological behavior of a river is a valuable informa-

tion useful for many purposes: from the regulation of water resources use

to the management of extreme events and for many environmental issues.

The primary sources of this kind of information are the streamflow mea-

surements, that are, however, available only at a limited number of gauging

stations. Despite this, nowadays, it is necessary to quantitatively extend the

hydrological information to many other locations, or even to the entire river

network.

This work analyzes, improves and defines statistical techniques that allow

one to use the information available only at few locations, to obtain suitable

estimates of hydrological variables in ungauged sites. To this aim, some lim-

itations of previously available models are overcome and new analysis tools

are developed. The main topics discussed in this work are: the information

retrieval from poorly-gauged sites, the analysis of uncertainty of the regional

estimates, the improvement of results by means of proximity information

and the use of non-conventional data that cannot be represented by simple

observations.

The proposed methodologies are applied to the flood frequency curve and

the flow duration curve, in order to assess respectively the extreme and the

average catchment behavior. The models are tested on the basis of differ-

ent sets of measurements available for Northwestern Italy and Switzerland,

demonstrating the applicability and reliability of the proposed methods.
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Chapter 1.

Scope of the work: statistical
hydrology in ungauged basins

Hydrology deals with the water cycle, and the water cycle profoundly affects

all the aspects of the life on Earth. The necessity of a better knowledge

and understanding of the hydrological mechanisms is not only a scientific

pursuit, but also a need for a correct management of water resources.

Undoubtedly, the water cycle is hard to understand, primarily because it

involves a great variety of physical processes and also because these processes

take place on a great range of scales, both from the spatial and the temporal

viewpoint. Far from a complete understanding and coupling of the elemen-

tary components of the water cycle, hydrological issues are usually referred

to different macro-areas of expertise. Under this broad context, this thesis

can be considered a contribution to the field of “catchment hydrology” [Uh-

lenbrook, 2006] that deals with all the components of the terrestrial water

cycles that interact over the basin domain. Basins, in fact, can be consid-

ered as fundamental landscape units [Sivapalan et al., 2003] that integrate

the hydrological cycle with geochemical, ecologic, morphological and other

processes. All these processes are strictly related to the fluxes through the

basin boundaries and, in particular, from and toward the atmosphere and

groundwater. Despite this, one of the major elements of interest lies in the

water flux through the basin outlet, i.e. the streamflow or runoff, due to the

importance that this variable has in many practical applications. Streamflow
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2 Scope of the work: statistical hydrology in ungauged basins

is often also an easily interpretable index that summarizes, in some way, all

the catchment processes.

A basin is a complex system whose behavior can be studied through macro-

characteristics that are, for instance, the magnitude, frequency and duration

of a particular type of event. These macro-characteristics can be handled by

means of statistical procedures, that try to interpret hydrological patterns

without resorting to the description of the physical processes. This is the case

of this thesis in which extreme and mean runoff are investigated respectively

through the flood frequency curve and the flow duration curve. The former

allows one to define the probability to have a flood equal or greater than a

predefined threshold, while the second summarize the time during which a

certain discharge is available.

The hydrological behavior of a basin has all along held a fundamental

role in the organization of human societies. An early well known example

is the strong relationship between the Egyptian civilization and the river

Nile that is documented, for instance, on the North side of the Karnak tem-

ple complex [Lauro, 2009, see also figure 1.1] where hieroglyphics represent

propitiatory values of flood level in different location along the river [Lacau

and Chevrier, 1956]. This relationship has become much more important

in the last decades: the increasing exploitation of water resources, as well

as changes in land use and urbanization, highlighted the need for a quan-

titative and reliable characterization of the surface water flows, in order to

correctly manage this resource. Problems arise because of different types of

users with conflicting necessities (e.g. agricolture, industry, energy plants,

etc) that compete for water exploitation. Moreover, the increased attention

to environmental problems related to water quantity and quality claims for

practical management tools. In addition to the problem of protection of

water, it is also important to protect communities and goods from water ex-

treme events, in particular extreme floods and droughts. As a consequence,

nowadays we need quantitative and extended information about several hy-
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Figure 1.1.: Particular of the North side of the Karnak temple complex (Courtesy
of Mario Lauro - www.cartigli.it)

drological variables to cope with these pressing necessities.

The more straightforward way to analyze the catchment behavior is to

study its streamflow time series and, eventually, other related variables, like

precipitation, soil characteristics, vegetation, etc. However, this approach

requires the discharge time series to be known at the site of interest. When

a direct river flow monitoring is not available or collected data are not ad-

equate for the analysis, the basin is referred to as ungauged, and indirect

methods are required to study its hydrological characteristics. An example of

application of an indirect procedure is reported in figure 1.2. The map shows

the Dora Baltea river basin at Tavagnasco, that is one of the largest basins

analized in this thesis, with some gauging stations present on the catchment.

The map is an example of how the hydrological-information available only

at some locations should be extended to the whole drainage network.

Indirect procedures are based on the concept of information transfer from

gauged to ungauged basins, that has been summarized by the principle “sub-

stitute time for space” proposed by the US National Research Council [1988]

for hydro-meteorological modelling. This principle underlines the idea of

compensating the lack of time serie records by using the data relative to
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4 Scope of the work: statistical hydrology in ungauged basins

other sites. This topic is particularly important in the area of catchment hy-

drology, and a demonstration to this is the decennial Prediction in Ungauged

Basins (PUB) initiative [Sivapalan et al., 2003].

This thesis focuses on several points of interest for PUB, among which:

• the improvement and generalization of current procedures, with par-

ticular attention to data-scarce stations, that represent cases that are

usually discarded by classic approaches;

• the analysis of uncertainty of the predicted values;

• the correction of estimates yield by large-scale models by means of

local information;

• the use of non-conventional data and procedures to handle hydrological

information.

In particular, in chapter 2, the identification of a suitable flood frequency

curve in ungauged basins is analyzed. The study aims at implementing a

regional procedure that overcomes some of the limitations of the classic ap-

proaches and adds a clearer quantitative description of the uncertainty com-

ponents of the estimation. To do so, the at-site data are not used to estimate

local parameters of a stitistical distribution model, but the information in

the sample record is summarized by a set of robust sample statistics (the

L-moments), that become the variables to be regionalized. This leads to a

generalization of the widely used index-flood approach. The proposed ap-

proach allows one to eliminate the uncertainty related to the choice of the

distribution function, in particular when short samples are involved. As a

consequence short samples, that are usually discarded, can still be used to

contribute to the improvement of the consistency of the database. To transfer

the information to the ungauged basins, we adopt a separate regional model

for each of the L-moments considered, based on a comprehensive multiple

regression approach, selecting the independent variables among many geo-

morpholoclimatic catchment descriptors. Each regression model is calibrated
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Figure 1.2.: Map of the predicted flood flow (in m3/s) with return period of 100
years mapped over the river network upstream Tavagnasco on the river Dora
Baltea.

using non-standard least-squares techniques over the whole dataset, without

resorting to any grouping procedure to create sub-regions. The flood fre-

quency features related to each catchment are thus allowed to vary smoothly

from site to site, following the variation of the descriptors selected in the

regression models.

Regional models, however, do not preserve the information related to the

natural hierarchy between gauged stations deriving from their location along

the river network. This information is particularly important when one wants

to estimate runoff at a site located immediately upstream or downstream a

gauged station. In this case, a possible alternative is to estimate the variable

directly, on the basis of the corresponding statistics calculated at the gauged

station. The closest the estimation point is to the gauged station, the greater

is the expected quality of this estimation procedure. This idea is discussed

in chapter 3 where this procedure is defined as Along-Stream estimation
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6 Scope of the work: statistical hydrology in ungauged basins

method, to underline that it is applied to points along a stream network.

It requires to identify a suitable formula to compute the variable at the

ungauged site. This formula can be based on a set of basin characteristics,

or, in alternative, on a regional estimate (local estimation coupled with a

regional model). Then, a criterion to assess the reliability of the stream

model and its domain of application is defined and, finally, the accuracy of

the approach is evaluated through the assessment of the standard deviation

of its estimates. In this way it is possible to compare the variance of the

stream estimates against the variance of other models, if any, and thus to

choose the most accurate method (or to combine different estimates).

For cases in which the hydrological information to reconstruct is fairly

complex, such as for flow duration curves (FDC), a new regional model is

developed, as described in chapter 4. Although the method is still referred

to as “regional”, the basic approach is very different from that of chapter 2

because it aims at representing the FDC as a non-parametric object, rather

than providing a parametric representation and trying to relate the param-

eter values to basin descriptors. This approach considers the (dis)similarity

between all possible pairs of curves, and uses distance measures to quantify

the dissimilarity. The regional model uses this concept of dissimilarity to rec-

ognize similar catchments and thus to perform the prediction in ungauged

basins. The main characteristic of this approach is that it allows one to de-

scribe the variable of interest without recurring to an analytic function. This

can be very useful when variables of interest are particularly “complex” ob-

jects, for instance, images or spectra [e.g. Pekalska and Duin, 2005] or when

dealing with ecological data [e.g. Legendre and Legendre, 1998]. This is also

useful in those cases for which classic parameterizations are not satisfactory.

All the approaches developed in the thesis are tested on a group of catch-

ments located in the Northwestern Italy and in Switzerland.
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Chapter 2.

Regional approach for flood
quantile estimation in ungauged
and data-scarce basins

Contents
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . 7

2.2. Model definition . . . . . . . . . . . . . . . . . . . 11

2.2.1. At-site estimates: systematic and non-systematic
information . . . . . . . . . . . . . . . . . . . . . 11

2.2.2. Regression models . . . . . . . . . . . . . . . . . 15

2.2.3. Model selection . . . . . . . . . . . . . . . . . . . 18

2.3. Selection of the probability distribution . . . . . 20

2.4. Case study . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1. Data availability . . . . . . . . . . . . . . . . . . 23

2.4.2. Model definition . . . . . . . . . . . . . . . . . . 25

2.4.3. Regression results . . . . . . . . . . . . . . . . . 29

2.4.4. Quantile estimation . . . . . . . . . . . . . . . . 39

2.4.5. L-moments estimates in data-scarce stations . . . 41

2.5. Final remarks . . . . . . . . . . . . . . . . . . . . . 42

2.1. Introduction

The evaluation of the frequency of flood events in ungauged catchments

is usually approached by building suitable statistical relationships between

flood statistics and basins characteristics, based on a set of gauged stations.

These models are used to transfer the information available from the gauged
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Regional approach for flood quantile estimation in ungauged and

data-scarce basins

sites to the target basin, where only morphoclimatic catchment’s character-

istics need to be known. This type of procedure is referred to as regional

model, because it identifies a (homogeneous) subset of basins, called region,

that is used later as the pooling set for the estimation at the ungauged site.

In this case, the basins belonging to the region are supposed to donate their

statistical properties to the ungauged ones falling in the same region.

Different methods to achieve this goal have been proposed in the litera-

ture (see for example the review by Cunnane [1988]), differing to each other

mainly on the basis of the distribution used to describe the at-site data

[see e.g. Hosking and Wallis, 1997, for a bouquet of distributions], and on

the pooling criterion used for the delineation of regions. Several classifica-

tion techniques for regions creation have been adopted, from cluster analysis

to proximity pooling [Burn, 1990], hierarchical classification [Gabriele and

Arnell, 1991], neural network classifiers [Hall and Minns, 1999] and mixed

approaches [Merz and Bloschl, 2005], among others. The homogeneity of

such regions is also an important issue [Viglione et al., 2007, Castellarin

et al., 2008].

Classic statistical tools for the assessment of the flood frequency curve

in ungauged basins usually presents methodologies that limit the model to

further generalizations. In particular, (i) the subdivision of the domain of

interest in homogeneous regions, and (ii) the choice of an a priori probability

distribution to describe the sample data can be overcome through the model

proposed in this chapter. The method will still be referred to as regional,

although it relaxes the need for the definition of regions in the classical way;

rather, regional is intended as defining the hydrological information transfer

over mid-large scale areas.

Regarding the first point, the usual approach is to create bounded regions

that can have different characteristics depending on the method adopted. For

instance, regions can be created splitting in separated areas the geographi-

cal space or the space of the physiographic basin’s characteristics. Then, the
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regions can be defined by means of fixed boundaries (e.g. cluster analysis

procedures) of with a changing border as in the region-of-influence (ROI) ap-

proach. A few exceptions are the interpolation of the hydrological variable in

the descriptors space [Chokmani and Ouarda, 2004], the top-kriging [Skoien

et al., 2006] and the approach of Chebana and Ouarda [2008], who use a

weighting procedure that accounts for all the available data. No separated

regions are considered, but all the gauged basins contribute to the regional

estimation. This is possible thanks to a smooth surface, over the descriptors

space, that define the weight to assign to each gauged site.

The main limitation of the approaches that use a subdivision in separate

regions is the assessment of the uncertainty relative to the configuration

of the regions themselves (e.g. which catchments to include or not in a

particular region). In fact, since there is not any prior information about

the regions configuration, any algorithm used for regions delineation induces

some errors. Then, the regions are tested for their statistical homogeneity,

although, sometimes, slight heterogeneous regions are accepted. Also in

these cases the uncertainty component is difficult to assess.

In this work, we consider the dataset as a whole, without resorting to

a grouping procedure to form the regions. This idea has been already de-

veloped by Stedinger and Tasker [1985] and recently improved by Griffis

and Stedinger [2007] where the benefit of using this approach is underlined.

Again, with a unique region there is no longer the need for an homogeneity

test: statistical characteristics of the hydrological behavior can vary from

site to site and it is the model itself that tries to catch this variability.

Regarding the second point we mark another difference from former, as

well as more recent, works [Griffis and Stedinger, 2007, Ouarda et al., 2008,

among others]. In particular, our approach does not require, as an initial

stage, any hypothesis on the at-site frequency distribution that is used to

describe the data records and to estimate flood quantiles. In fact, regional

estimation of flood quantiles depends on the distribution used to fit the
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data-scarce basins

original sample, especially when dealing with short records, because many

different distributions can fit equally well the data for low return periods,

while they may behave in a different way when extrapolated to high return

periods.

Nevertheless, to transfer information from the gauged to the ungauged

sites, the time series data need to be summarized in some way. To this

purpose we use the L-moments and their dimensionless ratios as regional

variables; in particular we select the L-moment of order one (the mean)

and the coefficient of L-variation (LCV ) and the L-skewness (LCA) of the

record. After the regionalization of L-moments it is possible to reconstruct

the whole flood frequency curve. The choice of the mean, LCV and LCA

as hydrological signatures in a regional framework can be interpreted in

an index-flood framework [Dalrymple, 1960] considering the mean as the

scale factor and the L-moments ratios as the descriptors of the dimensionless

growth curve.

The use of mean, LCV and LCA instead of a quantile or the distribu-

tion parameters is particularly helpful, for both calibration and prediction

purposes, when catchments with short sample records are present in the

analysis. During the model calibration phase, in a traditional approach, a

short sample that can not be used to fit a distribution is discarded. In this

model, instead, the L-moments can be computed and used in the regional

procedure, even if the accuracy of their estimators is low (but known), avoid-

ing the information loss due to the data elimination. On the other hand, if

one is interested in the prediction in a poorly gauged site, it is possible to

compute, for instance, Qind and LCV directly on the sample record, leaving

to the regional procedure the assessment of LCA. From this point of view,

this approach extends the original index-flood method, in which Qind is often

estimated on the basis of few at-site measurements, while the growth curve

is treated by a regional model. In this way we are able to take advantage of

the few available data increasing the final accuracy of the estimate.
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To sum up, the model considers the L-moments and L-moments ratios,

afterward also referred to as distribution-free parameters, as the variables to

be regionalized, according to the definition given in section 2.2. The relation-

ships built to transfer the information to the ungauged sites are discussed in

section 2.2.2, while the definition of the distribution used for the final quan-

tile estimation is reported in section 2.3. Finally, a case study is presented

in section 2.4 with the definition of a regional model for the alpine basins

located in Northwestern Italy. Final remarks are in the conclusions section.

2.2. Model definition

2.2.1. At-site estimates: systematic and non-systematic
information

The first step in the procedure is to check the available data and use them

to calculate suitable statistical indicators at the gauged sites. Common sta-

tistical analyses require the record to be a set of n systematic measures over

a certain time span. Systematic measures are rearranged in increasing order

xS
(1) ≤ xS

(2) ≤ . . . ≤ xS
(n), (2.1)

where the subscript in round brackets indicates the sorted position.

Sometimes, however, systematic records of data can be integrated with

additional data, derived from measurements of significant occasional events.

This can be particularly useful when the original systematic record is short.

When an additional record of occasional measurements is available, it can

be merged with the systematic ones to improve the robustness of the final

estimates [e.g. Bayliss and Reed, 2001]. This is done producing a new time

series of equivalent “duration” m, that is the number of years between the

first and the last measurement of both the systematic and the occasional

record, merged together.
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The new set is used to calculate the probability weighted moments (PWMs),

as suggested by Wang [1990]: the merged sample is again arranged in in-

creasing order

x(1) ≤ x(2) ≤ . . . x(m−l+1) ≤ x(m−l+2) ≤ . . . ≤ x(m), (2.2)

where the l largest events, exceeding a threshold x0, are considered as a

censored sample, whose elements can be either systematic or an occasional

data.

When working with censored samples, the theoretical formula for the

PWM of order r of a random variable X with distribution function F (x) =

P (X ≤ x),

βr =
∫ 1

0

x(F )FdF, (2.3)

must be splitted in two components, called partial PWM or PPWM, [Wang,

1990],

βr =
∫ F0

0

x(F )FdF +
∫ 1

F0

x(F )FdF = β′′r + β′r (2.4)

where F0 = F (x0) is the non-exeedance probability relative to the censoring

threshold x0. The unbiased estimator of β′′r is then:

b′′r =
1
n

n∑

i=1

(i− 1)(i− 2) . . . (i− r)
(n− 1)(n− 2) . . . (n− r)

x′′(i) (2.5)

where x′′(i) is deducted from the sorted systematic sample as

x′′(i) =

{
xS

(i) if xS
(i) < x0,

0 if xS
(i) ≥ x0.
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On the other hand, the estimator of β′r is

b′r =
1
m

m∑

i=1

(i− 1)(i− 2) . . . (i− r)
(m− 1)(m− 2) . . . (m− r)

x′(i) (2.6)

where x′(i) is the above-threshold sample obtained from the complete merged

sample, i.e.

x′(i) =

{
0 if x(i) < x0,
x(i) if x(i) ≥ x0.

The unbiased estimator of βr is br = b′r + b′′r .

The censoring threshold represents the level above which all the extreme

flood of the non-systematic record are recorded, and can be assumed equal to

the smallest non-systematic measure [Bayliss and Reed, 2001] (with some ex-

ceptions discussed later in the case study). In the absence of non-systematic

information, the above formulas reduces to the usual definition of PWMs.

L-moments and the dimensionless L-moments ratios are then estimated

with the usual formulas [e.g. Hosking and Wallis, 1997] as linear combination

of PWMs. In this work the first variable of interest is the index-flood, that

reads:

Qind = b0 (2.7)

while LCV and LCA are computed as

LCV =
2b1 − b0

b0
, (2.8)

LCA =
6b2 − 6b1 + b0

2b1 − b0
. (2.9)

Also the coefficient of L-kurtosis will be useful onwards for the choice and

estimation of appropriate probability distributions, although it is not neces-
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sary in the regional model. Its definition is

Lkur =
20b3 − 30b2 + 12b1 − b0

2b1 − b0
. (2.10)

In addition, the estimates of sample L-moments are integrated with an es-

timate of their uncertainty, i.e. their variance. The sample variance is always

important in statistical analyses, but in this work it is also a key element

for the regression model adopted in the regionalization procedure. Elmir

and Seheult [2004] proposed a method for the computation of variances and

covariances of sample L-moments and ratios of sample L-moments; however,

their formulation appear to be inconsistent when applied to short samples,

producing in some cases negative estimates of the variance.

The standard deviation of the index-flood is defined, following the Bulletin

17B Appendix 6 [Interagency Advisory Committee on Water Data, 1982], as

σQind
=

√
1
n2

∑
xi<x0

(xi −Qind)2 +
1

m2

∑

xi≥x0

(xi −Qind)2 (2.11)

where Qind is calculated with equation (2.7). It is easy to see that, in

the absence of non-systematic data, equation (2.11) reduces to the usual

standard deviation of the mean σQind
= σQ/

√
n.

The quality of estimates of LCV and LCA is more difficult to assess. In the

present work, simplified formulas for the standard deviations of L-moments

ratios are deduced from Viglione [2007b] where expressions for the variance

are computed from many Monte Carlo simulations. These formulas are re-

spectively

σLCV
=

0.9 · LCV√
n

(2.12)
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and

σLCA
=

0.45 + 0.6 · |LCA|√
n

. (2.13)

Moreover, sample LCV and LCA are found to be correlated with cross-

correlation corresponding to

ρ =
1− exp(−5 · LCA)
1 + exp(−5 · LCA)

. (2.14)

Equations (2.12)-(2.14) are approximated and cannot be easily extended

to deal with occasional information. For this, we define σLCV
and σLCA

calculated only on the systematic sample.

2.2.2. Regression models

After the definition of the variables of interest at the gauged stations, a

model to transfer the information to the ungauged sites is needed. In this

work, the regional model is intended as a relation that allows one to estimate

the first three L-moments in an ungauged basin on the basis of a set of

basins descriptors. In the model the relationship, defined by means of a

linear regression, is smooth over the whole descriptors domain, without any

limitation due to the region boundaries. In this case an homogeneity test is

no longer necessary, because the flood frequency curve are allowed to change

site by site.

A basic element of the model is YT , the vector containing the true values

of the variable of interest, in turn index-flood, coefficient of L-variation and

coefficient of L-skewness, or any transformation of these variables. The basic

hypothesis is that it can be modelled through the linear relation

YT = X β + δ (2.15)
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where the (N×p) matrix X contains p suitable independent variables relative

to N basins and δ is the error due to the incorrectness of the linear model

approximation, i.e. the model error. Nevertheless, in regional frequency

analysis applications YT is not known, while one usually can calculate its

sample estimator

Y = YT + η (2.16)

which is affected by a sampling error η.

