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Introduction

Flood frequency curve estimation in ungauged basins

Regional approach

Ease of use

Handle short records
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Approach characteristics

Challenging some standard approach assumptions

choice of a priori probability distribution
regions definition

Uncertainty (variance) of final estimates

Maximization of available at-site information:

non-systematic data
“poorly” gauged sites (short records)

Suitable method for
Northwestern Italy

(about 100 new stations)
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Data handling

Use of L-moments statistics

Possibility to incorporate non-systematic data:

historical floods
occasional extreme events during gap in time series

L-moments variance via simplified formulae

Flood frequency curve

QT = Qind · P(T , LCV , LCA)




Qind → scale (index-flood)

LCV → dispersion

LCA → skewness
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Which variable to regionalize?

Usually: a priori choice of
distribution

Quantile regionalization

Regionalization of the
parameters of the
distribution
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Figure 2.8.: Example of sample flood data for the river Chisone at S. Martino and
superposition of different theoretical frequency distributions: Gamma (GAM),
generalized extreme value (GEV), lognormal (LN3), Gumbel (G), generalized lo-
gistic (GL) and generalized Pareto (GP). Black dots represent empirical data,
circled ones correspond to non-systematic events; plotting positions come from
equation (2.30).

where m is the equivalent sample length (as in section 2.2.1), g is the total

number of flood events available (both systematic and non-systematic), k is

the total number of events that exceed the threshold x0, s is the length of

the systematic sample and e is the number of measures of the systematic

sample that exceed the threshold.

An example is shown in figure 2.8 for the river Chisone at S. Martino,

where the sample points are plotted using the plotting position of equation

(2.30) and the circled dots highlight the non-systematic measurements. The

example shows that all the distributions have a similar behavior up to a 100-

years return period, except for the Gumbel distribution that is a less flexible

distribution with only two parameters.

Distribution-free statistics

L-moments regionalization

A posteriori reconstruction of frequency distribution
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How to regionalize?

Usually: homogeneous
regions

Difficult uncertainty estimation
due to:

regions creation

regions border effects

R1            R2

R3             R4

Descriptors space

Smooth variability of L-moments in the descriptors
space

No homogeneity required

Easier uncertainty evaluation
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Regional model definition

Multiple linear regression

Error structure as in Stedinger & Tasker (1985)

Model error YT = X β + δ
Sampling error Y = YT + η

GLS concurrent estimation of regression coefficients
and model variance

Y = Xβ + ε

Λ = σ2
δ I + Σ

Variance of prediction

VP = σ2
Y = σ2

δ + x
(
XT Λ−1X

)−1
xT
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Case study: 70 basins - 35 descriptors

Application to a large descriptors set: all the combination
with 1 to 4 descriptors (+ intercept) are calculated
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Figure 2.2.: Geographical location of the gauging stations used for the calibration
and validation of the present work. This area is located in northwestern Italy and
the basins are mainly on mountainous environments.

Model validation

Multicollinearity test
Student’s test
Residuals check

Model selection (among all
combinations)

Model variance σ2
δ

Average variance of
predictions (AVP)
Simplest model
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Example: index-flood estimation
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Figure 2.4.: Diagnostic diagram for model lnQind1. Panels (a), (b) and (c) refer to
the log-transformed values, and show respectively the comparison between sam-
ple and estimated values, the residuals behavior and the residuals normality plot.
Panel (d) shows the comparison between sample and estimated values in the orig-
inal index-flow space. Empty and filled circles differ for the back-transformation
used: the formers are simply the exponential of the regression estimates (eq.
(2.29)), while the latters are computed as the mean of the related log-normal
distribution (eq. (2.29)).
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log (Qind) =− 8.76 + 7.99E-01 · A + 1.09 · IDFa

+ 9.53E-01 ·MAP + 7.85E-01 · perm



Example: LCV
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Figure 2.5.: Diagnostic plots for model LCV2. Panel (a) shows the systematic
underestimation for small values and over estimation for large values, however
residuals behavior confirm the absence of heteroscedasticity (panel (b)) and a
good alignment to the theoretical normal distribution (panel (c)).
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LCV = 6.44E-01− 4.28E-07 · Xc − 5.00E-04 · P − 1.44E-04 · Hmin



Example: LCA
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Figure 2.7.: Diagnostic plots for LCA2 model. As for LCV , the model shows no
evidence of heteroscedasticity (panel (b)) and a normal distribution of residuals
(panel (c)), although systematic under- and overestimations are evident in panel
(a).
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Figure 2.7.: Diagnostic plots for LCA2 model. As for LCV , the model shows no
evidence of heteroscedasticity (panel (b)) and a normal distribution of residuals
(panel (c)), although systematic under- and overestimations are evident in panel
(a).

LCA = 9.38E-01− 1.40E-02 · IDFa − 1.39E-01 · P − 2.65E-04 · Hmin
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Figure 2.1.: Example of quantiles confidence bands for the river Chisone at S.
Martino obtained with a monte carlo simulation. Panel (a) reports the values
based on a lognormal distribution applied on sample L-moments, while panel (b)
is based on the lognormal distribution fitted on regional L-moments.

tribution of the quantile can be empirically estimated; (v) confidence bands

are defined on the distribution of point (iv).

Note that when dealing with regional estimates, Qind, LCV and LCV are

independently estimated so that we can extract the index-flood from a log-

normal distribution Q′ind ∼ logN
(
Q̂ind, σ

2
Q̂ind

)
and the L-moments ratios

from two independent normal distributions: L′CV ∼ N
(
L̂CV , σ2

ˆLCV

)
and

L′CA ∼ N
(
L̂CA, σ2

ˆLCA

)
.

Differently, the uncertainty of a quantile based on sample data depends

of mutual correlated LCV and LCA (equation (2.14)), so the index-flood

is sampled from the normal distribution Q′ind ∼ N
(
Qind, σ

2
Qind

)
while

the L-moments ratios are jointly extracted from a multinormal distribu-

tion (L′CV , L′CA) ∼ N
(
LCV , σ2

LCV , LCA, σ2
LCA, ρ

)
. An example of quantile

estimation with confidence bands is reported if figure 2.1.
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Final remarks: a practical tool
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