Combining equation (2.15) and (2.16), the regressive model reads

Y = Xβ + ε (2.17)

where ε is the vector of the residuals that contains both the model and the

sampling error.

The simplest method to compute the regression coefficients is the ordinary

least squares (OLS) procedure, that is usually not appropriate in hydrolog-

ical analyses. In fact, its residuals often violate the common assumption

of homoscedasticity and independence, and thus the regression coefficients

are no longer best linear unbiased estimators (BLUE). This is basically due

to the presence of records of different length and cross-correlated [e.g. Ste-

dinger and Tasker, 1985]. To deal with those problems, the weighted and the

generalized least squares (WLS and GLS respectively) methods have been

developed, although they require the definition of the covariance matrix of

the observations.

The regression coefficients β are unknown, but the vector containing their

unbiased estimators β̂ can be computed as

β̂ =
(
XT Λ−1X

)−1
XT Λ−1Y, (2.18)
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where Λ is the covariance matrix. In particular, the ordinary least squares

(OLS) are the special case in which Λ is the identity matrix, whereas the

weighted least squares (WLS) involve a generic diagonal matrix. In the case

of mutual covariances, Λ has non-null values also out of diagonal (GLS).

The covariance matrix is interpreted by Stedinger and Tasker [1985] as a

function of two terms: the prediction precision of the true model (model er-

ror variance) and the sampling error. The method used in this work is based

on this approach, where the two uncertainty components are separated and

the model error variance is used as a quality index. Note that, usually, the

solution for models referred to as WLS and GLS does not account for the

model error. If one considers a non-exact model [Stedinger and Tasker, 1985,

Griffis and Stedinger, 2007], i.e. the model as an approximation of a real un-

known functional relation, the GLS approach requires an iterative solution.

In such a situation, to avoid misunderstandings due to the notation, we will

refer to as iGLS (or iWLS), where the “i” stands for “iterative”. In this case

Λ is approximated by its estimator, defined as

Λ̂
(
σ2

δ

)
= σ2

δIN + Σ̂ (2.19)

where Σ̂ is the sample covariance matrix of the previously estimated Y, IN

is the identity matrix and σ2
δ is the model error variance. The regression co-

efficients β̂, computed with equation (2.18), and σ2
δ are (jointly) estimated

[Griffis and Stedinger, 2007] searching for nonnegative solution to the equa-

tion

(
Y −Xβ̂

)T [
σ̂2

δIN + Σ̂
]−1 (

Y −Xβ̂
)

= N − p (2.20)

where σ̂2
δ is the estimate of σ2

δ , N is the number of catchments and p is
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the number of independent variable used in the regression (including the

intercept).

In the paper by Stedinger and Tasker [1985] and related works, a complete

covariance matrix Σ̂ is used, that includes covariances in the off-diagonal el-

ements. In this study, the basins are assumed to be independent of each

other, because of the highly climatic heterogeneity of the area, thus Σ̂ re-

duces to a diagonal matrix. Strictly speaking, our model follows the iWLS

approach, although all the equations are still valid for the iGLS case.

2.2.3. Model selection

In regional analyses a great number of physical descriptors at the basin

scale is available nowadays, thanks to accurate digital terrain models and

remotely sensed data. Despite this, only few characteristics can be used in

a robust model for the estimation of the hydrological variables in ungauged

sites. The problem is thus the choice of a suitable subset of descriptors

to be used in the regression in order to obtain the best final estimates,

i.e. to choose the most appropriate regression model among all the possible

combinations. Usually, this choice is based on the analysis of the regression

residuals: models with the lower coefficient of determination R2 are favored.

In the approach based on GLS, the model error itself can be directly used

to select the more appropriate models.

Moreover, when R2 (or similar metrics) is used to select the best model

from a set of different candidate models, it is important to account for the

number of descriptors involved in each relation (degrees of freedom of the

model). In fact, a larger number of independent variables improves the pre-

diction ability of the model, but decreases its robustness. For this purpose,

the adjusted R2 is currently used, that allows one to compare models with

a different number of descriptors. Using the model error for the regression

model selection, the degrees of freedom are naturally accounted for by the

right hand side of equation (2.20), through the term N−p. Model identifica-
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tion can be performed also on the basis of the average variance of prediction

(AV P ) [Griffis and Stedinger, 2007] defined as

AV P = σ̂2
δ +

1
N

N∑

i=1

xi

(
XT Λ̂−1X

)−1

xi
T (2.21)

where xi is the row vector of X relative to the i-th basin, that include, in

average, the effect of the sampling error.

Since no prior knowledge is considered about the processes that generate

the hydrological variables involved in the regional approach, the statistical

significance of the independent variables used in the model have to be tested.

The method used to test parameter significance is the standard Student t-

test, applied to each estimated regression coefficient β̂j . The null hypothesis

H0 : βj = 0 is tested using the statistic

t0 =
β̂j√

var(β̂j)
(2.22)

[e.g. Montgomery et al., 2001] where the variance of the regression coeffi-

cient is taken from the diagonal of the sampling covariance matrix [Reis

et al., 2005]

cov
[
β̂

]
=

(
XT Λ̂X

)−1

. (2.23)

The t0 statistic is compared against its limit value and the null hypothesis is

rejected if |t0| > tα/2,n−p, where t is the quantile of the (two-tailed) Student

distribution with a confidence level α and n− p degrees of freedom.

The regression is also checked against multicollinearity, in order to avoid

to select descriptors that are nearly linearly-related among themselves. The

test used for this purpose is the variance inflation factor (VIF) test [e.g.

Montgomery et al., 2001] with a limit value of 5, that is commonly accepted
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as an indicator of absence of multicollinearity.

After the choice of the most appropriate model, we calculate the predicted

value and its variance in an ungauged basin. Hence forward we use the “ˆ”

symbol to refer to the value predicted by the regression, while the symbol

without any mark is the sample estimate. Let Ŷ be the predicted value at a

site, i.e.

Ŷ = xβ̂, (2.24)

where x is the row-vector of descriptor relative to the investigated basin and

β̂ the regional regression coefficients (equation (2.18);), the variance of Ŷ is

thus

σ2
Ŷ

= σ̂2
δ + x

(
XT Λ̂−1X

)−1

xT (2.25)

with X taken from the calibration dataset and Λ̂ from equation (2.19).

2.3. Selection of the probability distribution

The final aim of a regional procedure is to estimate the flood quantile and

its uncertainty for a specific return period at an ungauged site. So far,

however, the procedure presented above focused only on modelling Qind,

LCV and LCA leaving aside the problem of the distribution choice. Classic

approaches, instead, explicitly require to adopt a probability distribution to

describe the at-site data and then apply the regionalization to some quantiles

or, alternatively, to the distribution parameters. The necessity of defining

such a probability distribution introduces an additional source of uncertainty

due to the ambiguity in the choice of the distribution, in particular when

one deals with short samples. Indeed, for low return periods, there are more

than one distribution that fit well the data, and the adoption of a suitable
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distribution for the regional model is not trivial. We use the regional models

to provide Qind, LCV and LCA estimates and their uncertainty at ungauged

sites and then follow a model-averaging approach to define the quantile for

a specific return period.

The model averaging approach is based on the idea that more than one

distributions may be suitable for quantile estimation. Instead of choosing

only one distribution (among those that behave well in the fitting range),

it is possible to evaluate many of them and then to take their average. A

numeric index that measures the fitting performance on sample data can be

used as the weight in the averaging procedure (e.g. the Akaike’s Information

Criterion [Burnham and Anderson, 2002]). This approach can be applied in

the first place to the sample sets of Qind, LCV and LCA in order to identify

a subset of suitable distributions; thus, the model averaging is implemented

using the regional estimates of Q̂ind, L̂CV and L̂CA for the site of interest. All

the distribution frequency curves involved in the model-averaging procedure

are computed only on the basis of the three parameters Qind, LCV and

LCA. Suitable equations to obtain flood quantiles from L-moments, for a set

of distributions commonly used in hydrology, can be found in Hosking and

Wallis [1997].

The uncertainty of the final estimates is the last step in the regional pro-

cedure. Since regional Qind, LCV and LCV are equipped with their variance

and covariance values, we can use a Monte Carlo simulation to define the

confidence limits of the frequency curves adopted. The same can be done

with the sample L-moments. The method is summarized as follow: (i) for

each basin the sample or regional Qind, LCV and LCV are computed as well

as their variances; (ii) a set of factitious Q′ind, L′CV and L′CV are randomly

extracted from the distribution of each L-moment; (iii) the parameters of

the reference distributions are computed on the basis of the L-moments of

point (ii) and the quantile is estimated for the required return period; (iv)

points (ii) and (iii) are repeated for a great number of times so that the dis-
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Figure 2.1.: Example of quantiles confidence bands for the river Chisone at S.
Martino obtained with a monte carlo simulation. Panel (a) reports the values
based on a lognormal distribution applied on sample L-moments, while panel (b)
is based on the lognormal distribution fitted on regional L-moments.

tribution of the quantile can be empirically estimated; (v) confidence bands

are defined on the distribution of point (iv).

Note that when dealing with regional estimates, Qind, LCV and LCV are

independently estimated so that we can extract the index-flood from a log-

normal distribution Q′ind ∼ logN
(
Q̂ind, σ

2
Q̂ind

)
and the L-moments ratios

from two independent normal distributions: L′CV ∼ N
(
L̂CV , σ2

ˆLCV

)
and

L′CA ∼ N
(
L̂CA, σ2

ˆLCA

)
.

Differently, the uncertainty of a quantile based on sample data depends

of mutual correlated LCV and LCA (equation (2.14)), so the index-flood

is sampled from the normal distribution Q′ind ∼ N
(
Qind, σ

2
Qind

)
while

the L-moments ratios are jointly extracted from a multinormal distribu-

tion (L′CV , L′CA) ∼ N (
LCV , σ2

LCV , LCA, σ2
LCA, ρ

)
. An example of quantile

estimation with confidence bands is reported if figure 2.1.
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2.4. Case study

2.4.1. Data availability

The methods described above are applied to a set of 70 catchments located in

the northwestern part of Italy (see figure 2.2 and appendix A). The analysis

is carried out on small basins belonging mainly to mountainous areas, with

area ranging between 22 and 3,320 km2 and mean elevation from 471 to

2,719 m a.s.l. To reduce any effect of upstream lakes and/or reservoirs, we

discarded basins where catchment area is covered by lakes in a percentage

beyond 10%.

The first step in the model building is the analysis of available data of

annual streamflow maxima. To improve the sample statistics, we adopt the

method described in section 2.2.1 to include non-systematic and system-

atic information about large flood occurred in the area. Occasional values

are retrieved from reports issued by the National or Regional environment

agencies and refer to unusually intense events occurred when no systematic

measurements were available. Sometimes, such extreme events involved only

a limited area, but the hydrological surveys were extended to a wider zone,

and thus the reconstructed flood flow was reported also in sites where the

flood was not extreme. In these cases, the smallest occasional event is no

longer usable as censoring threshold because there is no evidence that all

the larger occasional extreme floods, happened in that basin during the “un-

gauged” period, are known (all the events above threshold need to be known

[Wang, 1990]). Where this kind of problem is observed, we adopt a threshold

equal to a greater non-systematic measure.

The method for including occasional information allows one to extend the

time series length of 18 basins using a total of 36 occasional measurements.

The equivalent time series are, in average, 20 years longer than those without

non-systematic information.

After the data checking, the sample index-flow, LCV and LCA coefficients,
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Figure 2.2.: Geographical location of the gauging stations used for the calibration
and validation of the present work. This area is located in northwestern Italy and
the basins are mainly on mountainous environments.



i

i

i

i

i

i

i

i

2.4 Case study 25

as well as their standard deviations, are computed with the equations of

section 2.2.1. A short summary of the sample coefficients is shown in figure

2.3, panel (a) for the index-flood and panel (b) for LCV and LCA, where the

filled circles highlight the catchments with non-systematic information.

A set of 40 basins descriptors has been defined for the group of catchments

involved in this analysis (appendix B), using geomorphologic and climatic

characteristics available in the CUBIST database [CUBIST Team, 2007].

2.4.2. Model definition

The model structure adopted in this work is linear, with parameters deter-

mined with an improved least squares procedure, as discussed in detail in

section 2.2. Although this model has an additive structure (see equation

(2.15)), in hydrology it is common to use also multiplicative models in the

form

Y = α1X
α2
2 Xα3

3 . . . Xαp
p ε (2.26)

that can be reduced to linear additive form by means of a log-transformation

of both sides of the equation.

Both additive and multiplicative model structures for each distribution-

free parameter are examined; details on the variables involved and on the

transformation applied are summarized in table 2.I, where a concise name

is assigned to each model structure. In particular, concerning the index-

flood, two additive and two multiplicative models are considered, with the

dependent variable equal to Qind or to Qind/A, where A is the catchment

area. These models will be referred to as Qind, QindA, lnQind and lnQindA

respectively. The regional model for LCV is still based on an additive model

(named LCV) and a multiplicative one (lnLCV), while the LCA is investi-

gated through an additive model (LCA). A direct application of the mul-

tiplicative model to LCA is not possible due to the non-positiveness of the

variable that does not allow a logarithmic transformation.
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Figure 2.3.: Summary of sample estimates for the 70 basins located in Northwest-
ern Italy. Panel (a) shows the index-flood values, while panels (b) and (c) reports
the diagnostic diagrams [Hosking and Wallis, 1997] with, respectively, LCV versus
LCA and LCA versus Lkur. For all the panels, filled circles indicate the basins in
which non-systematic information have been included in the analysis.
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The best models to be used for the regional estimation are not known a

priori, but are identified among all the possible combinations of descriptors

considering 1 to 5 parameters (1 to 4 descriptors in addition to the intercept).

The limit of 4 descriptor is mainly due to the computational effort in inves-

tigating all the combinations (∼ 65, 000 combinations with 35 descriptors),

and considering that more than 4 descriptors usually do not improve the

efficiency and the robustness of the final estimates. Anyway, a preliminary

investigation can be helpful for reducing the number of useful descriptors

and thus reduce the computational requirements.

These models are then tested for significance and multicollinearity and

the ones passing the Student and the VIF tests are ranked on the basis of

their model variance (σ̂2
δ ) and the average variance of prediction (AV P ).

Models that appear to be more efficient are checked in order to verify the

basic regression hypotheses (see diagnostic plots in figures 2.4-2.7). Finally,

a set of few operational models for each variable is selected.

When the variable of interest is log-transformed, equations (2.24) and

(2.25) yield estimates that are not directly usable and need to be back-

transformed to their original space. In this case, if the regression residu-

als are normally distributed, also Ŷ is normally distributed and its back-

transformation leads to a lognormal variable. Therefore, we evaluate the

mean of the estimate as

µ = exp
(

µŶ +
1
2
σ2

Ŷ

)
(2.27)

with µŶ equal to Ŷ , estimated with the regression in the logarithmic space

(equation (2.24)), and σ2
Ŷ

that comes from equation (2.25), while its variance

reads

σ2
µ = µ2 · [exp

(
σ2

Ŷ

)− 1
]
. (2.28)
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This back-transformation can prevent to have large biases [e.g. Seber and

Wild, 1989, 2.8.7]; however, we verified that for this case study, the simple

exponential transformation

µ′ = exp(Ŷ ). (2.29)

allowed us to reconstruct the variable in its original space without apprecia-

ble errors.

2.4.3. Regression results

A number of acceptable model structures obtained after sorting the models

are reported in table 2.II together with a short summary of the predic-

tion performances errors, i.e. the RMSE, MAE and Nash efficiency. These

indexes are computed after a cross-validation procedure: one basin is tem-

porarily removed from the database and the regression coefficients are cal-

culated on the basis of the remaining catchments. The variable of interest is

computed at the “temporarily ungauged” site and the procedure is repeated

for all the basins under analysis. Table 2.III is again related to these mod-

els, but reports the regression coefficients and the descriptors selected. Note

that the regression coefficients refer only to the additive model, i.e. they

lead to the estimation of Ŷ . When a transformation of the original variable

is involved, it is necessary to back-transform the predicted value (e.g. to

calculate µ or µ′ from Ŷ , for the logarithmic case).

Concerning Qind, as expected, the choice of a regression model is easier

and leads to a rather efficient estimation of the variable. Among the pos-

sible model structures (linear or log-transformed; normalized or not by the

catchment area), a preliminary analysis showed that the most suitable model

is lnQind. The log-transformation requires some attention, but avoids the

problem of having negative estimates when using additive models.
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Table 2.IV.: Short description of descriptors involved in regional models of table
2.III. See appendix B for more detailed references.

A Catchment area

Xc Longitude of catchment’s centroid

Hmin Minimum catchment elevation

P Catchment perimeter

MSL Main Stream Length

MHL Mean Hillslope Length

Dd Drainage density

cf Permeability index

MAP Mean Annual Precipitation

a, n Coefficients of the precipitation IDF curve in the form h = adn

The best among the selected models involves four descriptors: the catch-

ment area A, the mean annual precipitation (MAP ), the coefficient a of

the Intensity-Duration-Frequency (IDF) curve and a permeability index cf .

Coefficient a is related to a monomial representation of the IDF curve of

precipitation extremes having the form hd,T = kT adn, where hd,T is the pre-

cipitation quantile of duration d, kT represents the growth factor and a and

n are catchment-averaged parameters required to set the intensity-duration

relation at the index-rainfall.

Figure 2.4 shows the regression diagnostic graph: in particular, panel (a)

shows the comparison between sample and estimated log-transformed values.

Regression residuals are checked to verify the absence of heteroscedasticity

(panel (b)) and normality (panel (c)). Panel (d) shows the comparison be-

tween sample and estimated index-flood, reported in the original measure-

ment space. As previously mentioned, the back-transformation should be

done with equation (2.27) (see black dots in panel d), nevertheless a simple

exponential lead to comparable results (empty circles on the same panel).

This entails us to adopt the simpler approach without loss of detail.

Tables 2.II and 2.III report other two models that can be alternately used

in place of of the previous one. Both the alternative models are based on
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simple geomorphological characteristics and few climatic information, and

still have very good residuals diagnostics, even if they present a lower effi-

ciency; as proven by the RMSE, MAE and Nash indexes, they prove to be

efficient for a practical use. All the models reported pass the Student test

with a level of confidence of 1% and the VIF test with a limit value of 5.

LCV is an indicator of the sample dispersion and the reliability of its as-

sessment is investigated through an additive model as well as a multiplicative

one. These approaches are respectively referred to as LCV and lnLCV. Re-

garding LCV, we obtain only a few models that pass the Student test with

a confidence level of 1%, therefore we relax the test level to 2%. The first-

ranked model (see table 2.II and 2.III) has four descriptors: the longitude

of the catchment centroid, the drainage density, the basin perimeter and the

elevation of the gauging station. Drainage density is, however, not easy to

calculate and depends on the GIS procedure adopted for the river network

delineation. For this reason, we propose to use the second model (named

LCV2) that is structurally similar to the first one and has comparable diag-

nostic statistics, but does not require the drainage density. Diagnostic plots

for this latter model are shown in figure 2.5. Tables 2.II and 2.III also report

a third alternative model for LCV .

LCV estimation can be approached also by multiplicative models (lnLCV

model structure) and tables 2.II and 2.III show the results of this approach.

Model error and AV P are not directly comparable with those correspondent

to LCV models, but the RMSE, MAE and Nash efficiency, calculated on the

final estimated values, show that these models have a good predictive abil-

ity. Despite this, lnLCV models present problems in the regression residuals

plots (see figure 2.6) with high deviations from the theoretical normal behav-

ior. For this reason we suggest to leave aside the multiplicative models for

LCV in favor of the additive ones. From figure 2.5 (panel (a)) we note that

predictions are systematically overestimated for small values and underesti-

mated for large ones. On one hand, this behavior, due to the limitations of
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Figure 2.4.: Diagnostic diagram for model lnQind1. Panels (a), (b) and (c) refer to
the log-transformed values, and show respectively the comparison between sam-
ple and estimated values, the residuals behavior and the residuals normality plot.
Panel (d) shows the comparison between sample and estimated values in the orig-
inal index-flow space. Empty and filled circles differ for the back-transformation
used: the formers are simply the exponential of the regression estimates (eq.
(2.29)), while the latters are computed as the mean of the related log-normal
distribution (eq. (2.29)).
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Figure 2.5.: Diagnostic plots for model LCV2. Panel (a) shows the systematic
underestimation for small values and over estimation for large values, however
residuals behavior confirm the absence of heteroscedasticity (panel (b)) and a
good alignment to the theoretical normal distribution (panel (c)).



i

i

i

i

i

i

i

i

36
Regional approach for flood quantile estimation in ungauged and

data-scarce basins

the multiple (linear) regressive approach based on a set of simple descriptors,

can be seen as a weak result. On the other hand, this result has the merit to

stem from a robust regression model, that respect the modelling hypotheses,

and that yields a valuable estimation of uncertainty.

The last parameter required for building flood regionalized distributions is

the coefficient of L-skewness (LCA) that is investigated only by the additive

model, differently from LCV and Qind. General remarks about LCA are very

similar to those relative the LCV ; in fact, the best model we obtain is char-

acterized by three descriptors: mean hillslope length, drainage density and

mean annual precipitation. The first two descriptors are yet dependent on

the GIS procedure used for their computation and should be used carefully.

To avoid this inconvenience, we prefer a second model (LCA2) that is ana-

lyzed in greater detail in figure 2.7; residuals diagnostics show no evidence

of heteroscedasticity (panel (b)) and a good alignment to the theoretical

residuals quantiles distribution (panel (c)). As for LCV , panel (a) of the

same figure shows that the model is not able to capture the whole sample

variability.

Equation (2.21) shows that the average variance of prediction (AV P ) is

constituted by the sum of two terms, the model error and the site-specific

error due to sample variability. The relative effect of these factors can be

seen in table 2.II, where we observe that the ratio between model variance

and AV P is 0.92 for both lnQind and LCV, while decreases to 0.85 for LCA.

This suggests that the model error dominates the total error, as expected

because of the limitations of the linear regression model. This value decrease

for LCA and this is probably due to the greater sample uncertainty that

increases the AV P value, rather than decreasing the model error. Either the

model variance or the AV P can be used to classify the final models, but in

this case the final ranks are equivalent because the AV P is dominated by

the model variance.
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Figure 2.6.: Diagnostic plots for model lnLCV1. Panel (c) shows a weak alignment
to the normal theoretical residuals distribution although predicted values have a
quality comparable to that of the LCV2 model.
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Figure 2.7.: Diagnostic plots for LCA2 model. As for LCV , the model shows no
evidence of heteroscedasticity (panel (b)) and a normal distribution of residuals
(panel (c)), although systematic under- and overestimations are evident in panel
(a).
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2.4.4. Quantile estimation

As already mentioned in section 2.3 the final aim of the procedure is the as-

sessment of the flood quantile for a specific return period (with uncertainty).

In this work the regional (regression) model is applied to distribution-free

parameters in order to avoid the errors induced by the preliminary choice of

a distribution probability and/or a subdivision in regions. These errors are

particularly difficult to estimate, especially when working with time series

of different length and even more so when samples available are short, as in

this case study.

In this section, the following issues are discussed: (i) the estimation of a

flood-quantile applying the model averaging approach and (ii) the estimation

of its uncertainty by means of monte carlo simulations. Concerning the first

point we evaluated six different distributions commonly used in hydrology,

fitting, for each of them, the frequency curve on the sample data relative to

each of the 70 basins under analysis. The distributions are the Pearson type

III or Gamma (GAM), the generalized extreme value (GEV), the lognormal

with three parameters (LN3), the Gumbel (G), the generalized logistic (GL)

and the generalized Pareto (GP). A resume of the relations used for estima-

tion by means of the L-moments can be found in Hosking and Wallis [1997].

The frequency curve obtained in the gauged sites using the sample data can

be plotted to check the validity of the hypotheses made. For this purpose,

we assign a non-exceedance probability to each sample value by means of a

plotting positions. Here the Hazen plotting position is applied, as defined

by Hirsch [1987], to include the non-systematic information. Let i be the

index of the complete sample (systematic and non-systematic values merged

together) sorted in descending order, the non-exceedance probability of the

i-th measure is defined as

pi = 1−
{

i−0.5
m i = 1, . . . , k

k
m + m−k

m
i−k−0.5

s−e i = k + 1, . . . , g
(2.30)
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Figure 2.8.: Example of sample flood data for the river Chisone at S. Martino and
superposition of different theoretical frequency distributions: Gamma (GAM),
generalized extreme value (GEV), lognormal (LN3), Gumbel (G), generalized lo-
gistic (GL) and generalized Pareto (GP). Black dots represent empirical data,
circled ones correspond to non-systematic events; plotting positions come from
equation (2.30).

where m is the equivalent sample length (as in section 2.2.1), g is the total

number of flood events available (both systematic and non-systematic), k is

the total number of events that exceed the threshold x0, s is the length of

the systematic sample and e is the number of measures of the systematic

sample that exceed the threshold.

An example is shown in figure 2.8 for the river Chisone at S. Martino,

where the sample points are plotted using the plotting position of equation

(2.30) and the circled dots highlight the non-systematic measurements. The

example shows that all the distributions have a similar behavior up to a 100-

years return period, except for the Gumbel distribution that is a less flexible

distribution with only two parameters.



i

i

i

i

i

i

i

i

2.4 Case study 41

Although goodness-of-fit tests or more advanced techniques [Laio et al.,

2009] can be used to select only one distribution, it is clear that all of these

models are almost equally suitable; as a consequence we propose to take their

average as the final frequency curve for quantile estimation (thicker line in

figure 2.8). This model-averaging procedure [Burnham and Anderson, 2002]

can appear operationally too complicated. For the sake of simplicity, we

propose to compute the quantiles using the lognormal distribution as the one

that falls closest to the average frequency curve for each basin under analysis.

The second point is the evaluation of the uncertainty of the quantile estimate

through the Monte Carlo procedure described in section 2.3.

2.4.5. L-moments estimates in data-scarce stations

Strictly speaking, an ungauged catchment has no data records; thus one

needs to use regional models to obtain estimates of all the three L-moments

under consideration. However, if only few measurements are available it is

sometimes possible to estimate at least the lower-order sample L-moments

with an acceptable degree of robustness. In these cases, it is possible to

compute both the sample (at-site) and the regional estimate and then choose

the one with the lowest uncertainty. To this end, the standard deviation of

the sample estimates, computed on the available data through equations

(2.11), (2.12) or (2.13), can be compared to the standard deviation of the

estimates obtained by the regional model by means of equations (2.25)-(2.28).

This approach allows one to reconstruct the frequency curve in data-scarce

sites using a set of L-moments derived from different sources (sample or

regional), in order to improve the quality of the final estimates.

An example is shown in figure 2.9 where the index Ψ = (σ̂−σ)/σ (i.e. the

regional standard deviation minus the sample one, normalized by the sample

one) is reported for all the three L-moments used in this work. Positive Ψ

indicates that the sample estimates have lower uncertainty than the regional

ones and viceversa. The figure shows that moving to higher-order L-moments
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(panel (a) to panel (c)), the regional estimates become more reliable than

the sample ones.

When a short record is available, the graphs of figure 2.10 can be used

as a practical tool to identify the most suitable way to assess the index-

flood, LCV and LCA. It is sufficient to know the record length n, the sample

standard deviation and the sample LCV and LCA, to check on the graph if

the sample-point falls in the shaded area. In this case, the sample estimate is

preferable to the regional one and viceversa. The threshold value (thick line)

is the regional prediction variance averaged over the calibration set, thus it

is an indicative value. A more precise choice can be done using the formulae

previously reported.

2.5. Final remarks

The approach to regional flood frequency analysis proposed in this work aims

at overcoming some limitations of the classical methods and at facilitating

the use of non systematic measurements that might be retrieved for some

catchments. The at-site data are non directly used to build up a locally valid

parametric model, however, the sample record is summarized by calculating

its L-moments that are afterwards used to reconstruct the complete flood

frequency curve. The L-moments become the regional variables that are

related to the basins descriptors by means of a regression, that allows the

predicted L-moments to vary smoothly over the whole descriptors domain

without any grouping or formation of sub-regions.

The representation of sample data by L-moments avoids the uncertainty

related to the preemptive choice of a probability distribution and allows

one to mae wise use of short samples, otherwise discarded. In this way the

database can be increased without loss of information. For instance, in the

present case study, eight stations out of 70 present 10-20 data they probably

would be discarded in a traditional approach. Of course, the uncertainty

of these short sample is accounted by the assessment of the L-moments
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Figure 2.9.: Comparison between regional and sample standard deviations for the
index-flood (panel (a)), LCV (panel (b)) and LCA (panel (c)) by means of the
index Ψ. Each point grater than zero (right part of the graph) indicates that the
sample estimate is preferable to the regional one; on the other hand, the points
falling on the left side indicate that a regional estimates are more reliable than the
sample ones because they are calculated using a larger amount of information.
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Figure 2.10.: Graphs for the choice of the sample versus regional method to predict
the variable of interest, relative to the index-flood (panel (a)), LCV (panel (b))
and LCA (panel (c)). Iso-lines represent points with equal sample standard
deviation, while thicker line is equal to the averaged standard deviation of the
regional model. The shaded area corresponds to better performances of the
sample estimate compared to the regional one.
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variance in order to weight properly these values in the regressions. With

this approach, it is also possible to use the few available data to directly

estimate the lower-order L-moments and to adopt the regional model for the

other cases.

The regionalization of the L-moments without the creation of (homo-

geneous) regions, allows one to create a unique relationship for the whole

dataset and provides regional predictions of index-flood of high quality. On

the other hand, for higher-order L-moments, the regression is not able to

completely describe the sample variability. Although the subdivision in re-

gions is perhaps able to produce smaller prediction errors, our approach

easily handles the uncertainty of the regression model and avoids the subjec-

tivity of procedures that create regions and estimate their homogeneity. In

this sense the model provides a “global” optimization rather than a “local”

one.

Finally, the work also considers an approach that includes the non-systematic

measurements of flood events. In literature, non-systematic data are com-

monly referred to as historical flood, occurred before the beginning of the

gauged period. However, in the Italian context, often we found time se-

ries records with large gaps and few large events measured during this

“ungauged” period. Therefore, this information can be considered as non-

systematic data and used as a small set of valuable additional measurements.

All these characteristics, make the procedure particularly suitable in data-

scarce situations.
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Chapter 3.

Along-stream estimation approach
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3.1. Introduction

Regional models aim at transferring information from a set of gauged sites

to the ungauged basin of interest. Although different types of models have

been developed in literature, their common attitude is to approach the lack of

hydrologic information moving to the so called descriptors space. The latter

is a set of catchment characteristics, usually topographic, morphological,

pedological or climatic indexes, that are computable for every basin without

resorting to any hydrologic data. Then, suitable relationships are built to

relate these characteristics to the desired hydrological variable.
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Differently from the regional approaches, the basic concept underpinning

the model developed in this chapter is the transfer of hydrological informa-

tion to an ungauged site located upstream or downstream the gauging sta-

tion. The information we are interested in, i.e. the information we transfer

along the stream network, are those used to reconstruct the flood frequency

curve, such as the L-moments mentioned in the chapter 2. Note that this

information is not related to the discharge value at a particular time, that

could be investigated, for instance, by means of a rainfall-runoff model, but

rather to a characteristic discharge, as could be the average annual runoff. In

addition to the hydrologic information, this approach is based on the knowl-

edge of the structure of the drainage network, in order to properly identify

how points are directly connected. An equivalent way to describe the same

concept is by saying that the two basins are nested. The model is therefore

named Along-Stream (AS) approach, and it involves at least one variable

calculated in a gauged (or donor) basin, that is used to propagate the in-

formation towards the ungauged (target) site where the variable of interest

is reconstructed. In order to avoid a misleading notation, hereafter we will

refer to the donor station using the subscript d, while subscript t will be used

for the target site.

The issue of prediction or interpolation of hydrological variables along the

river network is not frequently discussed in the literature, although some

notable examples are present. Gottschalk [1993a,b] introduced the prob-

lem of correlation and covariance of runoff and its interpolation along the

river network, adapting the theory of stochastic processes to the hierarchi-

cal structure of nested catchments. This approach has been extended by

Gottschalk et al. [2006], and the same concepts are used by Skoien et al.

[2006] in the development of a kriging procedure that accounts for the river

structure, named topological kriging or top-kriging. Although the final aim

is the same, the procedure developed here follows a different approach.

Kjeldsen and Jones [2007], instead, studied the problem of interpolation
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of runoff statistics considering a local correction of regional estimation. This

approach is more similar to the one developed in this chapter because it

relies on the same information transfer scheme; however, a different imple-

mentation procedure is proposed.

The AS procedure is developed and applied here to the same statistics

defined in section 2.2.1, i.e. the index-flood, the LCV and the LCA that

summarize the essential statistics for what concerns the estimation of flood

quantiles. The AS model will then be available in addition the regional

procedure discussed in chapter 2 to predict the same variables. Then, the

results from the two different approaches can be combined in order to obtain

more reliable final estimates in ungauged sites. In general, when two or more

models are available for the same goal, one can consider one of the following

scenarios:

• Model competition: the results of different models (in this work AS and

regional prediction) can be evaluated separately and then compared, in

order to identify which model is more efficient in the reconstruction of

the variable of interest. In this case study, AS and regional predictions

are expected to have a different reliability depending on the location of

the target site, and, in particular, to its distance from the donor site.

Under this perspective, the aim of the AS approach is to identify an

alternative procedure that is more appropriate for the analysis at some

ungauged basins.

• Model cooperation: the output of one model is used to initialize the

other model. In this work, for instance, the regional estimate can be

used as an additional parameter for the along-stream estimation func-

tion, and thus to contribute to the final AS prediction. This viewpoint

can be interpreted as follows: the AS approach can be used to correct

locally the regional model estimate accounting for the specific infor-

mation present in a close donor site.
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• Model combination: given different estimates of the same variable one

combines them through suitable relations aiming at minimizing the

variance of the resulting considered estimator.

Of course, also other kinds of models, different from the regional one (e.g. the

rational formula), can be adopted to compete/cooperate or to be combined

with the AS model.

3.2. Extension of the regional procedure

3.2.1. Regional covariance and correlation

The regional procedure developed in chapter 2 for L-moments estimation

in ungauged basins, can be profitably used in the along-stream model, as

already suggested, to improve the reliability of the final estimates. For this

purpose, covariances and correlations of concurrent regional predictions are

particularly important, as the along-stream modelling approach investigates

hydrological variables at close locations. This is also important when the

final aim is to map an hydrological variable along the river network.

Despite this, the literature on regression models usually treats the predic-

tion of one variable at a time, while correlation between concurrent estimates

are rarely investigated [e.g. Hahn, 1972, Seber and Wild, 1989]. The covari-

ance between two concurrent regression predictions ŷ1 and ŷ2, obtained from

two different sets of descriptors (x1 and x2) and the same set of regression

coefficients β̂, is defined as



i

i

i

i

i

i

i

i

3.2 Extension of the regional procedure 51

cov [ŷ1, ŷ2] = E
[
(ŷ1 − y1)(ŷ2 − y2)T

]

= E
[
(ŷ1 − E[ŷ1])(ŷ2 − E[ŷ2])T

]

= E
[(

x1β̂ + ε1 − E[x1β̂]
) (

x2β̂ + ε2 − E[x2β̂]
)T

]

= E
[(

x1

(
β̂ − E[β̂]

)
+ ε1

)(
x2

(
β̂ − E[β̂]

)
+ ε2

)T
]

= E
[
x1

(
β̂ − E[β̂]

)(
β̂ − E[β̂]

)T

xT
2

]
+ E

[
ε1

(
β̂ − E[β̂]

)T

xT
2

]

+ E
[
x1

(
β̂ − E[β̂]

)
εT
2

]
+ E

[
ε1ε

T
2

]

= x1cov
[
β̂, β̂

]
xT

2 .

(3.1)

Since the error ε has zero mean, the two mixed terms in the form x(β̂−E[β̂])ε

are null, as well as the expectation of the two concurrent errors ε1 and ε2

that are mutually independent.

In this context, we consider the regional model with an error structure

defined as in Stedinger and Tasker [1985], and the covariance matrix of the

regression coefficients β̂ is provided by equation (2.23). This term contains

the information about the structure of the model, and its substitution into

equation (3.1) leads to

σŷ1ŷ2 = cov [ŷ1, ŷ2] = x1

(
XT Λ̂−1X

)−1

xT
2 , (3.2)

where X is the descriptors matrix of the calibration set, and Λ̂ describes

the error structure of the regional model (i.e. the variance and covariances

of the samples estimates and the model error, see equation (2.19)). The

correlation coefficient ρ between ŷ1 and ŷ2 is determined in the standard

way as the ratio between the covariance of a pair of predictions and the

product of their standard deviations, i.e.

ρ1,2 =
cov [ŷ1, ŷ2]√

var [ŷ1] var [ŷ2]
(3.3)



i

i

i

i

i

i

i

i

52 Along-stream estimation approach

where var [ŷ], calculated according to equation (2.25), has the form

σ2
ŷ = var [ŷ] = σ̂2

δ + x
(
XT Λ̂−1X

)−1

xT .

3.2.2. Formulae for log-transformed data

When the variable of interest used in the regression is preliminarily trans-

formed, as is usual with the index-flood, covariance and correlation of con-

current estimation computed with equations (3.2) and (3.3) need to be back-

transformed to the original space. In case of logarithmic transformation, the

variable ŷ predicted by the (linear) regression model is normally distributed,

so the related back-transformed variable µ becomes lognormally distributed.

Two concurrent predictions, correlated through the coefficient of equation

(3.3), can be described through a bivariate normal distribution

{ŷ1, ŷ2} ∼ N (
y1, y2, σ

2
y1

, σ2
y2

, ρy

)

with five parameters. Analogously to the one-dimensional case, the parame-

ters of the bivariate normal distribution are back-transformed, generating a

bivariate lognormal distribution

{µ̂1, µ̂2} ∼ logN (
µ1, µ2, σ

2
µ1

, σ2
µ2

, ρµ

)

where the two means and the two variances are calculated according to equa-

tion (2.27) and (2.28). The correlation is deduced through the joint covari-

ance [e.g. Johnson and Kotz, 1986]

cov [µ̂1, µ̂2] = (exp [cov [ŷ1, ŷ2]]− 1) · exp
[
ŷ1 + ŷ2 +

1
2

(var [ŷ1] + var [ŷ2])
]

,

(3.4)

and is calculated as

ρµ = cor [µ̂1, µ̂2] =
(exp [cov [ŷ1, ŷ2]]− 1)√(

exp
[
σ2

y1

]− 1
) (

exp
[
σ2

y2

]− 1
) . (3.5)
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An example of the correlation between concurrent estimation is shown in

figure 3.1, where the correlation coefficient of Qind, LCV and LCA between

the regional estimate at Tavagnasco station (code 15) and all the points of

the upstream drainage network is mapped. Regional models adopted for this

application are referred to in table 2.I, as lnQind2, LCV2 and LCA2. As

one can see from these maps, locations very close to the reference station

of Tavagnasco have correlation coefficients of the order of 0.10-0.15 for Qind

and LCV , and a about 0.3 for LCA. This apparent contradiction can be ex-

plained considering equation (3.3) in which the numerator, the covariance of

concurrent predictions, does not contain the model variance term σδ that is,

instead, present in the variance of a single prediction. In the regional models

developed in this work, the model variance dominates the total prediction

variance (about 90%, from table 2.II); thus, even when the covariance is

maximized the correlation does not exceed the value of 0.10-0.15 (for the

index-flood).

3.3. Along-Stream information propagation
method

3.3.1. Methods and hypotheses

After setting the problem by the viewpoint of space correlation of the regional

estimates, we now discuss the basic hypotheses and the methodologies devel-

oped in the along-stream approach, that will be used to estimate a generic

hydrological variable P by propagating the information from a donor site d

to the target site t. This approach is based on a few preliminary hypotheses.

In particular:

• Proximity: the target site is always located on the same stream path

of the donor station, upstream or downstream, i.e. the two basins d

and t are nested;

• Transferability: the variable Sd, computed at the donor site, must be
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Figure 3.1.: Map of the correlation coefficient between the regional prediction at
Tavagnasco (station code 15) and the regional prediction at each of the upstream-
points of the drainage network, for Qind, LCV and LCA.
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used in the information transfer, i.e.

Pt = f(Sd, θ)

where θ is an additional (optional) set of parameters and f a function

to be defined;

• Congruence: when the distance between the donor and the ungauged

catchment becomes null, the two basins coincide and the AS estimate

(variance) at the unguaged site must match the at-site estimate (vari-

ance) at the gauged basin, i.e.

Pt → Sd for t → d.

The proximity and transferability hypotheses are represented through the

sketch in figure 3.2 (panel a) where the arrows show possible directions for

the information transfer. In general, the function used to transfer informa-

tion is not known, but can be approximated by any function that satisfies the

hypotheses made. This function must be a good approximation of the real

unknown transfer function, at least within a validity domain that includes

a set of points close to the donor station; then different functions have, in

general, different validity domains (see panel b in figure 3.2). The valid-

ity domain hypothesis is very important to assess the reliability of the AS

method, and will be treated in an intuitive way. In particular, a threshold

on the distance between donor and target basins will be defined to separate

the domain of validity of the selected transfer function from the remaining

part of the drainage network.

The distance is intended with a general meaning, and it is not necessarily

the geographic distance or the length of the drainage path. Moreover, given

a particular function for the information transfer, and its corresponding do-

main of validity, the variance of the AS prediction is supposed to increase

moving away from the donor site, but still within the validity domain. Out of
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that, no AS predictions are reliable, so it is no longer necessary to compute

their variance. A sketch representing this aspect is shown in figure 3.2 panel

(c).

In this work, the application of the along-stream modelling approach in-

volves also the regional model, and can be thought as an approach based

on both the ideas of cooperation and competition with the regional model.

In particular, the regional model tries to catch the “global” variability of

hydrological variables, without considering the “local” structure of the river

that can be accounted, on the other hand, by the AS model. The AS es-

timates is then calculated on the basis of the regional ones (cooperation of

models). In contrast, reliability of the AS predictions decrease with increas-

ing distances between the donor and the target basins; the problem is thus

to identify a procedure that allows one to decide if the AS estimates can be

considered reliable or if the regional one should be preferred (competition

between models). In this application, the regional models considered for the

L-moments estimations, previously developed in chapter 2, are summarized

in tables 2.I, 2.IV and 2.II, where are referred as to lnQind2, LCV2 and

LCA2 for index-flood, LCV and LCA respectively.

The first step to implement the along-stream estimation procedure is to

define a suitable formula to compute the variable P at the target site t,

according to all the hypotheses made. Here we adopt the formula used

by Kjeldsen and Jones [2007], although the methods hereafter developed

follow a different approach. Let T be the function used for the along-stream

information transfer, that reads

Tt,d =
Rt

Rd
· Sd. (3.6)

where the symbol R refers to the regional estimates and S is the at-site

variable. The propagated estimate can be simply written as:

Pt = [Tt,d]D≤D′ . (3.7)
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Figure 3.2.: A sketch of the along-stream propagation of information method. An
hydrological variable calculated at the donor (gauged) site is used to predict the
value of the same variable in the target locations located upstream or downstream
(panel (a)). Different functions to achieve this aim can be adopted (panel (b));
however, each function has a particular domain of validity around the donor sta-
tion. The variance of the new predictions is supposed to increase moving away
from the donor station, within the domain of validity (panel (c)). This is no longer
applicable out of the validity domain.
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where D is the generalized distance between t and d and D′ is the thresh-

old distance beyond which the function is no longer effective. The symbol

[·]D≤D′ underlines the fact that the transfer formula is valid only within its

validity domain. Note that all the symbols P , R and S represent a generic

hydrological variable (index-flood, LCV and LCA in this particular context).

Equation (3.6) can be interpreted as follows: the regional estimate Rt in t

is corrected by a factor equal to the relative error that the regional model

produces in d (i.e. Sd/Rd). In practice, the regional model is supposed to

have the same error magnitude in evaluating two close locations. For D → 0

it is straightforward to verify that Pt → Sd.

3.3.2. Example about functions and assumptions

An example to intuitively describe the assumptions made about the domain

of validity of a function is now reported. Assume that there are two different

functions available for the information transfer along the stream network

(similarly to the representation in figure 3.2, panel b). We define the first

function as

P
(1)
t = [Sd]D≤D′(1) , (3.8)

where D is the generalized distance between t and d and D′(1) is the threshold

distance beyond which function 1 is no longer effective. The second function

is, as in equation (3.7):

P
(2)
t = [Tt,d]D≤D′(2) . (3.9)

The first function simply states that the propagated prediction P
(1)
t is equal

to the at-site variable calculated in d. Obviously, equation (3.8) can be

considered valid only in a very small neighborhood of d, i.e. the threshold

D′(1) is supposed to be very low, and thus D′(1) ≤ D′(2)

Depending on the distance D there are three different possibilities:

• D ≤ D′(1) ≤ D′(2): both the AS models are valid, the most appropriate
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can be selected on the basis of the prediction variance;

• D′(1) ≤ D ≤ D′(2): only model 2 can be used to propagate the infor-

mation along the stream network;

• D > D′(2) neither model can be used.

3.3.3. Organization of nested basins

In the next sections, we will investigate the suitability of the AS approach

considering, as a case study, a set of 70 basins located in northwestern Italy;

the complete database is mainly constituted by the catchments already used

for the regional analysis of chapter 2; however the data are organized in a

different way. In this context, in fact, it is more appropriate to work in

terms of pairs of basins {t, d}, rather than with a single catchment at a time.

Figure 3.3 shows a schematic representation of the hierarchical dependence

of nested catchments, representing the connection with a line. Note that

there are also multi-connected basins, as well as basins with no connections.

All the connected (nested) catchments have been considered as a possible

pair of donor-target site, characterized by a generalized distance dt,d among

them.

Considering all the possible connections of two stations along the same

drainage path (nested basins), there are a total of 71 connections (e.g.: from

figure 3.3, basins 1 is nested to basin 15 even if there is the intermediate basin

13). All the basins under analysis are actually gauged basins; however, the

connections are considered “in both directions”, e.g.: if basin 9 is upstream

basin 10, we first consider basin 9 as the donor site and basin 10 as the target

(ungauged) site, then the procedure is repeated using basin 10 as the donor

station and basin 9 as the target (ungauged) site. In this way, the overall

number of usable connections {t, d} becomes 142.

The distance between two catchments can be defined in different ways,

although it is preferable to avoid both the geographical distance and the
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Figure 3.3.: Gauging stations lying on the same drainage path, either upstream or
downstream, that are directly connected (nested basins) are schematically linked
with a line. Some catchments have multiple connections, others are isolated.
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length of the drainage path linking the two points. In fact these definitions

are not representative of the abrupt change in basin characteristics that is

expected between two points located just upstream and just downstream a

tributary. We propose a definition of distance based on the basin area A,

D = log (Amax/Amin) (3.10)

with Amax = max [At, Ad] and Amin = min [At, Ad]. Under the proximity

hypothesis (but not in general), two basins with the same area have null dis-

tance (they are the same basin), so their estimates must coincide (congruence

hypothesis). An alternative simple definition of distance, that involves also

the basin mean elevation H, reads

D = log (Amax/Amin ·Hmax/Hmin) . (3.11)

This definition is supposed to work well when the mean basin elevation and

the basin area do not contain redundant information, for instance when the

dataset is composed of basin from both mountainous and plain areas. In our

case study we use the definition given in equation (3.10).

3.4. Model reliability: simplified approach

3.4.1. Uncertainty of the propagated estimate

The basics of the AS method can be summarized in two steps: (i) choice

of a suitable formula for the information transfer, and (ii) definition of the

threshold distance D′ that is strictly related to the formula adopted in (i). In

section 3.3, a practical formula (equation (3.7)) is adopted for this case study,

without providing a quantitative assessment of D′. This section investigates

the suitability of a simplified approach for D′ quantification and an overall

evaluation of the performance of the along-stream estimation approach.

The AS procedure, applied to the index-flood by means of equation (3.7),

and based on the 142 pairs of catchments, yields the P predictions shown
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Figure 3.4.: Comparison between local and sample estimates relative to the whole
available dataset (panel a). Multiple Pt values relative to the same St represents
multiple sources for local estimation. Panel b shows the normality plot for the
residuals Pt−St. Values are normalized by the catchment area in order to provide
a clearer representation.

in figure 3.4, panel a, compared with the correspondent at-site estimates.

Basins with multiple connections can be easily identified because there are

multiple Pt estimates corresponding to the same St value. Panel b of the

same figure reports the normality plot relative to the residuals Pt−St, which

will be used afterward to evaluate the variance of Pt.

At this stage, it is necessary to define a suitable formula to calculate the

uncertainty of Pt. In the simplified approach, a model for Pt uncertainty is

CVPt = (1 + α ·D) · CVSd
(3.12)

where CV is the coefficient of variation, i.e. the ratio between standard

deviation and mean of the variable. Considering the definition of Pt given

in equation (3.7), and the definition of CV as the ration between standard

deviation and mean, we obtain

σPt ·
Rd

Rt · Sd
= (1 + α ·D) · σSd

Sd
(3.13)
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and thus

σPt
= (1 + α ·D) · σSd

· Rt

Rd
. (3.14)

This model for predicting σPt
can be interpreted as follows: the standard

deviation of Pt is basically the standard deviation of the at-site estimate in

the gauged site, augmented proportionally to a factor α that accounts for

both the non-correctness of the AS transfer function and for the uncertainty

of all the variables involved in equation (3.7). Furthermore, for D → 0

it is straightforward to verify that σPt
→ σSd

, confirming the congruence

hypothesis.

3.4.2. Assessment of the variance parameter

The evaluation of the uncertainty of the AS estimate using equation (3.14)

requires to preliminarily estimate the parameter α, calibrated on the basis of

the available dataset rearranged to account for the donor-target correspon-

dences. For each pair of basins, the residual between Pt and its corresponding

at-site value St is

δt = Pt − St (3.15)

and, since both Pt and St are independent random variables, the supposed

distribution of the residuals is

δt ∼ N (
0, σ2

Pt
+ σ2

St

)
. (3.16)

Substituting equation (3.14) in equation (3.16), we obtain the final expression

for the residual variance, parameterized by α, that reads

σ2
δ = (1 + α · d)2 · σ2

Sd
·
(

Rt

Rd

)2

+ σ2
St

. (3.17)

The coefficient α can be estimated by means of a maximum likelihood

approach. The likelihood function L of the residuals, that are supposed to

follow a normal distribution with equation (3.16), is
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Figure 3.5.: The maximum likelihood estimator of α is identified on the log-
likelihood plot (panel (a)) considering only the subset of basin pairs with D ≤
log(10). Panel (b) shows where the derivative of the log-likelihood function equals
zero.

L(δ) =
∏ 1√

2πσ2
δ

exp

[
−1

2

(
δ − µδ

σδ

)2
]

(3.18)

that can be handled more easily after a logarithmic transformation:

logL(δ) = −1
2

∑ [
2πσ2

δ +
δ2

2σ2
δ

]
(3.19)

The maximum likelihood estimator of α can be numerically computed by

a maximization of equation (3.19) or putting equal to zero its first derivative

d logL(δt,d)
dα

=
δ2σ2

Sd
(Rt/Rd)2(1 + αD)D

[
δ2σ2

Sd
(Rt/Rd)2(1 + αD)2D + σ2

St

]2

− σ2
Sd

(Rt/Rd)2(1 + αD)D
δ2σ2

Sd
(Rt/Rd)2(1 + αD)2D + σ2

St

.

(3.20)

An example is reported in figure 3.5, that shows the log-likelihood function

and its first derivative. A more detailed discussion about the choice of this

value is provided in the following sections.
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3.4.3. Validity of the simplified approach

As mentioned above, the aim of the whole procedure is to use both the

regional and the AS approaches to improve the final prediction in ungauged

sites. From a practical point of view, it is necessary to define the operational

(O) prediction as the estimate obtained from either the AS or the regional

procedure, by selecting the appropriate model with the following rules:

σPt ≤ σRt σPt > σRt

D ≤ D′ along-stream regional

D > D′ regional regional

The correct value of D′ is not known a priori, but can be evaluated through

an iterative procedure, based on the following steps:

• a tentative value of D′ is empirically defined;

• the AS estimate Pt is evaluated, as well as the regional one, Rt;

• the residuals of the AS estimates are computed and the parameter α is

evaluated in the max-likelihood framework applied only to the basins

pairs within D′;

• based on α, the variance of the AS prediction is computed with equa-

tion (3.14) and it is compared against the variance of the regional

prediction at the same location;

• the operational estimate is constructed choosing the model with the

lower uncertainty;

• the errors obtained by the operational estimate are compared with

those of the regional model that is considered as the reference model;

• the procedure is repeated, changing the tentative value of D′.

The iterative procedure has been applied to the index-flood predictions

using, as distance measure between basins, equation (3.10). The main results
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are summarized in table 3.I where a series of tentative threshold distances

are used; the value of α, computed only on the restricted dataset, is also

reported. The light-grey column of the same table is relative to a threshold

distance that includes all basins, and therefore can be used as a reference

condition, since it correspond to the case of unbounded validity domain.

Differently, the heavy-grey column refers to the optimal distance threshold

identified for this case study, and relative to the index-flood.

Table 3.I shows also the percentage of basin pairs for which the AS model

is applicable (D ≤ D′) and the errors related to the operational (O), along-

stream (AS) and regional (R) models. The mean error, named ME in the

table, is computed averaging the errors

E{t,d} =
(prediction)d − St

σSt

(3.21)

obtained for each pair {t, d}, where “prediction” indicates one of the three

possible models. Some important remarks can be deduced from the errors

reported in table 3.I. Firstly, the AS-ME presents a clear trend, increasing

with an increasing threshold distance. This is an evidence that the use of a

restricted domain of validity improves the effectiveness of the along-stream

prediction, reducing the averaged error. Furthermore, the application of

the AS estimation to the whole dataset produces a mean error greater that

those relative to the regional model: in this case the AS model is no longer

appropriate. Instead, the error R-ME produced by regional models is, as

expected, less influenced by the choice of a particular threshold distance.

A further consideration arises looking at the operational error O-ME that

is always lower than both AS-ME and R-ME; this is a confirmation that

the operational model is able to correctly select the AS model rather that

the regional one. Finally, the use of a low threshold distance lead to better

results, but, in this way, the AS approach is limited to a few basins. For

instance, very good performances can be achieved with D′ = 0.81, but, in

this case, only the 11.3% of the basins can benefit of the along-stream model.
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On the other hand, large domains of validity increase the errors and decrease

the effectiveness of the operational estimator. For these reasons, we selected

an “optimal” distance as a compromise between these two opposite factors.

Such a threshold distance correspond to basins that have a ratio between

their areas of 10; i.e. for pairs of basins whose areas differ of at most one

order of magnitude, the AS approach is appropriate when working with the

index flood.

The effect of the optimal threshold distance is shown in figure 3.6 (panel

(a)) where the normalized errors of the operational model are compared

against those of the regional (reference) model. The points on the graph can

be divided in four different classes:

• filled-circles on the bisector represents the basins out of the validity

domain, where only the regional model is applicable;

• empty-circles on the bisector are basins within D′ for which the regional

model have been selected as operational model;

• empty-circles below the bisector are basins within D′ for which the AS

models have been selected and the operational estimates improve the

regional one;

• empty-circles above the bisector are basins within D′ for which the AS

models have been selected and the operational errors are greater than

the regional ones.

It is evident that, in most of the points in which the AS approach is suitable

to be used, the operational estimates are better that the corresponding re-

gional ones. Only for few basins there is, although moderately, an increase

in the mean operational error.

These results are positive when compared to those of panel (b) of the same

figure, where no threshold distance has been applied. Although the mean

operational error still suggests to use the AS model, the points dispersion
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Figure 3.6.: Errors due to regional estimates of Qind compared with the errors
produced by operational model. The figure shows, with open circles, the errors
obtained for basins pairs closer than the threshold distance while filled circles
are relative to the more distant catchments (whose estimated is fixed equal to
the regional one). All the points below the solid line represents basins where the
Qind estimates are improved by the use of the along-stream information transfer
procedure. Panel a is relative to a threshold distance D′ = log(10), while b
represents the same but with no limitation on distances.

highlights the fact that the variance of the AS prediction is no longer ap-

propriate to describe the reliability of the AS model. This is again to say

that, for basins beyond the threshold distance the regional model is the most

appropriate.

The same procedure has been applied to the LCV and LCA without reach-

ing appreciable results. Figure 3.7 and figure 3.8 clearly show that the AS

model does not produce reliable results and, when applicable, produces a de-

terioration of the regional estimates. These results can be interpreted as the

inability of a simple AS model (as equation (3.7)) to catch the behavior of

the LCV or LCA. However, this problem is also due to the high uncertainty

of the higher-order L-moments that are based on short data records. This

uncertainty makes impossible a correct estimation of the parameter α, and

thus the bounds of the validity domain.
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Figure 3.7.: Operational versus regional errors for LCV with optimal threshold
distance (panel (a)) and without threshold distance (panel (b)).
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Figure 3.8.: Operational versus regional errors for LCA with optimal threshold
distance (panel (a)) and without threshold distance (panel (b)).



i

i

i

i

i

i

i

i

3.5 Model reliability: analytical approach 71

3.5. Model reliability: analytical approach

The simplified approach to evaluate the reliability of the along-stream model

considers a simple formulation for the quantification of the variance of Pt.

This expression contains a parameter to be estimated from the available data

that accounts for both the sampling and the structural errors present in the

model. In general, however, the presence of faraway couples of donor-target

sites and/or high uncertainties in sample estimates, can prevent a proper

estimate of this parameter. To try to overcome this inconvenience, and

allow a simple estimation of the AS prediction variance for short distances,

we develop a more detailed analytical framework.

The true value of the hydrological variable PT at a point is not known, but

can be represented as the sum of a deterministic function T and a stochastic

error ε,

PT = T + ε, (3.22)

where ε is supposed to be normally distributed with zero mean and variance

σ2
ε and T is a derivable function. In this analysis we use the same func-

tion for the along-stream information propagation T proposed in section 3.4

(equation (3.6)).

Since ε has zero mean, it does not influence the AS prediction, that still

reads Pt = [Tt,d]D≤D′ , while its variance can be written in the form

σ2
P = var [PT ] = var [T ] + var [ε] , (3.23)

where T and ε are supposed to be independent, at least for D ≤ D′.

The variance of T can be calculated, for instance, using the propagation

of variance of a known function. With T defined as in equation (3.6) we

obtain

var [T ] =
(T ′Rt

)2 · var [Rt] +
(T ′Rd

)2 · var [Rd] +
(T ′Sd

)2 · var [Sd]

+ 2
(T ′Rt

T ′Rd

) · cov [Rt, Rd] + 2
(T ′Rt

T ′Sd

) · cov [Rt, Sd]

+ 2
(T ′Rd

T ′Sd

) · cov [Rd, Sd] ,

(3.24)
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where the symbol T ′x denotes the first derivative of the T function with re-

spect to x. The covariance terms involving the regional and the empirical

estimators together are null because R and S are independent. Differently,

the remaining covariance term, cov [Ri, Rj ], involves two concurrent regional

estimates that are correlated because Ri and Rj stem from the same regres-

sion model. This value, discussed in detail in section 3.2, can be calculated by

equation (3.2) for native linear regression models, or by equation (3.4) for log-

linearized regressions. In this particular case, since T ′Ri
= Sj

Rj
, T ′Rj

= −Ri·Sj

R2
j

and T ′Sj
= Ri

Rj
, equation (3.24) reduces to the following expression:

var [T ] =
(

Sj

Rj

)2

· var [Ri] +

(
−Ri · Sj

R2
j

)2

· var [Rj ]

+
(

Ri

Rj

)2

· var [Sj ]− 2

(
Ri · S2

j

R3
j

)
· cov [Ri, Rj ] .

(3.25)

The effect of mutual correlation between concurrent regional estimates is

reported, for the set of catchments under study and for the index-flood, in

figure 3.9 where the correlation cor [Rt, Rd] is plotted against the distance

between the target and the donor basin. As already discussed in section

3.2, the correlation coefficients is intrinsically limited to a value around 0.10

also for short distances, due to the high model error present in the regional

model. Correlation becomes negative for distance between basins of about

4, i.e. for Amax/Amin ∼ 50.

The analytical framework proposed can be used in two ways:

• working within small distances, so that the residual variance σ2
ε can be

neglected;

• parameterize σ2
ε as a function of D, then assess the reliability of the

AS approach analogously to the simplified approach.

Preliminary analyses have shown that the latter approach cannot be easily

solved, then a more detailed investigation is left to future works.
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Figure 3.9.: Correlation coefficients of two simultaneous prediction of the index-
flood by the regional model at sites i and j versus the distance between catchments.
The evident convergence around a maximum value of about 0.10 for null distances
is due to the large effect of the model error on the total prediction error.

3.6. Final remarks

The along-stream (AS) estimation approach proposed in this chapter hinges

on the river structure to perform the information transfer towards ungauged

sites. This is rather different from regional procedures because it is based

on local relationships instead of global ones, as the estimation can be done

only between nested catchments. This conceptual difference between along-

stream and regional models allowed us to combine the two methods and

develop a general framework for the evaluation of both an hydrological vari-

able and its variance at ungauged locations. The framework can be also

extended to other kinds of models, like physically-based or conceptual ones.

The combined use of regional and along-stream procedure has been stud-

ied through the definition of a simple formula to locally correct the regional

estimates on the basis of neighboring gauged stations. After that, the un-

certainty of the propagated variable and the reliability of the method has

been analyzed following two different paths: a simplified and an analytic

approach.
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The simplified approach, based on a parametrization of the prediction

variance, proved a good ability in estimating the index flood when donor

and target site are within a generalized distance threshold. In particular,

the distance is computed as a function of the two basin areas, and the along-

stream model achieves the best results when the ratio between their areas is

not greater than 10. In these cases, the AS predictions improves significantly

the regional values. The same procedure applied to LCV and LCA does not

yield as good results probably due to the greater uncertainty of the sample

estimates of higher-order L-moments. Despite this, the improvement of the

index-flood is still an important achievement.

The second approach is based on the assumption that the prediction vari-

ance is made up by two components: one due to the AS formula adopted,

and the second one due to the model incorrectness and sampling errors. For

closely nested catchments, the latter is negligible, and the variance of the

estimate can be assessed. Differently, for distant basins, this term need to

be parameterized and evaluated.
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Chapter 4.

Distance-based regional approach
for flow duration curves
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4.1. Introduction

The problem of estimating hydrological variables in ungauged basins has

been studied in the previous chapters for flood quantiles. In this chapter

we deal with a different specific descriptor of the runoff distribution in a

basin: the whole Flow Duration Curve (FDC). A flow duration curve rep-

resents the daily flow distribution approximation in a stream rearranged to

show the percentage of time during which a discharge value is equalled or

exceeded. Strictly speaking this is not a probability curve, because discharge

is correlated between successive time intervals and discharge characteristics
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are dependent on the season; hence the probability that discharge in a par-

ticular day exceeds a specified value depends on the discharge on preceding

days and on the time of the year [Mosley and McKerchar, 1993, p. 8.27].

However, a flow duration curve is often interpreted as the complement of the

cumulative distribution function of the daily streamflow values at a site. The

FDC also provides a graphical summary of streamflow variability and is often

used in hydrologic studies for hydropower, water supply, irrigation planning

and design, and water quality management (a review on many applications

is provided by Smakhtin [2001]).

The empirical FDC is constructed from observed streamflow time series.

These observations can have different time-scale resolution, although mean

daily streamflow values are commonly used. The data are ranked in descend-

ing order and each ordered value is associated with an exceedance probability

F , for example through a plotting position formula. If the FDC is con-

structed on the basis of the whole available data set, merging together all

available years of data, it represents the variability of flow over the entire ob-

servation period. This representation is valid when the dataset is sufficiently

long. A different approach, introduced by Vogel and Fennessey [1994], is to

consider annual FDCs separately, i.e., to consider a different FDC for each

year when data are available [e.g., Claps and Fiorentino, 1997, Iacobellis,

2008]. A parametric model able to represent both the total and the annual

FDCs for gauged and ungauged sites has been proposed, for instance, by

Castellarin et al. [2004b, 2007].

In the present work only total FDCs will be considered, adopting a non-

parametric approach for their representation. The FDCs are modelled fol-

lowing the index-value approach, in which the flow duration curve Q(F ) is

the product of two terms Q(F ) = µ · q(F ), where the index flow µ is the

scale factor and the dimensionless total flow duration curve q(F ) represents

the shape of the FDC. The present work focuses on the regionalization of

the dimensionless curve, while the estimation of the index flow will not be
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treated. In section 4.2 a distance-based method is described. This method is

applied to a case study in section 4.3, where a set of basins located in North-

Western Italy and Switzerland is investigated. The method’s performances

against alternative parametric methods are finally checked in section 4.4.

4.2. Distance-based method

Leaving aside the index-flow estimation, the regional FDC model developed

here is based on concepts different from those of chapter 2. Here, the re-

gional procedure still requires the creation of separate regions as in more

traditional approaches; however, the curves are grouped according to their

shape (dis)similarity. In standard approaches [e.g., Fennessey and Vogel,

1990, Singh et al., 2001, Holmes et al., 2002], this shape is represented in a

parametric way. For instance, the coefficient of variation (CV) or the L-CV

[Hosking and Wallis, 1997] of the curve can be used for this purpose. In this

case, the selected parameter is related to basin descriptors through a linear

or a more complex model. A regression analysis is performed with different

combinations of descriptors, and those that are strongly related with the

parameter are used for its estimation in ungauged sites.

The distance-based approach proposed here considers the dimensionless

FDC as a whole, without resorting to statistical descriptors of its shape. This

means that a curve is not fitted by an analytical function, which would imply

a parametric representation of the FDC. Considering the curve as a whole

object is particularly useful in those cases where the highly variability in the

curves shapes lead to a difficult, or even unreliable, parameterization. This is

the case, for example, of the research in the ecological field [e.g. Legendre and

Legendre, 1998] as well as in the patterns recognition procedures [Pekalska

and Duin, 2005], where the distance-based methods are widely used.

The multiregression approach can still be used to study the (dis)similarity

between pairs of basins. The procedure is synthetically described below

as a sequence of logical steps, while details are provided in the following



i

i

i

i

i

i

i

i

78 Distance-based regional approach for flow duration curves

subsections:

1. for each couple of stations, a dissimilarity index between dimensionless

curves is calculated using a predefined metric (section 4.2.1);

2. for each considered basin descriptor (e.g., area, mean elevation, mean

slope, drainage path length, etc), the absolute value of the difference

between its measure in two basins is used as the descriptor distance;

3. the distances between couples of FDCs (and between basin descriptors)

are organized in distance matrices (section 4.2.2);

4. a multiregression approach is applied using the FDC distance matrix

as the dependent variable, and the descriptor distance matrices as the

independent variables; this serve to select the relevant basin descriptors

(those associated to the best regression model) (section 4.2.2);

5. in the resulting descriptors’ space, stations with similar descriptor val-

ues (small distances between descriptors) are grouped together into

regions through a cluster analysis (section 4.2.3);

6. the regional dimensionless flow duration curve is estimated by taking

the average of all the curves belonging to the cluster, as in the “graph-

ical approaches” reviewed by Castellarin et al. [2004a] and references

therein.

Critical points of this procedure, discussed more in detail in the following,

are the choice of a suitable distance measure for the dimensionless flow dura-

tion curves, the identification of the best regression model between distance

matrices, and the choice of the method of cluster analysis for the formation

of the regions.

4.2.1. (Dis)similarity between curves

Let Q∗s be the sequence of Ns daily discharges in the gauged station s, con-

taining all the recorded values. Based on these data the scale factor µs is
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first computed as the average of the whole sequence. Then, the dimension-

less sequence q∗s = Q∗s/µs is rearranged in descending order and each value

qi,s, with i = 1, 2, . . . , Ns, is associated to its exceedance probability (i.e.,

through the Weibull plotting position)

{
1

Ns + 1
,

2
Ns + 1

, . . . ,
Ns

Ns + 1

}
. (4.1)

The distance-based procedure proposed here is based on the comparison be-

tween couples of curves: for this purpose it is convenient the two curves

have the same number of elements. Since total FDCs have generally differ-

ent lengths, depending on the number of years they cover, we resample them

to make the curves comparable. For this purpose, we resample the FDCs at

the frequency values

{
1

365 + 1
,

2
365 + 1

, . . . ,
365

365 + 1

}
, (4.2)

obtaining a new representation of the FDC in the station s:

{q1,s, q2,s, . . . , q365,s} . (4.3)

Other sampling rates can be used to better sample particular parts of the

curves. In this work we have also considered an alternative sampling method

that produces 365 equally spaced values in the z-space, where z is the normal

reduced variate (with zero mean and unit variance). Back-transforming these

values to the frequency space, the 365 values are no more equally spaced but

more concentrated around higher and lower frequencies. Figure 4.1 sketches

two curves with different number of elements resampled with a constant and

a z spacing in the frequency axis.

In this approach a measure of similarity between curves (hereafter termed

distance) is required. Given two FDCs, relative to two gauging stations



i

i

i

i

i

i

i

i

80 Distance-based regional approach for flow duration curves

Figure 4.1.: Comparison of dimensionless flow duration curves. Sampling points
with constant spacing in frequency representation (a), and with a denser presence
on the FDC tails due to normal transformation (b).

s1 and s2, constituted by 365 elements each: {q1,s1 , q2,s1 , . . . , q365,s1} and

{q1,s2 , q2,s2 , . . . , q365,s2}, a simple measure of their dissimilarity can be de-

fined as the “distance” calculated by the norm of order one,

δs1,s2 =
365∑

i=1

|qi,s1 − qi,s2 | . (4.4)

The value δs1,s2 can be interpreted also as an approximation of the area

between the curves. The computation of the distance according to equation

(4.4) is exemplified in figure 4.2 for two generic FDCs.

If n is the number of sites where data are available, the distance measures

for each FDC pair are organized in a n× n distance matrix like:

∆ =




0 δ1,2 . . . δ1,n

δ2,1 0
...

...
. . .

δn,1 . . . 0




(4.5)
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where the elements δs1,s2 are distances between curves (calculated with equa-

tion (4.4)). Analogously, matrices like (4.5) can contain distances between

catchment descriptors (if d1 is the value of the descriptor for basin 1 and d2

for basin 2, then δ1,2 = |d1−d2|). Since the matrices are symmetric and with

null diagonal values, after removing the redundant values, only n(n − 1)/2

values per matrix are informative.

The distance measure of equation (4.4) not only depends on the resampling

method but also on the “measurement space” considered for the representa-

tion of flows. For example, if the flows are transformed to provide a more

convenient representation of the FDC, the distances δs1,s2 are affected by the

transformation. Three main representations of the FDC are considered in

this work: (a) flow data plotted versus their corresponding plotting position,

(b) log-transformed flows versus their corresponding plotting position and

(c) log-normal probability plot (log-transformed flows versus normal reduced

variate). There are no particular reasons to prefer a priori one of these repre-

sentations, therefore all of them are considered in the case study and will be

respectively referred as “linear representation”, “logarithmic representation”

and “log-normal representation” (see figure 4.2). Three parametric functions

will be used in a traditional regional FDC estimation exercise in section 4.4,

for comparison to the distance-based procedure developed here.

4.2.2. Distance matrices, linear regression and Mantel test

In this section we show how to identify the catchment descriptors that,

thanks to their relations with the FDCs, should be used for the formation of

cluster regions. A different distance matrix, hereafter termed ∆Xi, is deter-

mined for each descriptor, while the distance matrix for the dimensionless

FDCs is called ∆Y . The relation between the distance matrix ∆Y and the

various ∆Xi is assessed using a multi-regressive approach. Note that the

multi-regressive approach based on distance matrices is not used to estimate
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Figure 4.2.: Distance between two FDCs calculated following equation (4.4). The
three panels show a pair of FDCs in three different representation spaces: panel (a)
is the linear representation (flow values versus exceedance frequency); panel (b)
is the logarithmic representation in which discharges are log-transformed; panel
(c) represents the log-normal probability plot in which the abscissa is the normal
reduced variate z.
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FDC coefficients, but to identify the descriptors to be used in the following

step for region creation. We start considering a simple linear model:

∆Y = β0 + β1∆X1 + . . . + βp∆Xp
+ ε (4.6)

with p as the number of descriptors involved, βi as the regression coefficients

and ε the residual matrix. The best possible regression is selected through

the adjusted coefficient of determination

R2
adj = 1− (1−R2)

n− 1
n− p− 1

(4.7)

where R2 is the standard coefficient of determination [e.g., Kottegoda and

Rosso, 1997], p the number of descriptors and n the number of basins con-

sidered. The regression coefficients and R2 can be computed in a standard

way [Legendre et al., 1994], that is to say that it does not matter if the

elements are organized in a distance matrix. However, in the formulation

of the adjusted coefficient of determination it is better to use the value n

(the number of basins) instead of n(n−1)/2 that is the number of points in-

volved in the regression (namely the number of distance values). This is due

to the fact that the values inside the matrices are not mutually independent.

Dependancy has another significant impact on the method. In particular,

the validity of the tests used to assess the significance of the independent

variables (e.g., the Student t test) is affected. A different significance test, as

the Mantel test [Mantel and Valand, 1970], is then needed, which accounts

for the non-independence of the elements in the distance matrices.

The Mantel test was originally proposed by Mantel and Valand [1970] for

analysis of correlation between distance matrices, and since then it has been

widely improved and used with many different kinds of data. In fact, distance

matrices have been frequently used in the biological and ecological sciences
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[e.g., Legendre, 1993, Lichstein, 2007]. The simple Mantel test [Mantel and

Valand, 1970] is used to evaluate the significance of the linear correlation

between two distance matrices. This test is performed computing a statistic

(usually the Pearson correlation coefficient) between all the pairwise elements

of the two matrices. Its significance is tested by repeatedly permuting the ob-

jects in one of the matrices, and recomputing the correlation coefficient each

time; permutations are performed simultaneously exchanging the rows and

the columns of the matrices (e.g., if rows of indexes 2 and 10 are exchanged,

also columns of indexes 2 and 10 have to be exchanged [see Legendre et al.,

1994]). The significance of the statistic is assessed by comparing its original

value to the distribution of values obtained from the permutations, which

are considered as many realizations of the null hypothesis of no correlation.

The simple Mantel test can be extended to multiple predictor variables to

be applied in multiple linear regression models as (4.6). The extension has

been introduced by Smouse et al. [1986], discussed and improved by Leg-

endre et al. [1994] and recently applied in the ecological field by Lichstein

[2007]. Following the procedure of Lichstein [2007] each matrix, after remov-

ing redundant values, is unfolded into a vector of distances, and regression

is performed in the classical way. Then, a null distribution is constructed

permuting the elements only in the dependent variable distance matrix ∆Y .

Similarly to what described for the simple Mantel test, the rows and the

colums of the matrix ∆Y are permuted simultaneously and each regression

coefficient is tested individually.

4.2.3. Cluster analysis

The proposed procedure serves for the estimation of a FDC in an ungauged

basin on the basis of curves relative to other basins. Given a large group of

candidate “donor” basins, we want to extract a subset of basins that have

geomorphologic and climatic characteristics similar to those of the target

site. The FDCs collected in these sites will be used for the estimation of the
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unknown curve. There are different regionalization techniques to choose the

subset of basins, for example leading to the formation of fixed regions through

cluster analysis [Hosking and Wallis, 1997, Viglione et al., 2007], or based

on the method of the region of influence [ROI, Burn, 1990]. In this work the

first approach is adopted, selecting fixed regions by splitting the descriptors

space in non-overlapping areas by means of a cluster analysis. However,

the generalization of the method to the ROI technique is straightforward.

The definition of the descriptors space depends on the outcome of the multi-

regressive procedure described in section 4.2.2, that allows one to identify a

group of significant geomorphoclimatic parameters.

The cluster analysis method used here is a mixed method in which the

Ward hierarchical algorithm [Ward, 1963] is followed by a reallocation proce-

dure that minimizes the dispersion within each cluster. The Ward algorithm

is agglomerative; it starts with a configuration in which each element is a

cluster itself, and progressively merges clusters in a way to produce the min-

imum information loss, measured as the sum of squared deviation of each

element from its cluster centroid. We use the Ward algorithm because it

is able to generate compact clusters with an evenly distributed number of

elements. A disadvantage is that it does not allow elements reallocation,

so that the final configuration could not be the optimal one. To avoid this

inconvenience, a reallocation procedure is applied in concurrence with the

agglomerative clustering. For instance, if the Ward clustering yields a final

configuration with k clusters we compute the statistic

W =
k∑

i=1




ni∑

j=1

D2
i,j


 , (4.8)

where Di,j is the Euclidean distance between the j-th element of the i-th

cluster and the cluster centroid, and ni is the number of elements contained

in the i-th cluster. An element is moved to another cluster if the new con-



i

i

i

i

i

i

i

i

86 Distance-based regional approach for flow duration curves

figuration provides a lower value of W . The procedure ends when W stops

reducing after the reallocations, so that every element of a cluster is closer

to its center of mass than to the centroid of the nearby cluster.

The reallocation procedure leads to an optimal configuration with k re-

gions. A controversial point of the procedure is the choice of the optimal

number of clusters. Usually, in regional analyses, the aim is to get the small-

est possible number of homogeneous regions, so that each of them has a large

enough number of elements. In this work, the selection of the ideal number

of clusters is done investigating different k values and evaluating, for each

configuration, a quality index. This index is computed by estimating (in

cross-validation mode) the curves for all sites by using the regional model

(with a given k), and computing the distance as in equation (4.4) where,

in this case, s1 is the measured curve and s2 is the estimated one. This

distance is adopted as an error measure and the overall mean error is used

as a quality index to select the number of clusters. This method does not

ensure that the clusters are homogeneous, because no homogeneity test is

explicitly used.

After having subdivided the descriptors space in regions, one can proceed

to the estimation of the flow duration curve in ungauged sites. For one such

site one must first determine the values of the descriptors selected in the

procedure of section 4.2.2. The descriptors at the ungauged site are entered

as coordinates in the descriptors’ space and the site is assigned to the cluster

whose centroid is the closest to the basin descriptors. The curves of all

basins belonging to the selected cluster will be used to build the regional

curve. This latter curve is simply estimated point by point as the average

of the values of q relative to each duration for the curves belonging to the

selected region, as in the graphical approach described in Castellarin et al.

[2004a].

The descriptors used in the cluster analysis are preliminary standardized

(i.e., converted into variables with zero mean and unit variance). Standard-
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ization of raw descriptors values avoids an unwanted weighting effect due to

the different measurement units. If the descriptors are assumed to have dif-

ferent importance in the cluster creation, a procedure can be adopted to give

different weights to each descriptor. Regression coefficients of equation (4.6)

can be used to compare the relative effect of each descriptor distance matrix,

if the distance matrices have been previously standardized: the greater the

coefficient, the greater the relative effect of its descriptor distance matrix on

the curve distance matrix, so that the coefficients can be used as weights.

This weighted clustering procedure will be tested in the following sections

by comparing it to the standard unweighted clustering.

After the regional curves have been determined, it is necessary to evaluate

if they can be considered significantly different from each other, because

otherwise the regions should be merged. To assess if two regional curves are

significantly different, we use a procedure based on the distances between

curves. First, a reference distance is computed as the median (or the mean)

of the distances between each empirical curve and the regional one. Then,

the distance matrix of the regional curves is computed and all its elements are

compared against the reference distance: two regional curves are considered

significantly different if their distance is greater than the reference distance,

otherwise the two clusters are merged together. This procedure is repeated

until all the regional FDCs are significantly different.

Note that the reference distance and the distance matrix of the regional

curves depend on the representation space on which the distances are cal-

culated, hence different results are expected using different representation

spaces.
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4.3. Case study: distance-based method
application

4.3.1. Hydrological and geomorphologic data

The application of the distance-based procedure for regional estimation of

FDC has been carried out in the R statistical environment [R Development

Core Team, 2007], integrated for Mantel test and cluster analysis with the

nsRFA package [Viglione, 2007a].

Available data include 95 river basins located in northwestern Italy (36

basins of Piemonte and Valle d’Aosta regions) and in Switzerland (59 basins);

the geographical location of the gauging stations is shown in figure 4.3. Ital-

ian flow data derive from the publications of the former Italian Hydrographic

Service and include series lengths ranging between 7 years and 41 years. Hy-

drological and geomorphological variables relative to Italian basins are in-

cluded in the widest CUBIST database [CUBIST Team, 2007] that contain

such data for more than 500 basins in Italy. The catchment area of North-

western Italy basins ranges between 22 and 7983 km2, and their average

elevation ranges from 494 to 2694 m a.s.l. Switzerland data are included in

the Reference Hydrometric Network (SHRN) provided by the BAFU (Bun-

desamtes für UmweltSwiss) and include daily streamflow series with a mini-

mum length of 18 years and a maximum length of 99 years. The catchment

area of Switzerland basins ranges between 7 and 616 km2, while their average

elevation varies from 475 to 2847 m a.s.l. Geomorphological characteristics

of each basin has been obtained from a digital terrain model (about 90m cell

grid) provided by NASA [2000] with automatic procedures originally devel-

oped by Rigon and Zanotti [2002] under a GRASS GIS environment. For

the complete list of basins considered, whose codes are referred in figure 4.3,

and their geomorphologic variables see appendix B and A.
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Figure 4.3.: Geographical location of the gauging stations of the 95 catchments
considered in the study. Basins 1 to 59 belong to Switzerland, while the remaining
ones are located in the Northwestern part of Italy, in Piemonte and Valle d’Aosta
regions.
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4.3.2. Procedure setting

Several linear regression models between distance matrices have been in-

vestigated using relation (4.6). They are built using different combination

of:

• Curve distance matrices ∆Y : the three representations described in

section 4.2.1 and figure 4.2 (linear, logarithmic and log-normal plot)

are considered;

• Descriptors distance matrices ∆X : all possible combination from one

to five descriptors have been taken into account.

Regression models are ordered in terms of R2
adj values and tested for sig-

nificance with the multiple Mantel test, with a significance level of 0.05.

Furthermore, a test against multicollinearity has been performed in order to

exclude variables with redundant information [Montgomery et al., 2001].

For the linear representation, best results are obtained with four and three

descriptors. Lower R2
adj values arise from simpler models with only two

descriptors. In the logarithmic space, the best model is again characterized

by four descriptors, but in this case simpler models with two parameters have

comparable R2
adj . In the log-normal space none of the solutions accepted

after testing are based on more than two descriptors. We decided to adopt

models with two parameters because of their higher robustness (see table 4.I).

The R2
adj values obtained with regression models with distance matrices are

very low, although the descriptors result to be statistically significant. In

this regard it is important to remind that regressions are only used for the

selection of the suitable descriptors and not for direct estimation.

Table 4.I shows the three best models for each representation with two de-

scriptors, where all the models have been tested for significance of regression

coefficients with the Mantel test with a level of significance of 0.05. It ap-

pears that, considering together the three representations of different curve

distance matrices, the most significant descriptors are always the same: the
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Table 4.I.: Regression models with two descriptors that well describe the relation-
ship between curve distance matrix and descriptors distance matrices. All the
models pass the Mantel test (significance of regression coefficients) with a level of
significance of 0.05 and the VIF test (multicollinearity) with threshold equal to 5.
The curve distance matrix is calculated in three different representation spaces: the
linear, the logarithmic and the log-normal one.

Representation space

Best relation Linear Logarithmic Log-normal

1st H + MHL Hmin + MHL Hmin + MHL

2nd Hmin + MHL Hmin + Pm H + MHL

3rd H + pm Pm + MHL Pm + MHL

Table 4.II.: Brief description and range of variation of the descriptors used by the
distance-based models (see table 4.I).

Descriptor Definition Min Mean Max

H mean elevation of the drainage basin above sea
level (m)

475 1665 2847

Hmin minimum elevation of the drainage basin above
sea level (m)

82 839 1974

MHL mean hillslope length (m) 584.1 759.5 973.6

pm average of the slope values associated to each
pixel in the DEM of the drainage basin (%)

4 39.9 61.6

Pm mean large-scale slope (%) 0.8 15.7 50.1

minimum basin elevation (Hmin), the mean elevation (H), the mean hills-

lope length (MHL), the mean basin slope (pm) and the modified basin slope

(Pm). A summary of the range of these descriptors is reported in table 4.II.

This suggests to adopt the same set of descriptors with all the three repre-

sentation spaces; Hmin and MHL has been selected. The adoption of these

two descriptors is coherent with the typology of investigated basins. In fact,

since we are considering mainly mountain basins, the elevation descriptor is

expected to be relevant because of its strong relation to snow-accumulation

and snowmelt mechanisms; similarly, the hillslope mean length provides a

synthetic description of runoff routing mechanisms.
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4.3.3. Regions definition

The second step, after the choice of the suitable descriptors, is to pool the

catchments together with the cluster analysis, as described in section 4.2.3.

The procedure is applied to both the weighted and the unweighed cluster

configurations. For all the three representation spaces, the unweighed proce-

dure often demonstrates better performances, while the weighted procedure

leads to marginal, if any, improvements that do not justify its use. Following

the criteria mentioned in section 4.2.3 and considering all the three repre-

sentation spaces, the suggested number of clusters obtained for Italian and

Switzerland data is four.

This configuration is then checked, to assess if the regional FDCs are sig-

nificantly different, using the procedure described in section 2.3 for all the

three representation spaces. The FDCs of the original four clusters cannot be

considered significantly different from each other, neither in the linear space,

nor in the other two logarithmic spaces. Thus, for each representation space,

the two most similar clusters are merged together. The new configurations

with three clusters can be accepted in the linear space only. Applying again

the procedure for the logarithmic and log-normal space we obtain two config-

urations consisting of two clusters each. To select one among these different

configurations of clusters, we perform the following cross-evaluation: for each

set of clusters (e.g., the one obtained in the linear space), we check if the dif-

ference between the regional FDCs is significant in the other representation

spaces (i.e., also in the logarithmic and log-normal spaces). Based on this

cross-evaluation, we choose the configuration with 2 clusters obtained in the

logarithmic space, which is represented in Figures 4.4 and 4.5. Hence, this

latter configuration will be used as the result of the distance-based model.

The final regions obtained are shown in figure 4.4. Curves belonging to

each cluster are grouped together and the regional curves are derived as the

average of all curves belonging to the region. Figure 4.5 shows the regional

curves (black lines) obtained from curves belonging to the cluster (grey lines)
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Figure 4.4.: Disjoint regions in the space of catchment descriptors: Hmin is the
minimum basin elevation and MHL is the mean hillslope length. The dashed
lines represent the boundaries between the 4 clusters obtained before merging
the clusters whose FDCs cannot be considered significantly different. The final 2
disjoint regions are separated by the solid line.

in the log-normal space. Although every curve bundle appears to be quite

wide, regional curves are able to represent two characteristic behaviors. In

fact, we can observe an almost straight curve and a “S” shaped curve. A

quantitative representation of model quality and estimation errors is reported

in the following section, where a comparison against some parametric meth-

ods is performed.

4.4. Comparison with parametric models

The distance-based regional procedure developed in this work is tested against

some standard parametric regional models. In general, the choice of the refer-

ence model is not trivial and more than one function can be used to describe
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Figure 4.5.: Flow duration curves grouped by cluster (in grey) and corresponding
regional curves (in black).
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Figure 4.6.: L-moments ratio diagram for the dimensionless FDCs of the 95 basins
(filled circles for Switzerland data and white circles for Italian data). The lines
indicate different theoretical three-parameter distributions: generalized logistic
(GLO), generalized extreme-value (GEV), generalized Pareto (GPA), lognormal
(LN3), Pearson type III (PE3).

the FDCs. For this purpose, a useful tool is the L-moments ratio diagram of

figure 4.6 [Hosking and Wallis, 1997] where one plots the LCA (coefficient of

L-skewness) of each dimensionless FDC versus its corresponding Lkur (co-

efficient of L-kurtosis). The lines represent the domain of the distributions

over the LCA − Lkur space and can help one to identify the distribution to

be used. This approach has been followed, for example, by Castellarin et al.

[2007].

In this work, the analysis is performed over a database of 95 basins that

have very different characteristics in terms of LCA and Lkur, as figure 4.6

shows. The scattering of the points make the choice of the distribution

rather difficult. For this reason, different parametric models are used for the

comparison with the distance-based procedure.
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Each parameter θ of a parametric model is related to the catchments’ de-

scriptors d by a linear model of the form

θ = a0 + a1 · d1 + a2 · d2 + . . . + an · dn + ε. (4.9)

The first step is to identify a suitable regional model to estimate the generic

parameter for an ungauged station, where θ is previously estimated at each

station s using a suitable technique. The resulting parameters θs are then

related to descriptor data (raw data, not distances) for all the catchments

(not classified in regions) to identify a regional model (regression) able to de-

scribe them. Many linear models of the form of equation (4.9) are considered

and validated with a t-Student test followed by a multicollinearity (VIF) test

and subsequently ordered by their values of R2
adj [e.g., Montgomery et al.,

2001].

The models considered here are the two-parameter log-normal distribu-

tion (LN2), the three-parameter Pearson type III (PE3) and the generalized

Pareto (GPA) distributions. The log-normal model is represented by the

relation

log (q) = θ1 + θ2 · z (4.10)

where z is the quantile of a normal distribution with zero mean and unit

variance corresponding to each flow’s plotting position values. In the log-

normal probability representation, equation (4.10) is a straight line whose

coefficients θ1 and θ2 can be estimated with a least squares linear regression.

The GPA probability density function is defined as

f(q) = θ−1
2 exp[−(1− θ3)y], (4.11)
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with y = −θ−1
3 log[1− θ3(q − θ1)/θ2] if θ3 6= 0 and y = (q − θ1)/θ2 if θ3 = 0,

where θ1, θ2 and θ3 are the location, scale and shape parameter, respectively;

the PE3 probability density function is defined as

f(q) =
(q − θ1)θ2−1 exp[−(q − θ1)/θ3]

θθ2
3 Γ(θ2)

, (4.12)

where θ1, θ2 and θ3 are the location, scale and shape parameter, respectively,

and Γ(·) is the gamma function. For details about these distributions and

for parameters estimation refer to Hosking and Wallis [1997] and Viglione

[2007a]. The regional estimation of the models’ parameters use the descrip-

tors listed in table 4.III

The distance-based model and the parametric ones are all tested using a

cross-validation approach in which one station is considered ungauged and

its data are removed from the database. The models are then recalibrated

using only the remaining data, and the unknown curve is estimated. After

this procedure is repeated for all basins, one can compute, for each basin,

the error measure δMOD,EMP as the distance between the estimated FDC and

its empirical counterpart.

The non-parametric FDC representation method performs better than the

parametric models for most of the analyzed basins, independently of the

representation space considered. Figure 4.7 shows a comparison between

the errors δMOD,EMP calculated with the parametric and the distance-based

approaches. Each parametric model is able to well describe only a subset of

the studied basins (see figure 4.6), which is probably the reason why they

demonstrate similar and non excellent performances when applied to the

whole dataset.
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Figure 4.7.: Quality of estimated dimensionless FDCs by the distance-based
method compared with the log-normal model (a), the generalized Pareto model
(b) and the Pearson type III model (c). The distance between the empirical curve
and the estimated one δMOD,EMP is reported in the scatter plot for each con-
sidered basin. The solid line represents the ratio 1:1 between the errors, while
dashed lines delimit the areas where errors for the distance-based model are twice
the parametric ones, and viceversa. Points above the solid line represent curves
better estimated by the distance-based method; points above the upper dashed
line represent curves much better estimated by the distance-based method.
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Table 4.III.: Descriptors used to estimate the parametric model’s parameters with
level of significance (Student test) and Variance Inflation Factor test. See ap-
pendix B for more detailed references about descriptors.

Model Parameter Descriptors Student VIF R2
adj

Lognormal θ1 MA, Cc < 0.05 < 5 0.12

θ2 Xc, SLDP , pm, MHL < 0.05 < 5 0.17

GPA θ1 Xmax, SLDP , Pm, MHL < 0.02 < 5 0.28

θ2 Ymin, IPS25, cos(Oov) < 0.05 < 5 0.54

θ3 Xc, Yc, IPS50 < 0.05 < 5 0.39

PE3 θ1 Xmax, SLDP , pm, Cc, MHL < 0.02 < 5 0.39

θ2 Xc, Ymin, IPS100, Cc < 0.05 < 5 0.31

θ3 Ymin, IPS50 < 0.02 < 5 0.28

4.5. Final remarks

The procedure for dimensionless flow duration curves estimation in ungauged

basins developed in this chapter hinges on the concept of grouping basins

based on distances, that quantitatively represents the dissimilarity between

curves and catchment’s descriptors. This approach, based on distance ma-

trices, allows one to account for a FDC as a whole object, avoiding the

description of the curve by means of a parametric function. Moreover, no

assumptions on the shape of the FDCs is made. This is an important fea-

ture when one has to manage at the same time curves described by a simple

geometry (e.g., almost straight lines in the log-normal probability plot) and

curves with more complex behavior (e.g., “S” shaped curves). In fact, com-

plex shapes can be well described by a parametric model only using an high

number of parameters, that sometimes can not guarantee a robust parame-

ters estimation.

The results obtained by means of the distance-based model (non-parametric

representation of the FDC) applied to the present dataset are comparable,

and many times better, than the estimation yielded by classical parametric

models of the same or greater complexity. These results are obtained on

the basis of only two descriptors, while the log-normal model requires six
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descriptors for the assessment of two parameters, and the PE3 and GPA

models require 8 and 10 descriptors to estimate their three parameters.

The main advantage of the method based on distance matrices is its ability

in dealing with curves. For instance, the regionalization method proposed

here could be improved considering also “complex” catchment descriptors as

the hypsographic curve, or climatic information like the precipitation regime

curve.
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Chapter 5.

Summary and conclusions

The issues addressed in this thesis are focused around the streamflow estima-

tion in the so called ungauged basins, i.e. catchments for which no discharge

measurement are available, or where recorded data are not adequate for the

analysis. In these cases, the most common approach is to use the information

known at some gauged locations to characterize the ungauged basins. This

procedure can be done through different statistical procedure.

The first approach has been developed in chapter 2 in which a regional

procedure has been studied in order to improve the estimation of flood flows

in ungauged basins. The method is thought in particular for areas where

many data-scarce stations are present. In fact, short records are usually

discarded by traditional regionalization approaches, but they still contain

useful information. This is the case of the area presented in the case study,

where a lot of gauging stations have been abandoned and re-established only

in recent times. The method can be also helpful where new gauging stations

have been just installed, because it allows to consider also statistics based

on few data.

The procedure refers the problem of frequency curve reconstruction in the

regionalization of three different L-moments that are subsequently combined.

This can be considered as an extension of the index-flood approach, in which

the mean is used as a scale factor, while LCV and LCA are combined to

build the growth curve. The advantage of this approach where stations with

a variable number of data are available is evident: one can calculate the
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lower-order L-moments on the sample record and regionalise the higher-order

ones. The proposed model also allows a clear treatment of the prediction

uncertainty. The procedure has been calibrated over a set of 70 catchments

and then has been applied in order to map the regional prediction over the

whole drainage network (see for example figure 1.2).

The regional approach is a powerful tool for prediction in ungauged basins,

however, it neglects some local-scale information, like the presence of a gaug-

ing station close to the ungauged site. The effects of proximity has been in-

vestigated in chapter 3 where a procedure to correct the regional prediction

is proposed, based on the information retrieved from close gauged stations.

This approach is proved to be suitable for the index-flood when the areas

of the two catchments have a ratio lower than 10, while no appreciable im-

provements are found for higher-order L-moments. Anyway, the framework

developed in chapter 3 can be easily extended to work also with other kind

of models.

Finally, chapter 4 discusses on how to deal with target variables that are

not represented by numbers, but that are considered as “whole” curves.

Each curve is classified by comparison against other curves so that their

dissimilarity can be quantified by a distance measure. Statistical analysis

of distances allows grouping the curves in a basin descriptor’s domain and,

consequently, allows the whole curve prediction in ungauged basins. The

regional model has been applied to the case of flow duration curves in North-

wester Italy obtaining a good prediction ability, equal and often better than

more traditional approaches. Besides, the distance-based approach has wide

improvement possibilities, as that to directly handle “complex” descriptors

like curves (e.g. precipitation regime, hypsometric curve, etc), raster maps

clipped over basin boundaries (e.g. mean annual precipitation, vegetation

cover, etc) and non-numeric/cathegoric data (e.g. soil stratigraphy). Also

the tree-structure of river network can be accounted by the distance-based

approach, although through a more complicated methodology.
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The models developed in this thesis have been applied to the flood fre-

quency curve and the flow duration curve, as hydrological variables; however,

the methods proposed are general and can be used also with other kinds of

data.



i

i

i

i

i

i

i

i



i

i

i

i

i

i

i

i

References 105

References

AC Bayliss and DW Reed. The use of historical data in flood frequency

estimation. Technical report, Centre for Ecology and Hydrology, 2001.

DH Burn. Evaluation of regional flood frequency analysis with a region of

influence approach. Water Resources Research, 26(10):2257–2265, 1990.

KP Burnham and DR Anderson. Model Selection and Multi-Model Inference.

Springer, second edition edition, 2002.

A Castellarin, G Galeati, L Brandimarte, A Montanari, and A Brath. Re-

gional flow-duration curves: reliability for ungauged basins. Advances in

Water Resources, 27(10):953 – 965, 2004a. ISSN 0309-1708.

A Castellarin, RM Vogel, and A Brath. A stochastic index flow model of flow

duration curves. Water Resources Research, 40(3), 2004b. ISSN 0043-1397.

A Castellarin, G Camorani, and A Brath. Predicting annual and long-term

flow-duration curves in ungauged basins. Advances in Water Resources,

30(4):937 – 953, 2007. ISSN 0309-1708.

A Castellarin, DH Burn, and A Brath. Homogeneity testing: How ho-

mogeneous do heterogeneous cross-correlated regions seem? Journal

Of Hydrology, 360(1-4):67–76, OCT 15 2008. ISSN 0022-1694. doi:

10.1016/j.jhydrol.2008.07.014.

F Chebana and TBMJ Ouarda. Depth and homogeneity in regional flood

frequency analysis. Water Resources Research, 44(11), NOV 15 2008. ISSN

0043-1397. doi: 10.1029/2007WR006771.



i

i

i

i

i

i

i

i

106 References

K Chokmani and TBMJ Ouarda. Physiographical space-based krig-

ing for regional flood frequency estimation at ungauged sites. Wa-

ter Resources Research, 40(12), DEC 28 2004. ISSN 0043-1397. doi:

10.1029/2003WR002983.

P Claps and M Fiorentino. Integrated Approach to Environmental Data

Management Systems, volume 2 (31) of NATO-ASI series, chapter Prob-

abilistic Flow Duration Curvers for use in Environmental Planning and

Management, pages 255–266. Harmancioglu et al., Kluwer, Dordrecht,

The Netherlands, 1997.

CUBIST Team. Cubist project: Characterisation of ungauged basins

by integrated use of hydrological techniques. Geophysical Re-

search Abstracts, Vol. 10, EGU2008-A-12048, 2008 SRef-ID: 1607-

7962/gra/EGU2008-A-12048 EGU General Assembly 2008, 2007. URL

http://www.cubist.polito.it/.

C Cunnane. Methods And Merits Of Regional Flood Frequency-Analysis.

Journal Of Hydrology, 100(1-3):269–290, JUL 30 1988. ISSN 0022-1694.

T Dalrymple. Flood frequency analyses, volume 1543-A of Water Supply

Paper. U.S. Geological Survey, Reston, Va., 1960.

EAH Elmir and AH Seheult. Exact variance structure of sample L-moments.

Journal Of Statistical Planning And Inference, 124(2):337–359, SEP 1

2004. ISSN 0378-3758. doi: 10.1016/S0378-3758(03)00213-1.

N Fennessey and RM Vogel. Regional flow-duration curves for ungauged sites

in massachusetts. Journal of Water Resources Planning and Management-

ASCE, 116(4):530 – 549, 1990. ISSN 0733-9496.

S Gabriele and N Arnell. A hierarchical approach to regional flood frequency-

analysis. Water Resources Research, 27(6):1281–1289, JUN 1991. ISSN

0043-1397.



i

i

i

i

i

i

i

i

References 107

L Gottschalk. Correlation and covariance of runoff. Stochastic Hydrology

and Hydraulics, 7(2):85–101, JUN 1993a. ISSN 0931-1955.

L Gottschalk. Interpolation of runoff applying objective methods. Stochastic

Hydrology and Hydraulics, 7(4):269–281, DEC 1993b. ISSN 0931-1955.

L Gottschalk, I Krasovskaia, E Leblois, and E Sauquet. Mapping mean and

variance of runoff in a river basin. Hydrology and Earth System Sciences,

10(4):469–484, 2006. ISSN 1027-5606.

VW Griffis and JR Stedinger. The use of GLS regression in regional hydro-

logic analyses. Journal Of Hydrology, 344(1-2):82–95, SEP 30 2007. ISSN

0022-1694. doi: 10.1016/j.jhydrol.2007.06.023.

GT Hahn. Simultaneous prediction intervals for a regression model. Tech-

nometrics, 14(1):203–214, February 1972.

MJ Hall and AW Minns. The classification of hydrologically homogeneous re-

gions. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,

44(5):693–704, OCT 1999. ISSN 0262-6667.

RM Hirsch. Probability plotting position formulas for flood records with

historical information. Journal Of Hydrology, 96(1-4):185–199, DEC 15

1987. ISSN 0022-1694.

MGR Holmes, AR Young, A Gustard, and R Grew. A region of influence

approach to predicting flow duration curves within ungauged catchments.

Hydrology and EArth System Sciences, 6(4):721 – 731, 2002. ISSN 1027-

5606.

JRM Hosking and JR Wallis. Regional Frequency Analysis: An Approach

Based on L-Moments. Cambridge University Press, 1997.

V Iacobellis. Probabilistic model for the estimation of t year flow duration

curves. Water Resources Research, 44(2):W02413, 2008. ISSN 0043-1397.



i

i

i

i

i

i

i

i

108 References

Interagency Advisory Committee on Water Data. Bulletin 17B - Guide-

lines for determining flood flow frequency. US Department of the Interior

Geological Survey, 1982.

NL Johnson and S Kotz. Distributions in statistics. Applied probability and

statistics. Wiley, New York, 1986.

TR Kjeldsen and D Jones. Estimation of an index flood using data trans-

fer in the UK. Hydrological Sciences Journal-Journal des Sciences Hy-

drologiques, 52(1):86–98, FEB 2007. ISSN 0262-6667.

NT Kottegoda and R Rosso. Statistics, Probability, and Reliability for Civil

and Environmental Engineers. McGraw-Hill Companies, international edi-

tion, 1997. ISBN 0-07-035965-2.

P Lacau and H Chevrier. Une chapelle de Sesostris 1er a Karnak. Institut
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Appendix A.

Hydrological data summary

A.1. Hydrological data for flood flows modelling

The analysis of the flood frequency curves reported in chapter 2 and 3 is

based on a set of maximum annual discharge data available for some Italian

basins. The following tables provide a short summary of data consistency

and sample L-moments of the basins involved in the analysis. Refer to section

2.2.1 for symbols definition.

Code River Station n non-syst. l m Threshold
1 Artanavaz St.Oyen 14 0 0 14 Inf
2 Ayasse Champorcher 29 0 0 29 Inf
3 Borbera Baracche 21 1 5 37 613
7 Bormida di

Mallare
Ferrania 22 1 5 34 310

8 Cervo Passobreve 13 0 0 13 Inf
9 Chisone Fenestrelle 18 1 4 22 68
10 Chisone S.Martino 21 5 9 56 358
11 Chisone Soucheres

Basses
21 1 0 40 94

12 Corsaglia Presa
C.Molline

25 0 0 25 Inf

13 Dora Baltea Aosta 25 0 0 25 Inf
14 Dora Baltea Ponte di

Mombardone
14 0 0 14 Inf

15 Dora Baltea Tavagnasco 72 1 15 74 1000
16 Dora di Bar-

donecchia
Beaulard 12 0 0 12 Inf

19 Dora Riparia Oulx 30 0 0 30 Inf
20 Dora Riparia S.Antonino di

Susa
59 1 1 75 350

22 Erro Sassello 21 0 0 21 Inf
24 Evancon Champoluc 22 0 0 22 Inf
25 Gesso Entraque 12 0 0 12 Inf
26 Gesso della

Valletta
S. Lorenzo 11 0 0 11 Inf

27 Grana Monterosso 48 0 0 48 Inf
29 Lys D’Ejola 10 0 0 10 Inf
30 Lys Gressoney

St.Jean
24 0 0 24 Inf

31 Mastallone Ponte Folle 54 0 0 54 Inf
33 Orco Pont

Canavese
41 2 2 73 1500
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Code River Station n non-syst. l m Threshold
35 Po Crissolo 14 0 0 14 Inf
38 Rio Bagni Bagni Vinadio 20 0 0 20 Inf
40 Rutor Promise 34 0 0 34 Inf
41 San

Bernardino
Santino 14 0 0 14 Inf

42 Savar Eau Rousse 18 0 0 18 Inf
43 Scrivia Isola del Can-

tone
13 0 0 13 Inf

44 Scrivia Serravalle 26 4 3 72 1650
45 Sesia Campertogno 38 0 0 38 Inf
47 Sesia Ponte Aranco 15 2 4 43 2150
48 Sesia Vercelli 22 0 0 22 Inf
50 Stura di De-

monte
Fossano 33 0 0 33 Inf

51 Stura di De-
monte

Pianche 18 0 0 18 Inf

52 Stura di
Lanzo

Lanzo 60 4 9 81 800

53 Stura di Vi Usseglio 11 0 0 11 Inf
56 Tanaro Farigliano 63 2 7 75 1150
58 Tanaro Nucetto 47 0 0 47 Inf
59 Tanaro Ormea 13 0 0 13 Inf
60 Tanaro Ponte Nava 42 1 10 50 181
62 Toce Cadarese 15 0 0 15 Inf
63 Toce Candoglia 55 4 13 70 1700
64 Varaita Rore 58 0 0 58 Inf
66 Vobbia Vobbietta 14 0 0 14 Inf
68 Breuil Alpette 14 0 0 14 Inf
70 Chiavanne Alpette 14 0 0 14 Inf
72 Dora di

Rhemes
Notre Dame 14 0 0 14 Inf

80 Rutor La Joux 29 0 0 29 Inf
91 Varaita Castello 56 0 0 56 Inf
98 Lys Guillemore 29 0 0 29 Inf
99 Chiusella Gurzia 31 2 2 74 820
112 Stura di Viu Malciaussia 48 1 1 64 33.5
115 Marmore Perreres 15 0 0 15 Inf
118 Sermenza Rimasco 44 0 0 44 Inf
124 Maira S.Damiano

Macra
57 0 0 57 Inf

126 Maira Saretto 13 0 0 13 Inf
128 Bormida

Spigno
Valla 47 0 0 47 Inf

131 Adda Fuentes 42 0 0 42 Inf
134 Adda Tirano 11 0 0 11 Inf
136 Aveto Cabanne 27 0 0 27 Inf
138 Brembo P.te Briolo 29 1 1 43 1580
164 Serio P.te Cene 23 2 1 44 547
165 Taro Pradella 13 0 0 13 Inf
168 Taro Carniglia 29 0 0 29 Inf
169 Taro Ostia 10 0 0 10 Inf
172 Trebbia S.Salvatore 17 0 0 17 Inf
173 Trebbia Due Ponti 20 0 0 20 Inf
174 Trebbia Valsigiara 27 0 0 27 Inf

Code Qind σ2
Qind LCV σ2

LCV LCA σ2
LCA Lkur

1 12.6 2.4 0.227 0.003 0.433 0.036 0.395
2 19.4 3.3 0.266 0.002 0.274 0.013 0.229
3 256.7 1751.2 0.417 0.007 0.286 0.018 0.150
7 163.6 912.6 0.482 0.009 0.403 0.022 0.172
8 94.7 230.8 0.345 0.007 0.207 0.025 0.131
9 32.8 36.2 0.497 0.011 0.524 0.032 0.102
10 207.4 943.7 0.412 0.007 0.307 0.019 0.300
11 18.6 16.3 0.441 0.007 0.467 0.025 0.382
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Code Qind σ2
Qind LCV σ2

LCV LCA σ2
LCA Lkur

12 36.9 20.3 0.268 0.002 0.425 0.020 0.407
13 285.5 578.1 0.238 0.002 0.184 0.013 0.104
14 93.9 11.9 0.083 0.000 -0.065 0.017 -0.001
15 812.6 2745.6 0.270 0.001 0.309 0.006 0.278
16 27.4 7.8 0.213 0.003 0.243 0.030 0.072
19 55.8 95.7 0.384 0.004 0.571 0.021 0.432
20 99.0 40.8 0.284 0.001 0.320 0.007 0.255
22 103.4 52.7 0.191 0.001 0.122 0.013 0.069
24 26.4 10.0 0.276 0.003 0.430 0.023 0.286
25 76.4 348.0 0.426 0.012 0.468 0.045 0.372
26 67.6 248.5 0.353 0.009 0.632 0.063 0.552
27 40.9 43.0 0.495 0.004 0.516 0.012 0.356
29 12.7 1.4 0.185 0.003 -0.033 0.022 -0.099
30 28.8 8.4 0.260 0.002 0.332 0.018 0.227
31 380.0 1259.5 0.368 0.002 0.271 0.007 0.157
33 498.4 3047.9 0.427 0.004 0.465 0.013 0.368
35 34.3 114.9 0.587 0.020 0.542 0.043 0.290
38 24.2 50.3 0.540 0.012 0.712 0.038 0.487
40 16.1 2.2 0.221 0.001 0.487 0.016 0.401
41 259.5 437.7 0.183 0.002 0.091 0.018 0.072
42 24.6 3.9 0.205 0.002 0.043 0.013 0.100
43 412.8 5972.6 0.365 0.008 0.406 0.037 0.266
44 641.0 4982.0 0.281 0.002 0.151 0.011 -0.048
45 160.8 575.4 0.428 0.004 0.500 0.015 0.317
47 994.1 28801.9 0.315 0.005 -0.100 0.017 -0.046
48 1673.2 32196.1 0.291 0.003 0.161 0.014 0.160
50 104.9 236.0 0.393 0.004 0.458 0.016 0.333
51 39.5 53.1 0.376 0.006 0.432 0.028 0.332
52 482.3 1387.4 0.365 0.002 0.316 0.007 0.190
53 24.1 22.7 0.365 0.010 0.438 0.046 0.237
56 712.1 3005.3 0.314 0.001 0.322 0.007 0.303
58 292.9 1215.9 0.414 0.003 0.362 0.009 0.232
59 162.2 477.7 0.255 0.004 0.411 0.037 0.327
60 130.3 339.0 0.422 0.003 0.467 0.013 0.357
62 56.9 34.4 0.197 0.002 0.367 0.030 0.387
63 1078.9 6589.4 0.328 0.002 0.210 0.006 0.135
64 41.3 39.4 0.355 0.002 0.645 0.012 0.574
66 87.6 633.8 0.497 0.014 0.545 0.043 0.412
68 13.1 0.8 0.142 0.001 0.123 0.020 0.250
70 10.2 2.1 0.297 0.005 0.290 0.028 0.302
72 13.2 0.4 0.115 0.001 0.001 0.015 0.093
80 13.8 0.8 0.179 0.001 0.328 0.014 0.301
91 18.8 1.1 0.201 0.001 0.186 0.006 0.258
98 105.2 336.9 0.448 0.006 0.429 0.017 0.309
99 233.1 880.5 0.455 0.005 0.424 0.016 0.271
112 8.4 0.4 0.272 0.001 0.445 0.011 0.458
115 20.9 16.4 0.405 0.009 0.405 0.032 0.181
118 182.6 263.7 0.333 0.002 0.194 0.007 0.109
124 67.9 60.0 0.391 0.002 0.404 0.008 0.288
126 6.7 0.2 0.129 0.001 0.203 0.025 0.372
128 138.1 325.6 0.444 0.003 0.423 0.011 0.221
131 608.3 1410.4 0.232 0.001 0.114 0.006 0.078
134 191.6 1392.2 0.333 0.008 0.517 0.053 0.374
136 112.5 234.8 0.313 0.003 0.566 0.023 0.402
138 541.4 1849.7 0.266 0.002 0.407 0.017 0.352
164 257.5 320.1 0.221 0.002 0.422 0.021 0.333
165 646.5 8181.4 0.308 0.006 0.074 0.019 0.056
168 194.9 297.0 0.275 0.002 0.154 0.010 0.075
169 574.6 10117.1 0.323 0.008 0.293 0.039 0.225
172 910.5 11268.6 0.257 0.003 0.173 0.018 0.326
173 256.2 1375.3 0.346 0.005 0.328 0.021 0.284
174 474.4 2835.3 0.321 0.003 0.197 0.012 0.142
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A.2. Hydrological data for flow duration curves
modelling

Flow duration curves analyzed in chapter 4 are based on a data set of daily

discharge data available for some basins located in Italy and Switzerland.

The following table provides a short summary of data consistency.

Code River Station Begin
year

End
year

Complete
years

67 Artanavaz St.Oyen 1952 1967 16
68 Ayasse Champorcher 1950 1953 22
94 Borbera Baracche 1942 1961 14
93 Bormida Cassine 1947 1958 12
77 Chisone Fenestrelle 1942 1951 8
78 Chisone S.Martino 1942 1971 29
76 Chisone Soucheres Basses 1959 1970 12
87 Corsaglia Presa C.Molline 1942 1959 18
66 Dora Baltea Aosta 1942 1955 10
71 Dora Baltea Tavagnasco 1951 1986 36
74 Dora Riparia Oulx 1943 1956 10
75 Dora Riparia S.Antonino di Susa 1942 1953 10
92 Erro Sassello 1945 1960 16
70 Evancon Champoluc 1949 1978 30
85 Gesso Entraque 1952 1964 12
80 Grana Monterosso 1942 1975 32
69 Lys Gressoney St.Jean 1942 1953 7
61 Mastallone Ponte Folle 1942 1965 22
72 Orco Pont Canavese 1942 1975 29
79 Po Crissolo 1943 1973 28
82 Rio Bagni Bagni Vinadio 1942 1956 11
81 Rio del Piz Pietraporzio 1942 1956 15
64 Rutor Promise 1942 1967 20
65 Savar Eau Rousse 1944 1962 17
95 Scrivia Serravalle 1942 1963 14
62 Sesia Campertogno 1942 1950 7
63 Sesia Ponte Aranco 1942 1950 9
84 Stura di Demonte Gaiola 1942 1965 11
83 Stura di Demonte Pianche 1942 1955 14
73 Stura di Lanzo Lanzo 1942 1981 38
90 Tanaro Farigliano 1942 1985 40
89 Tanaro Nucetto 1935 1965 29
88 Tanaro Ponte Nava 1936 1968 30
60 Toce Candoglia 1943 1964 21
86 Vermenagna Limone 1942 1956 15
91 Tanaro Montecastello 1942 1985 38
1 Broye Payerne 1921 2000 80
2 Emme Emmenmat 1909 2000 92
3 Ltschine Gsteig 1920 2000 81
4 Grbe Belp.Stockmatt 1923 2000 78
5 Sense Thrishaus 1928 2000 73
6 Emme Eggiwil 1931 1974 44
7 Weisse Ltschine Zweiltschinen 1933 2000 68
8 Simme Oberried 1949 2000 52
9 Allenbach Adelboden 1950 2000 51
10 Gornernbach Kiental 1950 1982 33
11 Biberenkanal Kerzers 1956 2000 45
12 Langeten Huttwil 1966 2000 35
13 Langeten Lotzwil 1969 1993 24
14 Mentue Yvonand 1971 2000 30
15 Orbe Le Chenit 1971 2000 30
16 Poschiavino La Rsa 1970 2000 31
17 Poschiavino Le Prese 1931 2000 70
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Code River Station Begin
year

End
year

Complete
years

18 Aach Salmsach 1962 2000 39
19 Albula Tiefencastel 1921 2000 80
20 Birse Moutier 1912 2000 99
21 Dischmabach Davos 1964 2000 37
22 Ergolz Liestal 1934 2000 67
23 Goldach Goldach 1962 2000 39
24 Hinterrhein Andeer 1923 1961 39
25 Hinterrhein Hinterrhein 1945 2000 56
26 Landquart Felsenbach 1921 2000 80
27 Landquart Klosters 1933 1974 42
28 Landwasser Davos 1967 2000 34
29 Murg Wngi 1954 2000 67
30 Plessur Chur 1931 2000 70
31 Sitter Bernhardzell 1924 1980 57
32 Somvixer Rhein Somvix 1977 2000 24
33 Steinach Steinach 1962 2000 39
34 Thur Jonschwilen 1966 2000 35
35 Thur Stein 1964 2000 37
36 Tss Neftenbach 1921 2000 80
37 Urnsch Hundwil 1962 2000 39
38 Werdenberger Bin-

nenkanal
Salez 1931 2000 70

39 Saaser Vispa Zermeiggern 1923 1963 41
40 Borgne La Luette 1926 1979 54
41 Baye de Montreux Les Avants 1933 1974 42
42 Venoge Lussery 1948 1978 31
43 Baye de Montreux Montreux 1933 1973 41
44 Bavona Bignasco 1929 1966 38
45 Reuss Andermatt 1910 2000 91
46 Grosstalbach Isenthal 1957 2000 44
47 Alpbach Erstfeld 1960 2000 41
48 Engelberger Aa Engelberg 1955 1990 36
49 Engelberger Aa Buochs 1983 2000 18
50 Witenwasserenreuss Realp 1957 1986 30
51 Roseggbach Pontresina 1955 2000 46
52 Berninabach Pontresina 1955 2000 46
53 Ova da Cluozza Zernez 1962 2000 39
54 Chamuerabach La Punt Chamues 1972 2000 29
55 Biber Ramsen 1942 1983 42
56 Seez Weisstannen 1959 1991 33
57 Minster Euthal 1961 2000 40
58 Steinenbach Kaltbrunn 1968 2000 33
59 Ticino Bellinzona 1942 1951 10
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Appendix B.

Morpho-climatic information

B.1. Parameters description

This appendix lists and describes the morphometric and climatic catchment

parameters in use in the CUBIST Information System and adopted in this

thesis. All of them can be computed automatically using GIS tools, using

procedures developed in the Linux ”bash” scripting language, that exploit

together the ”GRASS” GIS and the ”Fluidturtle” libraries available at:

http://www.ing.unitn.it/~rigon/indexo.html.

The ”R” statistical computing software has been also used for the com-

putation of statistical indices. The choice of open source software, under

the GNU General Public License, has been determined by the fact that all

these packages are constantly updated and improved by experts of the inter-

national scientific community. Following this philosophy our script is open,

easily customizable, and available at the address:

www.idrologia.polito.it/~alviglio/software/GRASSindex.htm.

The digital terrain model used for the Italian basins is the DEM SRTM

(Shuttle Radar Topography Mission) released by NASA in 2000 and down-

loadable at:

http://edc.usgs.gov.
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120 Morpho-climatic information

B.1.1. Geomorphological parameters

For each drainage basin, morphological parameters were calculated operat-

ing on a Digital Elevation Model (DEM) with the ”Fluidturtle” libraries.

These libraries also provide tools for DEM analysis like the pit removal (to

ensure hydraulic connectivity within the watershed), the computation of

flow directions, the delineation of channel networks and much more. The

geomorphological descriptors considered are:

• X, Y [m]: coordinates of the gauging station.

• Xc, Yc [m]: coordinates of the centroid of the plane projection of the

drainage basin.

• A [km2]: area of the plane projection of the drainage basin.

• P [km]: basin perimeter.

• Hmax, Hmin, H [m]: maximum, minimum and mean elevation of the

drainage basin above sea level.

• MA [deg]: mean geometric (vector) aspect calculated as the average

of the aspect of each cell. The aspect is the direction towards which a

slope faces and is important in hilly or mountainous terrain. Here it is

defined as the angle of exposure of the cell (computed from the north).

• ∆H1 [m]: difference between the maximum and the minimum elevation

of the cells belonging to the basin.

• ∆H2 [m]: difference between the mean and the minimum elevation of

the basin.

• LOV [km]: length of the segment joining the basin centre of mass to

the basin outlet.

• OOV [deg]: angle between the orientation vector and the north.
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• pm [-]: average of the slope values associated to each pixel in the DEM

of the drainage basin.

• Pm [-]: mean large-scale slope, computed as 2(H −Hmin/
√

A). Pm is

a slope measure of a square equivalent basin, and does not account for

basin shape; its definition is objective, i.e. not affected by the DEM

resolution.

• IPSxx: area-elevation curve (hypsometric curve) percentile, i.e. the

curve that represents the portion of the basin area located above a given

elevation. The curve is represented recording elevations corresponding

to the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95% and 97.5% of the

area.

• Rc [-]: circularity ratio, i.e. the ratio between the basin area and the

area of a circle having the same perimeter, equal to 4Aπ/P 2.

• Cc [-]: compactness (Gravelius) coefficient, i.e. the ratio between the

perimeter of the basin and the diameter of the equivalent circle, equal

to P/(2
√

A/π).

B.1.2. River network parameters

Selected analyses can be performed on the river network, that is automati-

cally extracted from the DEM, using the above-described drainage directions

and the following constraints: (i) a pixel belongs to the network if its con-

tributing area exceeds 1 km2; (ii) a stream belongs to the network if it is

composed of more than one pixel. The river network descriptors considered

are:

• MSL [km]: main stream length, i.e. the length of the longest series

of streams that connects the basin outlet to the foremost source point

(i.e. the upper stream end).
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122 Morpho-climatic information

• LLDP [km]: length of the longest drainage path, i.e. the longest

path between the basin outlet and the most distant point on the basin

border, following drainage directions. Actually the longest drainage

path corresponds to the main stream plus the path on the hillslope

that connects the stream source to the basin border.

• SLDP [km]: slope of the longest drainage path PLDP computed as

the average of the slope values associated to each pixel in the longest

drainage path.

• Ral [-]: elongation ratio, i.e. the ratio between the diameter of a circle

with area equivalent to the basin area and the length of the longest

drainage path (2
√

A/π/LLDP ).

• Ff [-]: shape factor, i.e. the ratio between the basin area and the

square of the longest drainage path length (A/LLDP 2).

• FA [m]: width function; moments (mean, variance, skewness and kur-

tosis) and percentiles of the width function, which is defined as the

cumulated frequency of the pixel metric distance from the basin out-

let.

• MHL [m]: mean hillslope length, i.e. the average distance (throughout

all the basin) between pixels and channel .

• M [-]: magnitude, i.e. number of source points of the network.

• Td [-]: topological diameter, i.e. the number of links that constitute

the main stream, or number of confluences to the main stream.

• Horton-Strahler ordering, i.e. number of links, average length, average

contributing area and mean slope corresponding to every Horton class.

These classes form an ordering classification system in which channel

segments are ordered numerically from a stream’s headwaters to the

basin outlet. Numerical ordering begins with the tributaries at the
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stream’s headwaters being assigned the value 1. A stream segment

that results from the joining of two 1st order segments is given an

order 2. Two 2nd order streams form a 3rd order stream, and so on.

• Rhb, Rhl, Rha, Rhs [-]: Horton ratios, i.e. the slope of the interpola-

tion straight line (computed with the Ordinary Least Squares method)

between the points given by the order and the variable (number of

links, average length, average contributing area and mean slope) on a

semilogarithmic diagram.

• TNL [km]: total network length, i.e. the sum of the lengths of all

stream within the basin.

• Dd [km/km2]: drainage density i.e. the measure of the length of stream

channel per unit area of drainage basin. Mathematically it is expressed

as the total network length divided by the area of the drainage basin.

B.1.3. Soil use and permeability parameters

Five soil use indexes are defined pooling similar land-cover classes defined

in the CORINE project (COoRdination of INformation on Environment,

European Commission [1985]):

• LC1: percentage of basin area with urban areas.

• LC2: percentage of basin area with forests, woodlands or shrubs.

• LC3: percentage of basin area with grasslands or cultivated lands.

• LC4: percentage of basin area without vegetation.

• LC5: percentage of basin area with wetlands.

Moreover, permeability indexes available are:

• CN [-]: curve number related to soil permeability. The CN relative to

the whole basin is calculated as the average of all the cell-values.

• cf [-]: permeability index from VAPI Piemonte.



i

i

i

i

i

i

i

i

124 Morpho-climatic information

B.1.4. Climatic parameters

Climatic parameters are firstly computed for each raingauge station avail-

able, then the results are interpolated by means of a suitable kriging pro-

cedure over the whole area of interest in order to create a raster with the

DEM resolution. The parameters at the basin scale are the average of the

cell-values over the catchment area, in particular:

• a [mm/h]: coefficient of the intensity-duration-frequency (IDF) in the

form h = a · dn.

• n [-]: coefficient of the IDF curve in the form h = a · dn.

• MAP [mm]: mean annual precipitation.

B.2. Parameters list

Parameters involved in the analysis are listed in the following tables.

Code
Chap.
2

Code
Chap.
4

River Station X Y

1 67 Artanavaz St.Oyen 360183 5075749
2 68 Ayasse Champorcher 392518 5052993
3 94 Borbera Baracche 500626 4951965
6 93 Bormida Cassine 463745 4954630
7 - Bormida di Mallare Ferrania 446013 4912537
8 - Cervo Passobreve 424990 5053388
9 77 Chisone Fenestrelle 346024 4989051
10 78 Chisone S.Martino 363869 4971770
11 76 Chisone Soucheres Basses 338658 4987848
12 87 Corsaglia Presa C.Molline 407071 4904931
13 66 Dora Baltea Aosta 371847 5065981
14 - Dora Baltea Ponte di Mombardone 344228 5069841
15 71 Dora Baltea Tavagnasco 408854 5043555
16 - Dora di Bardonecchia Beaulard 324755 4990299
19 74 Dora Riparia Oulx 329119 4988888
20 75 Dora Riparia S.Antonino di Susa 362906 4996791
22 92 Erro Sassello 456328 4926986
24 70 Evancon Champoluc 400630 5075832
25 85 Gesso Entraque 371058 4901682
26 - Gesso della Valletta S. Lorenzo 368064 4901375
27 80 Grana Monterosso 367078 4918842
29 - Lys D’Ejola 407799 5078900
30 69 Lys Gressoney St.Jean 408449 5071177
31 61 Mastallone Ponte Folle 442083 5075487
33 72 Orco Pont Canavese 391455 5030182
35 79 Po Crissolo 354451 4950954
38 82 Rio Bagni Bagni Vinadio 347105 4906010
39 81 Rio del Piz Pietraporzio 343044 4911675
40 64 Rutor Promise 341062 5062853
41 - San Bernardino Santino 462832 5089696
42 65 Savar Eau Rousse 360242 5047894
43 - Scrivia Isola del Cantone 496450 4943465
44 95 Scrivia Serravalle 488864 4952192
45 62 Sesia Campertogno 424653 5072656
47 63 Sesia Ponte Aranco 444885 5061708
48 - Sesia Vercelli 455947 5019480
50 84 Stura di Demonte Gaiola 373774 4910281
51 83 Stura di Demonte Pianche 349455 4907337
52 73 Stura di Lanzo Lanzo 380917 5014005
53 - Stura di Vi Usseglio 359557 5010289
56 90 Tanaro Farigliano 412701 4929373
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Code
Chap.
2

Code
Chap.
4

River Station X Y

58 89 Tanaro Nucetto 425280 4910519
59 - Tanaro Ormea 413186 4889264
60 88 Tanaro Ponte Nava 410758 4885835
62 - Toce Cadarese 450467 5125992
63 60 Toce Candoglia 455247 5090657
64 - Varaita Rore 359268 4937167
65 86 Vermenagna Limone 385914 4896184
66 - Vobbia Vobbietta 499022 4941987
68 - Breuil Alpette 336956 5064247
70 - Chiavanne Alpette 336855 5064354
72 - Dora di Rhemes Notre Dame 353255 5048250
80 - Rutor La Joux 341259 5061743
91 - Varaita Castello 344947 4941946
98 - Lys Guillemore 411049 5058165
99 - Chiusella Gurzia 402645 5030981
112 - Stura di Viu Malciaussia 354250 5007748
115 - Marmore Perreres 392559 5084867
118 - Sermenza Rimasco 427245 5078630
124 - Maira S.Damiano Macra 361400 4927343
126 - Maira Saretto 335555 4927344
128 - Bormida Spigno Valla 447554 4932222
131 - Adda Fuentes 534567 5110177
134 - Adda Tirano 589647 5118637
136 - Aveto Cabanne 527874 4927491
138 - Brembo P.te Briolo 547267 5067317
164 - Serio P.te Cene 564310 5071039
165 - Taro Pradella 559398 4925585
168 - Taro Carniglia 548372 4925569
169 - Taro Ostia 567898 4930371
172 - Trebbia S.Salvatore 530364 4955188
173 - Trebbia Due Ponti 520769 4931707
174 - Trebbia Valsigiara 524861 4944296
- 91 Tanaro Montecastello 475365 4976584
- 1 Broye Payerne 341678.82 5187379.5
- 2 Emme Emmenmat 405055.84 5200949.32
- 3 Ltschine Gsteig 413507.53 5168644.57
- 4 Grbe Belp.Stockmatt 386142.18 5195614.03
- 5 Sense Thrishaus 374532.98 5194211.92
- 6 Emme Eggiwil 408945.88 5191673.2
- 7 Weisse Ltschine Zweiltschinen 415929.95 5164886.83
- 8 Simme Oberried 382980.56 5142824.48
- 9 Allenbach Adelboden 388856.62 5149027.17
- 10 Gornernbach Kiental 404742.81 5155611.92
- 11 Biberenkanal Kerzers 361087.64 5203478.25
- 12 Langeten Huttwil 411071.17 5219604.22
- 13 Langeten Lotzwil 408105.36 5226891.55
- 14 Mentue Yvonand 326474.56 5183605.91
- 15 Orbe Le Chenit 282476.46 5159373.82
- 16 Poschiavino La Rsa 583786.33 5146344.39
- 17 Poschiavino Le Prese 583689.81 5126419.11
- 18 Aach Salmsach 527168.29 5266841.29
- 19 Albula Tiefencastel 543746.86 5167664.72
- 20 Birse Moutier 377674.11 5238045.67
- 21 Dischmabach Davos 563075.44 5178704.93
- 22 Ergolz Liestal 404594.43 5260193.31
- 23 Goldach Goldach 536616.41 5260185.49
- 24 Hinterrhein Andeer 533294.88 5163794.49
- 25 Hinterrhein Hinterrhein 515823.8 5153103.62
- 26 Landquart Felsenbach 545743.06 5202507.94
- 27 Landquart Klosters 569958.38 5189883.77
- 28 Landwasser Davos 560465.51 5178635.51
- 29 Murg Wngi 494877.41 5262651.61
- 30 Plessur Chur 539055.53 5190131.96
- 31 Sitter Bernhardzell 523745.55 5260817.42
- 32 Somvixer Rhein Somvix 498911.63 5166931.46
- 33 Steinach Steinach 534018.82 5262795.84
- 34 Thur Jonschwilen 505491.55 5252988.28
- 35 Thur Stein 517455.92 5226883.43
- 36 Tss Neftenbach 475866.25 5262350.81
- 37 Urnsch Hundwil 522222.17 5243236.02
- 38 Werdenberger Binnenkanal Salez 537432.01 5231115.04
- 39 Saaser Vispa Zermeiggern 419441.31 5103655.07
- 40 Borgne La Luette 379767.13 5113026.68
- 41 Baye de Montreux Les Avants 342788.58 5146263.86
- 42 Venoge Lussery 311079.02 5166958.33
- 43 Baye de Montreux Montreux 340788.21 5144895.57
- 44 Bavona Bignasco 469486.01 5132565.02
- 45 Reuss Andermatt 468306.37 5166779.56
- 46 Grosstalbach Isenthal 466700.26 5195389.14
- 47 Alpbach Erstfeld 469120.12 5184402.43
- 48 Engelberger Aa Engelberg 453279.14 5185302.95
- 49 Engelberger Aa Buochs 452208.55 5201145.89
- 50 Witenwasserenreuss Realp 461382.99 5159557.34
- 51 Roseggbach Pontresina 568396.94 5149838.91
- 52 Berninabach Pontresina 570836.37 5147190.7
- 53 Ova da Cluozza Zernez 585473.7 5171709.8
- 54 Chamuerabach La Punt Chamues 571416.71 5158294
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Code
Chap.
2

Code
Chap.
4

River Station X Y

- 55 Biber Ramsen 485513.6 5283770.16
- 56 Seez Weisstannen 526895.43 5205191.04
- 57 Minster Euthal 485858.98 5215018.7
- 58 Steinenbach Kaltbrunn 503324.13 5228593.51
- 59 Ticino Bellinzona 502772.8 5117525.2

Code
Chap.
2

Code
Chap.
4

Xc Yc A H Hmin P ∆H1

1 67 356250 5076750 69.2 2230 1351.0 38.0 1816
2 68 387350 5052050 41.9 2364 1372.0 31.0 1747
3 94 508450 4946050 202.2 869 359.0 69.0 1313
6 93 445350 4926450 1514.4 494 117.0 237.0 1259
7 - 444150 4905150 50.3 611 361.0 42.0 669
8 - 420050 5058650 75.5 1493 586.0 41.0 1922
9 77 339150 4985050 154.1 2152 1153.0 71.0 2075
10 78 348550 4980550 580.5 1734 417.0 126.0 2811
11 76 337050 4982050 92.9 2227 1506.0 49.2 1722
12 87 406050 4897450 89.4 1529 643.0 46.0 1950
13 66 358150 5064450 1846.4 2262 547.0 296.0 4180
14 - 339850 5071550 372 2402 1011.0 115.0 3716
15 71 374950 5065150 3320 2085 259.0 350.0 4468
16 - 319450 4995650 207.4 2187 1122.0 80.0 2206
19 74 329950 4977450 257.5 2168 1079.0 87.0 2179
20 75 335150 4993350 1037.9 1898 385.0 254.0 3192
22 92 457350 4922150 92.1 600 324.0 60.0 922
24 70 402150 5080650 102.4 2635 1553.0 51.0 2604
25 85 372250 4893250 159.6 1886 815.0 61.0 2363
26 - 362050 4896750 110.9 2096 912.0 53.0 2227
27 80 360050 4917850 109.6 1534 711.0 54.0 1896
29 - 408150 5083050 29.6 3110 1812.0 25.0 2615
30 69 408750 5078650 90.4 2637 1398.0 46.0 3029
31 61 437950 5081750 146.6 1324 492.0 63.0 1925
33 72 376250 5036250 613.4 1928 429.0 145.0 3406
35 79 350350 4950750 37.3 2240 1294.0 27.0 2410
38 82 344150 4903350 61.2 2138 1257.0 35.0 1675
39 81 341550 4908350 21.6 2193 1273.0 23.0 1707
40 64 341750 5059450 45 2554 1508.0 35.0 1906
41 - 457650 5097850 121.2 1253 280.0 57.0 1965
42 65 359550 5042650 81.3 2694 1650.0 43.0 2266
43 - 502150 4933150 215.9 668 297.0 86.2 1246
44 95 502950 4941650 613.8 687 203.0 128.0 1469
45 62 416950 5076450 170.7 2113 828.0 69.0 3643
47 63 429150 5075850 702.9 1496 328.0 142.0 4143
48 - 433950 5055350 2187.9 838 119.0 251.8 4352
50 84 351050 4908650 560 1817 661.0 141.0 2319
51 83 340750 4913250 179.7 2073 972.0 73.0 2008
52 73 365150 5016450 578.4 1769 461.0 123.0 3172
53 - 355050 5010150 79.5 2375 1280.0 44.0 2237
56 90 407850 4905250 1497.2 948 239.0 199.0 2386
58 89 411850 4892350 374.9 1224 453.0 135.0 2159
59 - 402950 4886550 175.5 1512 719.0 71.0 1893
60 88 401450 4886350 148.5 1569 788.0 63.0 1824
62 - 453250 5135850 187 2144 730.0 70.0 2563
63 60 439950 5110850 1539.4 1671 203.0 263.0 4285
64 - 346850 4940850 278 2111 837.0 97.0 2863
65 86 385850 4892550 57.3 1684 963.0 37.0 1750
66 - 503650 4939050 50.6 732 355.0 35.0 1026
68 - 333550 5063850 28.4 2444 1793.0 27.1 1269
70 - 334250 5067450 21.7 2483 1793.0 23.7 1383
72 - 351250 5043050 69 2664 1717.0 41.2 1839
80 - 341750 5059150 41.4 2587 1600.0 35.4 1814
91 - 341750 4945750 67.4 2400 1575.0 37.2 1663
98 - 409850 5070550 202.9 2247 911.0 90.1 3516
99 - 399050 5039750 142.1 1358 424.0 59.6 2341
112 - 351950 5008750 25.8 2598 1792.0 24.4 1609
115 - 394650 5088350 54.8 2719 1844.0 36.0 2529
118 - 424850 5082150 82.1 1844 902.0 39.9 1975
124 - 345950 4927450 452.1 1892 716.0 110.7 2447
126 - 333150 4931150 54.9 2408 1539.0 33.4 1624
128 - 449750 4925250 68.5 471 261.0 54.0 576
131 - 578650 5124850 2578.5 1859 201.0 343.0 3762
134 - 602650 5139350 908.1 2167 425.0 169.0 3332
136 - 524250 4925350 39.7 989 815.0 38.0 497
138 - 551050 5085050 748.6 1187 260.0 149.0 2579
164 - 571150 5087150 459.8 1336 365.0 129.0 2592
165 - 550150 4923850 297.3 836 412.0 99.0 1275
168 - 541650 4922150 90.3 967 538.0 46.0 1149
169 - 553950 4924550 412 821 335.0 120.0 1352
172 - 526250 4938150 638 951 287.0 140.0 1492
173 - 516550 4930750 74.5 964 642.0 47.0 918
174 - 520950 4935050 222.7 943 442.0 75.0 1174
- 91 425050 4932750 7982.8 656 82 626 3096
- 1 335295.14 5167304.17 414.57 750 444 148.75 1537
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Code
Chap.
2

Code
Chap.
4

Xc Yc A H Hmin P ∆H1

- 2 412425.13 5192325.31 443.79 1076 639 126.39 1539
- 3 420434.26 5160015.76 359.97 2050 583 99.52 3486
- 4 385515.4 5183053.94 120.24 849 518 76.21 1613
- 5 375165.13 5180625.19 349.72 1078 561 113.16 1603
- 6 415934.56 5184764.57 127.65 1293 743 67.79 1435
- 7 415213.81 5155964.72 164.96 2122 654 60.61 3415
- 8 385064.34 5140214.82 35.43 2347 1116 29.53 2110
- 9 386324.49 5147594.92 28.93 1862 1335 24.64 1392
- 10 407114.67 5152995.21 25.3 2314 1334 22.48 2278
- 11 361484.77 5197724.5 48.51 543 433 45.63 253
- 12 409905.65 5215094.22 60.02 764 602 41.07 497
- 13 409004.49 5217973.72 115.35 715 500 56.06 599
- 14 324584.35 5174506.35 100.93 667 442 69.56 491
- 15 278324.44 5154254.85 47.81 1246 1094 39.07 456
- 16 581895 5144895.88 12.83 2457 1974 17.46 1034
- 17 581805 5134185 169.64 2118 977 78.45 2872
- 18 520154.03 5267205.29 47.93 475 406 42.81 169
- 19 559935.7 5171805.1 529.77 2130 1001 128.25 2236
- 20 371476.35 5234354.41 181.81 925 548 94.66 869
- 21 565153.81 5174414.71 43.74 2344 1630 34.57 1367
- 22 409544.58 5253795.6 259.82 587 306 87.81 855
- 23 535004.47 5252713.4 51.36 832 402 42.71 843
- 24 529606.96 5149755.26 509.42 2247 1087 162.02 2248
- 25 510255.84 5150743.82 55.18 2344 1602 40.66 1733
- 26 561194.09 5196915.59 616.47 1799 560 151.38 2779
- 27 575954.5 5187735.78 112.55 2298 1250 56 2089
- 28 566326.12 5179005.4 185.82 2225 1500 73.22 1601
- 29 498463.01 5255596.39 75.19 625 446 69.51 577
- 30 549044.49 5183595.85 265.64 1861 558 83.79 2386
- 31 527624.62 5243623.18 326.77 1007 497 112.52 1949
- 32 499634.78 5163794.89 22.73 2402 1388 26.01 1682
- 33 530143.79 5254061.93 21.58 716 402 38.58 681
- 34 512054.64 5236514.9 500.45 1022 538 129.13 1867
- 35 522045.62 5226344.57 84.49 1448 845 49.01 1560
- 36 487215.22 5252806.23 391.08 656 407 119.52 885
- 37 523034.85 5238676.1 65.58 1107 776 42.32 1612
- 38 532846.26 5223915.04 185.77 1029 436 75.69 1879
- 39 418454.56 5098453.93 65.99 2847 1736 35.32 2424
- 40 384343.86 5101784.76 230.55 2549 971 76.36 2902
- 41 343754.57 5147054.74 6.99 1417 933 12.85 887
- 42 302173.61 5165775.93 160.92 813 441 78.85 1220
- 43 342855.42 5146423.66 13.53 1224 609 17.36 1211
- 44 463363.44 5137873.95 120.75 1934 453 55.31 2775
- 45 465165.04 5160554.47 193.83 2265 1264 76.62 2234
- 46 462734.91 5192595.24 43.44 1808 810 35.97 2110
- 47 466425.34 5183144.76 20.68 2217 1089 21.5 2014
- 48 459405.18 5184765.65 86.79 1955 997 42.43 2117
- 49 455803.71 5188903.95 230.99 1602 447 77.74 2667
- 50 459945.65 5156054.69 30.85 2421 1577 25.76 1482
- 51 566505.19 5140933.49 67.09 2672 1752 43.75 2126
- 52 574424.37 5142285.94 108.03 2609 1837 50.82 2028
- 53 585404.42 5166314.08 27.17 2362 1535 25.5 1584
- 54 575954.77 5152544.51 74.2 2540 1702 40.67 1495
- 55 479475.6 5291774.82 163.52 552 410 77.53 427
- 56 523214.14 5202135.15 72.64 1901 952 41.56 1861
- 57 483795 5209514.42 63.78 1326 886 36.25 1364
- 58 506655.88 5228685.81 18.96 1127 500 22.85 1400
- 59 496847.49 5139585.37 1516.03 1682 232 275.35 3126

Code
Chap.
2

Code
Chap.
4

MSL MHL pm Pm Dd a n MAP cf

1 67 10.5 783.6 49.05 21.76 0.52 9.5 0.54 1080.4 0.33
2 68 10.7 669.1 40.02 32 0.65 16.4 0.59 1059.4 0.48
3 94 24.1 699.2 34.24 6.64 0.56 30.7 0.43 1331.5 0.6
6 93 133.8 641.2 20.55 1.76 0.66 24.7 0.44 1031.3 0.53
7 - 17.7 606.9 24.44 6.4 0.65 27.9 0.46 1446.2 0.6
8 - 14 715.9 52.26 20.37 0.55 27.9 0.54 1808.2 0.51
9 77 25.1 862.9 44.87 16.45 0.56 11.4 0.56 887.2 0.38
10 78 55.8 776.9 46.66 11.21 0.57 15.3 0.54 1069.6 0.4
11 76 15.9 870.6 43.05 15.13 0.52 11.6 0.56 900 0.37
12 87 17.6 633.1 44.54 18.3 0.62 21.1 0.51 1349.6 0.24
13 66 57.5 856.5 51.88 8.33 0.6 10.5 0.54 902.3 0.33
14 - 22.2 865.7 53.05 14.37 0.61 8.9 0.55 854.6 0.4
15 71 117.1 845.4 50.65 6.61 0.6 12.2 0.55 935.6 0.43
16 - 22.8 817.6 47.1 15.36 0.54 11.4 0.52 856.2 0.23
19 74 34.5 850.5 42.89 13.61 0.52 11.5 0.55 906.3 0.29
20 75 79.3 853 44.77 9.87 0.62 12.6 0.53 902.5 0.23
22 92 19.1 628.4 20.2 5.17 0.71 31.2 0.47 1394.8 0.61
24 70 12.4 794.8 47.23 20.47 0.61 11.5 0.59 944.8 0.53
25 85 17 788.6 60 17.32 0.53 18.5 0.53 1535.5 0.31
26 - 15.2 757.4 63 23.71 0.53 14.8 0.54 1427.3 0.37
27 80 19.6 683.9 46 14.38 0.56 16.2 0.5 1117.8 0.27
29 - 7 1023.7 49 45.86 0.58 11.8 0.62 1074.7 0.2
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128 Morpho-climatic information

Code
Chap.
2

Code
Chap.
4

MSL MHL pm Pm Dd a n MAP cf

30 69 15.6 847.5 52.09 25.03 0.6 12.8 0.6 1071.4 0.26
31 61 22.1 636.3 52.75 13.15 0.58 28 0.58 2047.4 0.59
33 72 51 796.2 54.46 12.23 0.57 20.5 0.55 1290.1 0.52
35 79 8.3 737.2 45.87 31.96 0.61 16.4 0.55 1229 0.52
38 82 8.3 745.4 53.03 23.45 0.53 13.6 0.53 1308.7 0.3
39 81 7.2 665.8 52.93 41.08 0.62 13.5 0.53 1173.5 0.29
40 64 8.5 719 38.13 31.62 0.74 9.5 0.52 905.6 0.3
41 - 22.7 690 57.31 18.02 0.57 30.2 0.58 2328.6 0.6
42 65 10.9 865.4 46.15 23.45 0.6 13 0.57 1011.9 0.39
43 - 37.8 631 32.06 4.67 0.6 37.1 0.43 1741.5 0.64
44 95 53.5 663.5 31.1 3.54 0.59 32.8 0.42 1454 0.61
45 62 20.3 807.7 59.57 19.82 0.58 16.4 0.6 1357.1 0.44
47 63 61.4 723.5 53.11 8.4 0.57 24.7 0.57 1775.4 0.54
48 - 114.8 722.9 27.49 1.92 0.76 29.7 0.44 1534.2 0.5
50 84 56.3 760.9 48.56 10.47 0.56 14.4 0.52 1162.5 0.26
51 83 25.6 758.5 50.15 17.4 0.54 13.4 0.53 1088.3 0.29
52 73 39.8 818 49.79 10.71 0.56 20.2 0.53 1270 0.58
53 - 13.3 840.8 56.53 25.33 0.54 14.3 0.56 1172.2 0.42
56 90 100.5 679 27.68 2.78 0.69 22.6 0.45 1191.8 0.47
58 89 55.8 707.8 38.04 7.22 0.6 22 0.5 1234.2 0.39
59 - 24.4 700.7 42.08 11.17 0.59 22.2 0.52 1247.9 0.36
60 88 19.8 708.7 42.62 12.01 0.58 22.2 0.52 1250.8 0.37
62 - 29.3 784.9 53.89 22.11 0.6 15.8 0.6 1527.7 0.42
63 60 82.6 813 54.67 7.75 0.57 18 0.61 1610.8 0.51
64 - 29.6 796.9 46 15.64 0.61 15.1 0.53 1057.7 0.28
65 86 9.7 703.3 43.39 18.73 0.57 21.6 0.51 1462.6 0.37
66 - 12.8 660.7 37.23 10.01 0.53 34.3 0.43 1455.4 0.52
68 - 8.9 821.8 36.81 25.35 0.51 11 0.52 1084.2 0.27
70 - 8.4 775.5 51.53 31.15 0.52 11.3 0.52 1119.2 0.32
72 - 12.2 831.7 49.1 23.83 0.6 11 0.56 965.5 0.2
80 - 7.1 719.2 35.84 30.71 0.75 9.4 0.53 905.7 0.29
91 - 11.4 787.8 47.48 20.74 0.55 15.2 0.55 1110.5 0.26
98 - 32.3 803.9 54.79 18.31 0.6 14.3 0.59 1171.3 0.5
99 - 24.8 761.5 42.03 14.77 0.57 24.5 0.5 1489.5 0.5
112 - 6.2 834 55.6 32.01 0.55 12.8 0.57 1137.6 0.33
115 - 9.9 941.1 48.05 23.5 0.57 9.7 0.6 1015.9 0.44
118 - 10.5 733.6 60.09 20.99 0.53 19.4 0.61 1602 0.55
124 - 41.4 745.6 47.04 11.28 0.59 14.4 0.51 1007.2 0.25
126 - 10 822.9 48.83 25.46 0.61 12.5 0.54 1049.9 0.26
128 - 19.8 664.5 14.42 4.59 0.63 28 0.45 1064.6 0.52
131 - 132.6 857.5 50.65 6.94 0.58 16.4 0.45 1121 0.39
134 - 62.8 866.2 48.95 12.21 0.57 13 0.46 1164 0.39
136 - 10.6 580.8 27.76 5.11 0.64 33.6 0.44 2074.3 0.45
138 - 44 741.7 45.42 6.19 0.57 27.8 0.36 1593 0.39
164 - 45.9 745.7 47.53 8.39 0.59 25 0.39 1666 0.39
165 - 34.4 730.9 23.91 4.55 0.63 32.2 0.4 1753 0.21
168 - 20.1 656.3 30.74 8.12 0.64 35.4 0.39 2143 0.48
169 - 45.5 760.9 24.21 4.49 0.61 31.3 0.39 1622 0.35
172 - 55.4 703.9 32.13 5.19 0.62 36.3 0.43 1921.4 0.47
173 - 14.2 649.9 30.09 6.74 0.61 38.8 0.44 2105.6 0.49
174 - 33.8 680.5 30.67 6.5 0.63 38.2 0.43 2060.8 0.47
- 91 224.13 674.65 21.36 0.8 0.71
- 1 55.62 722.28 11.81 2.77 0.72
- 2 39.55 665.56 27.68 3.55 0.63
- 3 26.04 940.19 56.21 14.98 0.59
- 4 26.63 820.26 20.31 4.29 0.7
- 5 36.16 676.13 24.21 4.34 0.64
- 6 26.31 712.89 32.55 9.15 0.6
- 7 21.56 945.01 58.26 22.45 0.55
- 8 7.88 860.01 44.31 45.8 0.64
- 9 5.7 660.07 44.99 18.74 0.55
- 10 6.76 899.91 58.5 37.85 0.54
- 11 19.92 667.66 6.53 3.04 0.69
- 12 11.68 609.93 13.61 4.05 0.67
- 13 22.56 619.59 14.15 4.06 0.69
- 14 25.19 724.57 8.64 4.2 0.67
- 15 15.7 841.73 14.26 3.91 0.61
- 16 5.35 770.82 48.2 27.64 0.41
- 17 22.03 826.44 49.53 18.21 0.6
- 18 16.82 738.05 3.98 1.73 0.79
- 19 44.94 779.79 46.9 10.38 0.56
- 20 30.61 784.33 26.25 5.44 0.58
- 21 9.96 852.77 46.99 22.41 0.45
- 22 21.34 628.7 21.18 3.29 0.63
- 23 18.64 698.07 17.96 13 0.68
- 24 33.96 808.07 48.2 10.74 0.52
- 25 14.81 811.16 51.4 20.41 0.54
- 26 45.74 818.9 43.28 10.11 0.56
- 27 13.87 789.44 50.92 21.15 0.54
- 28 21.44 834.64 43.37 11.22 0.51
- 29 22.49 664.43 12.75 3.28 0.78
- 30 33.07 798.97 41.72 16.7 0.59
- 31 46.9 715.02 25.18 4.89 0.64
- 32 9.14 717.47 49.49 42.54 0.59
- 33 17.71 584.13 13.1 12.53 0.92
- 34 50.11 703.82 27.54 3.6 0.62
- 35 13.46 764.95 38.5 12.58 0.6
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B.2 Parameters list 129

Code
Chap.
2

Code
Chap.
4

MSL MHL pm Pm Dd a n MAP cf

- 36 44.95 652.02 16.07 2.21 0.69
- 37 13.99 696.57 28.23 7.24 0.69
- 38 27.39 834.26 30.3 7.81 0.75
- 39 9.63 911.65 45.3 27.48 0.57
- 40 26.88 933.56 51.19 21.36 0.59
- 41 3.02 674.21 44.97 37.23 0.5
- 42 30.33 876.61 12.17 4.02 0.75
- 43 5.79 686.12 44.36 33.6 0.52
- 44 20.82 826.15 60.96 29.36 0.55
- 45 20.42 818.68 45.9 14.98 0.52
- 46 11.12 709.58 57.38 29.56 0.59
- 47 6.48 824.93 61.55 50.05 0.51
- 48 15.86 861.56 56.72 21.9 0.54
- 49 35.56 825.78 53.14 15.13 0.57
- 50 8.06 796.63 42.17 31.9 0.46
- 51 16.37 973.57 52.29 23.1 0.53
- 52 13.39 815.37 45.98 14.43 0.57
- 53 10.24 601.97 61.16 32.34 0.56
- 54 14.46 699.89 48.04 20.18 0.49
- 55 25.88 680.41 10.3 1.92 0.66
- 56 11.46 695.96 55.17 23.54 0.52
- 57 12.79 775.43 31.58 11.07 0.59
- 58 8.35 643.5 33.39 28.98 0.56
- 59 79.27 817.16 55.98 7.88 0.6


